/* -*- Mode: C; tab-width: 4; c-basic-offset: 4 -*- */ /*- * Copyright (C) 2006-2008 Jason Evans . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * This allocator implementation is designed to provide scalable performance * for multi-threaded programs on multi-processor systems. The following * features are included for this purpose: * * + Multiple arenas are used if there are multiple CPUs, which reduces lock * contention and cache sloshing. * * + Cache line sharing between arenas is avoided for internal data * structures. * * + Memory is managed in chunks and runs (chunks can be split into runs), * rather than as individual pages. This provides a constant-time * mechanism for associating allocations with particular arenas. * * Allocation requests are rounded up to the nearest size class, and no record * of the original request size is maintained. Allocations are broken into * categories according to size class. Assuming runtime defaults, 4 kB pages * and a 16 byte quantum, the size classes in each category are as follows: * * |=====================================| * | Category | Subcategory | Size | * |=====================================| * | Small | Tiny | 2 | * | | | 4 | * | | | 8 | * | |----------------+---------| * | | Quantum-spaced | 16 | * | | | 32 | * | | | 48 | * | | | ... | * | | | 480 | * | | | 496 | * | | | 512 | * | |----------------+---------| * | | Sub-page | 1 kB | * | | | 2 kB | * |=====================================| * | Large | 4 kB | * | | 8 kB | * | | 12 kB | * | | ... | * | | 1012 kB | * | | 1016 kB | * | | 1020 kB | * |=====================================| * | Huge | 1 MB | * | | 2 MB | * | | 3 MB | * | | ... | * |=====================================| * * A different mechanism is used for each category: * * Small : Each size class is segregated into its own set of runs. Each run * maintains a bitmap of which regions are free/allocated. * * Large : Each allocation is backed by a dedicated run. Metadata are stored * in the associated arena chunk header maps. * * Huge : Each allocation is backed by a dedicated contiguous set of chunks. * Metadata are stored in a separate red-black tree. * ******************************************************************************* */ #define MOZ_MEMORY /* * MALLOC_PRODUCTION disables assertions and statistics gathering. It also * defaults the A and J runtime options to off. These settings are appropriate * for production systems. */ #ifndef MOZ_MEMORY_DEBUG # define MALLOC_PRODUCTION #endif #ifndef MALLOC_PRODUCTION /* * MALLOC_DEBUG enables assertions and other sanity checks, and disables * inline functions. */ # define MALLOC_DEBUG /* MALLOC_STATS enables statistics calculation. */ # define MALLOC_STATS /* Memory filling (junk/zero). */ # define MALLOC_FILL /* Allocation tracing. */ # define MALLOC_UTRACE /* Support optional abort() on OOM. */ # define MALLOC_XMALLOC /* Support SYSV semantics. */ # define MALLOC_SYSV #endif /* * MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer * validation. There are many possible errors that validation does not even * attempt to detect. */ #define MALLOC_VALIDATE /* Embed no-op macros that support memory allocation tracking via valgrind. */ #ifdef MOZ_VALGRIND # define MALLOC_VALGRIND #endif #ifdef MALLOC_VALGRIND # include #else # define VALGRIND_MALLOCLIKE_BLOCK(addr, sizeB, rzB, is_zeroed) # define VALGRIND_FREELIKE_BLOCK(addr, rzB) #endif /* * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically * re-balances arena load if exponentially averaged contention exceeds a * certain threshold. */ /* #define MALLOC_BALANCE */ /* * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage * segment (DSS). In an ideal world, this functionality would be completely * unnecessary, but we are burdened by history and the lack of resource limits * for anonymous mapped memory. */ /* * Uniformly disable sbrk(2) use in Mozilla, since it has various problems * across platforms: * * Linux: sbrk() fails to detect error conditions when using large amounts of * memory, resulting in memory corruption. * * Darwin: sbrk() is severely limited in how much memory it can allocate, and * its use is strongly discouraged. * * Solaris: sbrk() does not necessarily discard pages when the DSS is shrunk, * which makes it possible to get non-zeroed pages when re-expanding * the DSS. This is incompatible with jemalloc's assumptions, and a * fix would require chunk_alloc_dss() to optionally zero memory as * chunk_recycle_dss() does (though the cost could be reduced by * keeping track of the DSS high water mark and zeroing only when * below that mark). */ /* #define MALLOC_DSS */ #ifdef MOZ_MEMORY_LINUX #ifndef _GNU_SOURCE #define _GNU_SOURCE /* For mremap(2). */ #endif #define issetugid() 0 #if 0 /* Enable in order to test decommit code on Linux. */ # define MALLOC_DECOMMIT #endif #endif #include #include #include #include #include #include #include #ifdef MOZ_MEMORY_WINDOWS #include #include #include #include #include "tree.h" #pragma warning( disable: 4267 4996 4146 ) #define bool BOOL #define false FALSE #define true TRUE #define inline __inline #define SIZE_T_MAX SIZE_MAX #define STDERR_FILENO 2 #define PATH_MAX MAX_PATH #define vsnprintf _vsnprintf #define assert(f) /* we can't assert in the CRT */ static unsigned long tlsIndex = 0xffffffff; #define __thread #define _pthread_self() __threadid() #define issetugid() 0 /* use MSVC intrinsics */ #pragma intrinsic(_BitScanForward) static __forceinline int ffs(int x) { unsigned long i; if (_BitScanForward(&i, x) != 0) return (i + 1); return (0); } /* Implement getenv without using malloc */ static char mozillaMallocOptionsBuf[64]; #define getenv xgetenv static char * getenv(const char *name) { if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf, sizeof(mozillaMallocOptionsBuf)) > 0) return (mozillaMallocOptionsBuf); return (NULL); } typedef unsigned char uint8_t; typedef unsigned uint32_t; typedef unsigned long long uint64_t; typedef unsigned long long uintmax_t; #define MALLOC_DECOMMIT #endif #ifndef MOZ_MEMORY_WINDOWS #ifndef MOZ_MEMORY_SOLARIS #include #endif #ifndef __DECONST # define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) #endif #ifndef MOZ_MEMORY __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.162 2008/02/06 02:59:54 jasone Exp $"); #include "libc_private.h" #ifdef MALLOC_DEBUG # define _LOCK_DEBUG #endif #include "spinlock.h" #include "namespace.h" #endif #include #ifndef MADV_FREE # define MADV_FREE MADV_DONTNEED #endif #include #ifndef MOZ_MEMORY #include #endif #include #include #ifndef MOZ_MEMORY_SOLARIS #include #endif #include "tree.h" #ifndef MOZ_MEMORY #include #endif #include #ifndef MOZ_MEMORY #include /* Must come after several other sys/ includes. */ #include #include #include #endif #include #include #ifndef SIZE_T_MAX # define SIZE_T_MAX SIZE_MAX #endif #include #ifdef MOZ_MEMORY_DARWIN #define _pthread_self pthread_self #define _pthread_mutex_init pthread_mutex_init #define _pthread_mutex_trylock pthread_mutex_trylock #define _pthread_mutex_lock pthread_mutex_lock #define _pthread_mutex_unlock pthread_mutex_unlock #endif #include #include #include #include #include #include #include #ifndef MOZ_MEMORY_DARWIN #include #endif #include #ifdef MOZ_MEMORY_DARWIN #include #include #include #include #include #endif #ifndef MOZ_MEMORY #include "un-namespace.h" #endif #endif #ifdef MOZ_MEMORY_DARWIN static const bool __isthreaded = true; #endif #define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) #ifdef MALLOC_DEBUG # ifdef NDEBUG # undef NDEBUG # endif #else # ifndef NDEBUG # define NDEBUG # endif #endif #ifndef MOZ_MEMORY_WINDOWS #include #endif #ifdef MALLOC_DEBUG /* Disable inlining to make debugging easier. */ #ifdef inline #undef inline #endif # define inline #endif /* JG: FAILS on our compile hosts */ /* #ifdef __GNUC__ */ /* #define VISIBLE __attribute__((visibility("default"))) */ /* #else */ #define VISIBLE /* #endif */ /* Size of stack-allocated buffer passed to strerror_r(). */ #define STRERROR_BUF 64 /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */ # define QUANTUM_2POW_MIN 4 #ifdef MOZ_MEMORY_SIZEOF_PTR_2POW # define SIZEOF_PTR_2POW MOZ_MEMORY_SIZEOF_PTR_2POW #else # define SIZEOF_PTR_2POW 2 #endif #define PIC #ifndef MOZ_MEMORY_DARWIN static const bool __isthreaded = true; #else # define NO_TLS #endif #if 0 #ifdef __i386__ # define QUANTUM_2POW_MIN 4 # define SIZEOF_PTR_2POW 2 # define CPU_SPINWAIT __asm__ volatile("pause") #endif #ifdef __ia64__ # define QUANTUM_2POW_MIN 4 # define SIZEOF_PTR_2POW 3 #endif #ifdef __alpha__ # define QUANTUM_2POW_MIN 4 # define SIZEOF_PTR_2POW 3 # define NO_TLS #endif #ifdef __sparc64__ # define QUANTUM_2POW_MIN 4 # define SIZEOF_PTR_2POW 3 # define NO_TLS #endif #ifdef __amd64__ # define QUANTUM_2POW_MIN 4 # define SIZEOF_PTR_2POW 3 # define CPU_SPINWAIT __asm__ volatile("pause") #endif #ifdef __arm__ # define QUANTUM_2POW_MIN 3 # define SIZEOF_PTR_2POW 2 # define NO_TLS #endif #ifdef __powerpc__ # define QUANTUM_2POW_MIN 4 # define SIZEOF_PTR_2POW 2 #endif #endif #define SIZEOF_PTR (1U << SIZEOF_PTR_2POW) /* sizeof(int) == (1U << SIZEOF_INT_2POW). */ #ifndef SIZEOF_INT_2POW # define SIZEOF_INT_2POW 2 #endif /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */ #if (!defined(PIC) && !defined(NO_TLS)) # define NO_TLS #endif #ifdef NO_TLS /* MALLOC_BALANCE requires TLS. */ # ifdef MALLOC_BALANCE # undef MALLOC_BALANCE # endif #endif /* * Size and alignment of memory chunks that are allocated by the OS's virtual * memory system. */ #define CHUNK_2POW_DEFAULT 20 /* Maximum number of dirty pages per arena. */ #define DIRTY_MAX_DEFAULT (1U << 9) /* * Maximum size of L1 cache line. This is used to avoid cache line aliasing, * so over-estimates are okay (up to a point), but under-estimates will * negatively affect performance. */ #define CACHELINE_2POW 6 #define CACHELINE ((size_t)(1U << CACHELINE_2POW)) /* Smallest size class to support. */ #define TINY_MIN_2POW 1 /* * Maximum size class that is a multiple of the quantum, but not (necessarily) * a power of 2. Above this size, allocations are rounded up to the nearest * power of 2. */ #define SMALL_MAX_2POW_DEFAULT 9 #define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT) /* * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized * as small as possible such that this setting is still honored, without * violating other constraints. The goal is to make runs as small as possible * without exceeding a per run external fragmentation threshold. * * We use binary fixed point math for overhead computations, where the binary * point is implicitly RUN_BFP bits to the left. * * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be * honored for some/all object sizes, since there is one bit of header overhead * per object (plus a constant). This constraint is relaxed (ignored) for runs * that are so small that the per-region overhead is greater than: * * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP)) */ #define RUN_BFP 12 /* \/ Implicit binary fixed point. */ #define RUN_MAX_OVRHD 0x0000003dU #define RUN_MAX_OVRHD_RELAX 0x00001800U /* * Put a cap on small object run size. This overrides RUN_MAX_OVRHD. Note * that small runs must be small enough that page offsets can fit within the * CHUNK_MAP_POS_MASK bits. */ #define RUN_MAX_SMALL_2POW 15 #define RUN_MAX_SMALL (1U << RUN_MAX_SMALL_2POW) /* * Hyper-threaded CPUs may need a special instruction inside spin loops in * order to yield to another virtual CPU. If no such instruction is defined * above, make CPU_SPINWAIT a no-op. */ #ifndef CPU_SPINWAIT # define CPU_SPINWAIT #endif /* * Adaptive spinning must eventually switch to blocking, in order to avoid the * potential for priority inversion deadlock. Backing off past a certain point * can actually waste time. */ #define SPIN_LIMIT_2POW 11 /* * Conversion from spinning to blocking is expensive; we use (1U << * BLOCK_COST_2POW) to estimate how many more times costly blocking is than * worst-case spinning. */ #define BLOCK_COST_2POW 4 #ifdef MALLOC_BALANCE /* * We use an exponential moving average to track recent lock contention, * where the size of the history window is N, and alpha=2/(N+1). * * Due to integer math rounding, very small values here can cause * substantial degradation in accuracy, thus making the moving average decay * faster than it would with precise calculation. */ # define BALANCE_ALPHA_INV_2POW 9 /* * Threshold value for the exponential moving contention average at which to * re-assign a thread. */ # define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4)) #endif /******************************************************************************/ /* * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all * places, because they require malloc()ed memory, which causes bootstrapping * issues in some cases. */ #if defined(MOZ_MEMORY_WINDOWS) #define malloc_mutex_t CRITICAL_SECTION #define malloc_spinlock_t CRITICAL_SECTION #elif defined(MOZ_MEMORY_DARWIN) typedef struct { OSSpinLock lock; } malloc_mutex_t; typedef struct { OSSpinLock lock; } malloc_spinlock_t; #elif defined(MOZ_MEMORY) typedef pthread_mutex_t malloc_mutex_t; typedef pthread_mutex_t malloc_spinlock_t; #else /* XXX these should #ifdef these for freebsd (and linux?) only */ typedef struct { spinlock_t lock; } malloc_mutex_t; typedef malloc_spinlock_t malloc_mutex_t; #endif /* Set to true once the allocator has been initialized. */ static bool malloc_initialized = false; #if defined(MOZ_MEMORY_WINDOWS) /* No init lock for Windows. */ #elif defined(MOZ_MEMORY_DARWIN) static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT}; #elif defined(MOZ_MEMORY_LINUX) static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP; #elif defined(MOZ_MEMORY) static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER; #else static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER}; #endif /******************************************************************************/ /* * Statistics data structures. */ #ifdef MALLOC_STATS typedef struct malloc_bin_stats_s malloc_bin_stats_t; struct malloc_bin_stats_s { /* * Number of allocation requests that corresponded to the size of this * bin. */ uint64_t nrequests; /* Total number of runs created for this bin's size class. */ uint64_t nruns; /* * Total number of runs reused by extracting them from the runs tree for * this bin's size class. */ uint64_t reruns; /* High-water mark for this bin. */ unsigned long highruns; /* Current number of runs in this bin. */ unsigned long curruns; }; typedef struct arena_stats_s arena_stats_t; struct arena_stats_s { /* Number of bytes currently mapped. */ size_t mapped; /* * Total number of purge sweeps, total number of madvise calls made, * and total pages purged in order to keep dirty unused memory under * control. */ uint64_t npurge; uint64_t nmadvise; uint64_t purged; #ifdef MALLOC_DECOMMIT /* * Total number of decommit/commit operations, and total number of * pages decommitted. */ uint64_t ndecommit; uint64_t ncommit; uint64_t decommitted; #endif /* Per-size-category statistics. */ size_t allocated_small; uint64_t nmalloc_small; uint64_t ndalloc_small; size_t allocated_large; uint64_t nmalloc_large; uint64_t ndalloc_large; #ifdef MALLOC_BALANCE /* Number of times this arena reassigned a thread due to contention. */ uint64_t nbalance; #endif }; typedef struct chunk_stats_s chunk_stats_t; struct chunk_stats_s { /* Number of chunks that were allocated. */ uint64_t nchunks; /* High-water mark for number of chunks allocated. */ unsigned long highchunks; /* * Current number of chunks allocated. This value isn't maintained for * any other purpose, so keep track of it in order to be able to set * highchunks. */ unsigned long curchunks; }; #endif /* #ifdef MALLOC_STATS */ /******************************************************************************/ /* * Extent data structures. */ /* Tree of extents. */ typedef struct extent_node_s extent_node_t; struct extent_node_s { /* Linkage for the size/address-ordered tree. */ RB_ENTRY(extent_node_s) link_szad; /* Linkage for the address-ordered tree. */ RB_ENTRY(extent_node_s) link_ad; /* Pointer to the extent that this tree node is responsible for. */ void *addr; /* Total region size. */ size_t size; }; typedef struct extent_tree_szad_s extent_tree_szad_t; RB_HEAD(extent_tree_szad_s, extent_node_s); typedef struct extent_tree_ad_s extent_tree_ad_t; RB_HEAD(extent_tree_ad_s, extent_node_s); /******************************************************************************/ /* * Arena data structures. */ typedef struct arena_s arena_t; typedef struct arena_bin_s arena_bin_t; /* * Each map element contains several flags, plus page position for runs that * service small allocations. */ typedef uint8_t arena_chunk_map_t; #define CHUNK_MAP_UNTOUCHED 0x80U #define CHUNK_MAP_DIRTY 0x40U #define CHUNK_MAP_LARGE 0x20U #ifdef MALLOC_DECOMMIT #define CHUNK_MAP_DECOMMITTED 0x10U #define CHUNK_MAP_POS_MASK 0x0fU #else #define CHUNK_MAP_POS_MASK 0x1fU #endif /* Arena chunk header. */ typedef struct arena_chunk_s arena_chunk_t; struct arena_chunk_s { /* Arena that owns the chunk. */ arena_t *arena; /* Linkage for the arena's chunk tree. */ RB_ENTRY(arena_chunk_s) link; /* * Number of pages in use. This is maintained in order to make * detection of empty chunks fast. */ size_t pages_used; /* Number of dirty pages. */ size_t ndirty; /* * Tree of extent nodes that are embedded in the arena chunk header * page(s). These nodes are used by arena_chunk_node_alloc(). */ extent_tree_ad_t nodes; extent_node_t *nodes_past; /* * Map of pages within chunk that keeps track of free/large/small. For * free runs, only the map entries for the first and last pages are * kept up to date, so that free runs can be quickly coalesced. */ arena_chunk_map_t map[1]; /* Dynamically sized. */ }; typedef struct arena_chunk_tree_s arena_chunk_tree_t; RB_HEAD(arena_chunk_tree_s, arena_chunk_s); typedef struct arena_run_s arena_run_t; struct arena_run_s { /* Linkage for run trees. */ RB_ENTRY(arena_run_s) link; #ifdef MALLOC_DEBUG uint32_t magic; # define ARENA_RUN_MAGIC 0x384adf93 #endif /* Bin this run is associated with. */ arena_bin_t *bin; /* Index of first element that might have a free region. */ unsigned regs_minelm; /* Number of free regions in run. */ unsigned nfree; /* Bitmask of in-use regions (0: in use, 1: free). */ unsigned regs_mask[1]; /* Dynamically sized. */ }; typedef struct arena_run_tree_s arena_run_tree_t; RB_HEAD(arena_run_tree_s, arena_run_s); struct arena_bin_s { /* * Current run being used to service allocations of this bin's size * class. */ arena_run_t *runcur; /* * Tree of non-full runs. This tree is used when looking for an * existing run when runcur is no longer usable. We choose the * non-full run that is lowest in memory; this policy tends to keep * objects packed well, and it can also help reduce the number of * almost-empty chunks. */ arena_run_tree_t runs; /* Size of regions in a run for this bin's size class. */ size_t reg_size; /* Total size of a run for this bin's size class. */ size_t run_size; /* Total number of regions in a run for this bin's size class. */ uint32_t nregs; /* Number of elements in a run's regs_mask for this bin's size class. */ uint32_t regs_mask_nelms; /* Offset of first region in a run for this bin's size class. */ uint32_t reg0_offset; #ifdef MALLOC_STATS /* Bin statistics. */ malloc_bin_stats_t stats; #endif }; struct arena_s { #ifdef MALLOC_DEBUG uint32_t magic; # define ARENA_MAGIC 0x947d3d24 #endif /* All operations on this arena require that lock be locked. */ #ifdef MOZ_MEMORY malloc_spinlock_t lock; #else pthread_mutex_t lock; #endif #ifdef MALLOC_STATS arena_stats_t stats; #endif /* * Tree of chunks this arena manages. */ arena_chunk_tree_t chunks; /* * In order to avoid rapid chunk allocation/deallocation when an arena * oscillates right on the cusp of needing a new chunk, cache the most * recently freed chunk. The spare is left in the arena's chunk tree * until it is deleted. * * There is one spare chunk per arena, rather than one spare total, in * order to avoid interactions between multiple threads that could make * a single spare inadequate. */ arena_chunk_t *spare; /* * Current count of pages within unused runs that are potentially * dirty, and for which madvise(... MADV_FREE) has not been called. By * tracking this, we can institute a limit on how much dirty unused * memory is mapped for each arena. */ size_t ndirty; /* * Trees of this arena's available runs. Two trees are maintained * using one set of nodes, since one is needed for first-best-fit run * allocation, and the other is needed for coalescing. */ extent_tree_szad_t runs_avail_szad; extent_tree_ad_t runs_avail_ad; /* Tree of this arena's allocated (in-use) runs. */ extent_tree_ad_t runs_alloced_ad; #ifdef MALLOC_BALANCE /* * The arena load balancing machinery needs to keep track of how much * lock contention there is. This value is exponentially averaged. */ uint32_t contention; #endif /* * bins is used to store rings of free regions of the following sizes, * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS. * * bins[i] | size | * --------+------+ * 0 | 2 | * 1 | 4 | * 2 | 8 | * --------+------+ * 3 | 16 | * 4 | 32 | * 5 | 48 | * 6 | 64 | * : : * : : * 33 | 496 | * 34 | 512 | * --------+------+ * 35 | 1024 | * 36 | 2048 | * --------+------+ */ arena_bin_t bins[1]; /* Dynamically sized. */ }; /******************************************************************************/ /* * Data. */ /* Number of CPUs. */ static unsigned ncpus; /* VM page size. */ static size_t pagesize; static size_t pagesize_mask; static size_t pagesize_2pow; /* Various bin-related settings. */ static size_t bin_maxclass; /* Max size class for bins. */ static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */ static unsigned nqbins; /* Number of quantum-spaced bins. */ static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */ static size_t small_min; static size_t small_max; /* Various quantum-related settings. */ static size_t quantum; static size_t quantum_mask; /* (quantum - 1). */ /* Various chunk-related settings. */ static size_t chunksize; static size_t chunksize_mask; /* (chunksize - 1). */ static size_t chunk_npages; static size_t arena_chunk_header_npages; static size_t arena_maxclass; /* Max size class for arenas. */ /********/ /* * Chunks. */ /* Protects chunk-related data structures. */ static malloc_mutex_t huge_mtx; /* Tree of chunks that are stand-alone huge allocations. */ static extent_tree_ad_t huge; #ifdef MALLOC_DSS /* * Protects sbrk() calls. This avoids malloc races among threads, though it * does not protect against races with threads that call sbrk() directly. */ static malloc_mutex_t dss_mtx; /* Base address of the DSS. */ static void *dss_base; /* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */ static void *dss_prev; /* Current upper limit on DSS addresses. */ static void *dss_max; /* * Trees of chunks that were previously allocated (trees differ only in node * ordering). These are used when allocating chunks, in an attempt to re-use * address space. Depending on function, different tree orderings are needed, * which is why there are two trees with the same contents. */ static extent_tree_szad_t dss_chunks_szad; static extent_tree_ad_t dss_chunks_ad; #endif #ifdef MALLOC_STATS /* Huge allocation statistics. */ static uint64_t huge_nmalloc; static uint64_t huge_ndalloc; static size_t huge_allocated; #endif /****************************/ /* * base (internal allocation). */ /* * Current pages that are being used for internal memory allocations. These * pages are carved up in cacheline-size quanta, so that there is no chance of * false cache line sharing. */ static void *base_pages; static void *base_next_addr; #ifdef MALLOC_DECOMMIT static void *base_next_decommitted; #endif static void *base_past_addr; /* Addr immediately past base_pages. */ static extent_node_t *base_nodes; static malloc_mutex_t base_mtx; #ifdef MALLOC_STATS static size_t base_mapped; #endif /********/ /* * Arenas. */ /* * Arenas that are used to service external requests. Not all elements of the * arenas array are necessarily used; arenas are created lazily as needed. */ static arena_t **arenas; static unsigned narenas; #ifndef NO_TLS # ifdef MALLOC_BALANCE static unsigned narenas_2pow; # else static unsigned next_arena; # endif #endif #ifdef MOZ_MEMORY static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */ #else static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */ #endif #ifndef NO_TLS /* * Map of pthread_self() --> arenas[???], used for selecting an arena to use * for allocations. */ #ifndef MOZ_MEMORY_WINDOWS static __thread arena_t *arenas_map; #endif #endif #ifdef MALLOC_STATS /* Chunk statistics. */ static chunk_stats_t stats_chunks; #endif /*******************************/ /* * Runtime configuration options. */ const char *_malloc_options #ifdef MOZ_MEMORY_WINDOWS = "A10n2F" #elif (defined(MOZ_MEMORY_DARWIN)) = "AP10n" #elif (defined(MOZ_MEMORY_LINUX)) = "A10n2F" #elif (defined(MOZ_MEMORY_SOLARIS)) = "A10n2F" #endif ; #ifndef MALLOC_PRODUCTION static bool opt_abort = true; #ifdef MALLOC_FILL static bool opt_junk = true; #endif #else static bool opt_abort = false; #ifdef MALLOC_FILL static bool opt_junk = false; #endif #endif #ifdef MALLOC_DSS static bool opt_dss = true; static bool opt_mmap = true; #endif static size_t opt_dirty_max = DIRTY_MAX_DEFAULT; #ifdef MALLOC_BALANCE static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT; #endif static bool opt_print_stats = false; static size_t opt_quantum_2pow = QUANTUM_2POW_MIN; static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT; static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT; #ifdef MALLOC_UTRACE static bool opt_utrace = false; #endif #ifdef MALLOC_SYSV static bool opt_sysv = false; #endif #ifdef MALLOC_XMALLOC static bool opt_xmalloc = false; #endif #ifdef MALLOC_FILL static bool opt_zero = false; #endif static int opt_narenas_lshift = 0; #ifdef MALLOC_UTRACE typedef struct { void *p; size_t s; void *r; } malloc_utrace_t; #define UTRACE(a, b, c) \ if (opt_utrace) { \ malloc_utrace_t ut; \ ut.p = (a); \ ut.s = (b); \ ut.r = (c); \ utrace(&ut, sizeof(ut)); \ } #else #define UTRACE(a, b, c) #endif /******************************************************************************/ /* * Begin function prototypes for non-inline static functions. */ static bool malloc_mutex_init(malloc_mutex_t *mutex); static bool malloc_spin_init(malloc_spinlock_t *lock); static void wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4); #ifdef MALLOC_STATS #ifdef MOZ_MEMORY_DARWIN /* Avoid namespace collision with OS X's malloc APIs. */ #define malloc_printf xmalloc_printf #endif static void malloc_printf(const char *format, ...); #endif static char *umax2s(uintmax_t x, char *s); #ifdef MALLOC_DSS static bool base_pages_alloc_dss(size_t minsize); #endif static bool base_pages_alloc_mmap(size_t minsize); static bool base_pages_alloc(size_t minsize); static void *base_alloc(size_t size); static void *base_calloc(size_t number, size_t size); static extent_node_t *base_node_alloc(void); static void base_node_dealloc(extent_node_t *node); #ifdef MALLOC_STATS static void stats_print(arena_t *arena); #endif static void *pages_map(void *addr, size_t size); static void pages_unmap(void *addr, size_t size); #ifdef MALLOC_DSS static void *chunk_alloc_dss(size_t size); static void *chunk_recycle_dss(size_t size, bool zero); #endif static void *chunk_alloc_mmap(size_t size); static void *chunk_alloc(size_t size, bool zero); #ifdef MALLOC_DSS static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size); static bool chunk_dealloc_dss(void *chunk, size_t size); #endif static void chunk_dealloc_mmap(void *chunk, size_t size); static void chunk_dealloc(void *chunk, size_t size); #ifndef NO_TLS static arena_t *choose_arena_hard(void); #endif static extent_node_t *arena_chunk_node_alloc(arena_chunk_t *chunk); static void arena_chunk_node_dealloc(arena_chunk_t *chunk, extent_node_t *node); static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool small, bool zero); static arena_chunk_t *arena_chunk_alloc(arena_t *arena); static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk); static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool small, bool zero); static void arena_purge(arena_t *arena); static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty); static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, extent_node_t *nodeB, arena_run_t *run, size_t oldsize, size_t newsize); static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, extent_node_t *nodeA, arena_run_t *run, size_t oldsize, size_t newsize, bool dirty); static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin); static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin); static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size); #ifdef MALLOC_BALANCE static void arena_lock_balance_hard(arena_t *arena); #endif static void *arena_malloc_large(arena_t *arena, size_t size, bool zero); static void *arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size); static size_t arena_salloc(const void *ptr); static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr); static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize); static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize); static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize); static void *arena_ralloc(void *ptr, size_t size, size_t oldsize); static bool arena_new(arena_t *arena); static arena_t *arenas_extend(unsigned ind); static void *huge_malloc(size_t size, bool zero); static void *huge_palloc(size_t alignment, size_t size); static void *huge_ralloc(void *ptr, size_t size, size_t oldsize); static void huge_dalloc(void *ptr); static void malloc_print_stats(void); #ifndef MOZ_MEMORY_WINDOWS static #endif bool malloc_init_hard(void); void _malloc_prefork(void); void _malloc_postfork(void); /* * End function prototypes. */ /******************************************************************************/ /* * Begin mutex. We can't use normal pthread mutexes in all places, because * they require malloc()ed memory, which causes bootstrapping issues in some * cases. */ static bool malloc_mutex_init(malloc_mutex_t *mutex) { #if defined(MOZ_MEMORY_WINDOWS) if (__isthreaded) if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT)) return (true); #elif defined(MOZ_MEMORY_DARWIN) mutex->lock = OS_SPINLOCK_INIT; #elif defined(MOZ_MEMORY_LINUX) pthread_mutexattr_t attr; if (pthread_mutexattr_init(&attr) != 0) return (true); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP); if (pthread_mutex_init(mutex, &attr) != 0) { pthread_mutexattr_destroy(&attr); return (true); } pthread_mutexattr_destroy(&attr); #elif defined(MOZ_MEMORY) if (pthread_mutex_init(mutex, NULL) != 0) return (true); #else static const spinlock_t lock = _SPINLOCK_INITIALIZER; mutex->lock = lock; #endif return (false); } static inline void malloc_mutex_lock(malloc_mutex_t *mutex) { #if defined(MOZ_MEMORY_WINDOWS) EnterCriticalSection(mutex); #elif defined(MOZ_MEMORY_DARWIN) OSSpinLockLock(&mutex->lock); #elif defined(MOZ_MEMORY) pthread_mutex_lock(mutex); #else if (__isthreaded) _SPINLOCK(&mutex->lock); #endif } static inline void malloc_mutex_unlock(malloc_mutex_t *mutex) { #if defined(MOZ_MEMORY_WINDOWS) LeaveCriticalSection(mutex); #elif defined(MOZ_MEMORY_DARWIN) OSSpinLockUnlock(&mutex->lock); #elif defined(MOZ_MEMORY) pthread_mutex_unlock(mutex); #else if (__isthreaded) _SPINUNLOCK(&mutex->lock); #endif } static bool malloc_spin_init(malloc_spinlock_t *lock) { #if defined(MOZ_MEMORY_WINDOWS) if (__isthreaded) if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT)) return (true); #elif defined(MOZ_MEMORY_DARWIN) lock->lock = OS_SPINLOCK_INIT; #elif defined(MOZ_MEMORY_LINUX) pthread_mutexattr_t attr; if (pthread_mutexattr_init(&attr) != 0) return (true); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP); if (pthread_mutex_init(lock, &attr) != 0) { pthread_mutexattr_destroy(&attr); return (true); } pthread_mutexattr_destroy(&attr); #elif defined(MOZ_MEMORY) if (pthread_mutex_init(lock, NULL) != 0) return (true); #else lock->lock = _SPINLOCK_INITIALIZER; #endif return (false); } static inline void malloc_spin_lock(malloc_spinlock_t *lock) { #if defined(MOZ_MEMORY_WINDOWS) EnterCriticalSection(lock); #elif defined(MOZ_MEMORY_DARWIN) OSSpinLockLock(&lock->lock); #elif defined(MOZ_MEMORY) pthread_mutex_lock(lock); #else if (__isthreaded) _SPINLOCK(&lock->lock); #endif } static inline void malloc_spin_unlock(malloc_spinlock_t *lock) { #if defined(MOZ_MEMORY_WINDOWS) LeaveCriticalSection(lock); #elif defined(MOZ_MEMORY_DARWIN) OSSpinLockUnlock(&lock->lock); #elif defined(MOZ_MEMORY) pthread_mutex_unlock(lock); #else if (__isthreaded) _SPINUNLOCK(&lock->lock); #endif } /* * End mutex. */ /******************************************************************************/ /* * Begin spin lock. Spin locks here are actually adaptive mutexes that block * after a period of spinning, because unbounded spinning would allow for * priority inversion. */ #if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN) # define malloc_spin_init malloc_mutex_init # define malloc_spin_lock malloc_mutex_lock # define malloc_spin_unlock malloc_mutex_unlock #endif #ifndef MOZ_MEMORY /* * We use an unpublished interface to initialize pthread mutexes with an * allocation callback, in order to avoid infinite recursion. */ int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)); __weak_reference(_pthread_mutex_init_calloc_cb_stub, _pthread_mutex_init_calloc_cb); int _pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)) { return (0); } static bool malloc_spin_init(pthread_mutex_t *lock) { if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0) return (true); return (false); } static inline unsigned malloc_spin_lock(pthread_mutex_t *lock) { unsigned ret = 0; if (__isthreaded) { if (_pthread_mutex_trylock(lock) != 0) { unsigned i; volatile unsigned j; /* Exponentially back off. */ for (i = 1; i <= SPIN_LIMIT_2POW; i++) { for (j = 0; j < (1U << i); j++) ret++; CPU_SPINWAIT; if (_pthread_mutex_trylock(lock) == 0) return (ret); } /* * Spinning failed. Block until the lock becomes * available, in order to avoid indefinite priority * inversion. */ _pthread_mutex_lock(lock); assert((ret << BLOCK_COST_2POW) != 0); return (ret << BLOCK_COST_2POW); } } return (ret); } static inline void malloc_spin_unlock(pthread_mutex_t *lock) { if (__isthreaded) _pthread_mutex_unlock(lock); } #endif /* * End spin lock. */ /******************************************************************************/ /* * Begin Utility functions/macros. */ /* Return the chunk address for allocation address a. */ #define CHUNK_ADDR2BASE(a) \ ((void *)((uintptr_t)(a) & ~chunksize_mask)) /* Return the chunk offset of address a. */ #define CHUNK_ADDR2OFFSET(a) \ ((size_t)((uintptr_t)(a) & chunksize_mask)) /* Return the smallest chunk multiple that is >= s. */ #define CHUNK_CEILING(s) \ (((s) + chunksize_mask) & ~chunksize_mask) /* Return the smallest cacheline multiple that is >= s. */ #define CACHELINE_CEILING(s) \ (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1)) /* Return the smallest quantum multiple that is >= a. */ #define QUANTUM_CEILING(a) \ (((a) + quantum_mask) & ~quantum_mask) /* Return the smallest pagesize multiple that is >= s. */ #define PAGE_CEILING(s) \ (((s) + pagesize_mask) & ~pagesize_mask) /* Compute the smallest power of 2 that is >= x. */ static inline size_t pow2_ceil(size_t x) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; #if (SIZEOF_PTR == 8) x |= x >> 32; #endif x++; return (x); } #ifdef MALLOC_BALANCE /* * Use a simple linear congruential pseudo-random number generator: * * prn(y) = (a*x + c) % m * * where the following constants ensure maximal period: * * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4. * c == Odd number (relatively prime to 2^n). * m == 2^32 * * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints. * * This choice of m has the disadvantage that the quality of the bits is * proportional to bit position. For example. the lowest bit has a cycle of 2, * the next has a cycle of 4, etc. For this reason, we prefer to use the upper * bits. */ # define PRN_DEFINE(suffix, var, a, c) \ static inline void \ sprn_##suffix(uint32_t seed) \ { \ var = seed; \ } \ \ static inline uint32_t \ prn_##suffix(uint32_t lg_range) \ { \ uint32_t ret, x; \ \ assert(lg_range > 0); \ assert(lg_range <= 32); \ \ x = (var * (a)) + (c); \ var = x; \ ret = x >> (32 - lg_range); \ \ return (ret); \ } # define SPRN(suffix, seed) sprn_##suffix(seed) # define PRN(suffix, lg_range) prn_##suffix(lg_range) #endif /* * Define PRNGs, one for each purpose, in order to avoid auto-correlation * problems. */ #ifdef MALLOC_BALANCE /* Define the PRNG used for arena assignment. */ static __thread uint32_t balance_x; PRN_DEFINE(balance, balance_x, 1297, 1301) #endif #ifdef MALLOC_UTRACE static int utrace(const void *addr, size_t len) { malloc_utrace_t *ut = (malloc_utrace_t *)addr; assert(len == sizeof(malloc_utrace_t)); if (ut->p == NULL && ut->s == 0 && ut->r == NULL) malloc_printf("%d x USER malloc_init()\n", getpid()); else if (ut->p == NULL && ut->r != NULL) { malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r, ut->s); } else if (ut->p != NULL && ut->r != NULL) { malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(), ut->r, ut->p, ut->s); } else malloc_printf("%d x USER free(%p)\n", getpid(), ut->p); return (0); } #endif static inline const char * _getprogname(void) { return (""); } static void wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4) { #if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS) #define _write write #endif _write(STDERR_FILENO, p1, (unsigned int) strlen(p1)); _write(STDERR_FILENO, p2, (unsigned int) strlen(p2)); _write(STDERR_FILENO, p3, (unsigned int) strlen(p3)); _write(STDERR_FILENO, p4, (unsigned int) strlen(p4)); } #define _malloc_message malloc_message void (*_malloc_message)(const char *p1, const char *p2, const char *p3, const char *p4) = wrtmessage; #ifdef MALLOC_STATS /* * Print to stderr in such a way as to (hopefully) avoid memory allocation. */ static void malloc_printf(const char *format, ...) { char buf[4096]; va_list ap; va_start(ap, format); vsnprintf(buf, sizeof(buf), format, ap); va_end(ap); _malloc_message(buf, "", "", ""); } #endif /* * We don't want to depend on vsnprintf() for production builds, since that can * cause unnecessary bloat for static binaries. umax2s() provides minimal * integer printing functionality, so that malloc_printf() use can be limited to * MALLOC_STATS code. */ #define UMAX2S_BUFSIZE 21 static char * umax2s(uintmax_t x, char *s) { unsigned i; /* Make sure UMAX2S_BUFSIZE is large enough. */ assert(sizeof(uintmax_t) <= 8); i = UMAX2S_BUFSIZE - 1; s[i] = '\0'; do { i--; s[i] = "0123456789"[x % 10]; x /= 10; } while (x > 0); return (&s[i]); } /******************************************************************************/ #ifdef MALLOC_DECOMMIT static inline void pages_decommit(void *addr, size_t size) { #ifdef MOZ_MEMORY_WINDOWS VirtualFree(addr, size, MEM_DECOMMIT); #else if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) abort(); #endif } static inline void pages_commit(void *addr, size_t size) { # ifdef MOZ_MEMORY_WINDOWS VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE); # else if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) abort(); # endif } #endif #ifdef MALLOC_DSS static bool base_pages_alloc_dss(size_t minsize) { /* * Do special DSS allocation here, since base allocations don't need to * be chunk-aligned. */ malloc_mutex_lock(&dss_mtx); if (dss_prev != (void *)-1) { intptr_t incr; size_t csize = CHUNK_CEILING(minsize); do { /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Calculate how much padding is necessary to * chunk-align the end of the DSS. Don't worry about * dss_max not being chunk-aligned though. */ incr = (intptr_t)chunksize - (intptr_t)CHUNK_ADDR2OFFSET(dss_max); assert(incr >= 0); if ((size_t)incr < minsize) incr += csize; dss_prev = sbrk(incr); if (dss_prev == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev + incr); base_pages = dss_prev; base_next_addr = base_pages; base_past_addr = dss_max; #ifdef MALLOC_STATS base_mapped += incr; #endif malloc_mutex_unlock(&dss_mtx); return (false); } } while (dss_prev != (void *)-1); } malloc_mutex_unlock(&dss_mtx); return (true); } #endif static bool base_pages_alloc_mmap(size_t minsize) { size_t csize; #ifdef MALLOC_DECOMMIT size_t pminsize; #endif assert(minsize != 0); csize = PAGE_CEILING(minsize); base_pages = pages_map(NULL, csize); if (base_pages == NULL) return (true); base_next_addr = base_pages; base_past_addr = (void *)((uintptr_t)base_pages + csize); #ifdef MALLOC_DECOMMIT /* * Leave enough pages for minsize committed, since otherwise they would * have to be immediately recommitted. */ pminsize = PAGE_CEILING(minsize); base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize); if (pminsize < csize) pages_decommit(base_next_decommitted, csize - pminsize); #endif #ifdef MALLOC_STATS base_mapped += csize; #endif return (false); } static bool base_pages_alloc(size_t minsize) { #ifdef MALLOC_DSS if (opt_dss) { if (base_pages_alloc_dss(minsize) == false) return (false); } if (opt_mmap && minsize != 0) #endif { if (base_pages_alloc_mmap(minsize) == false) return (false); } return (true); } static void * base_alloc(size_t size) { void *ret; size_t csize; /* Round size up to nearest multiple of the cacheline size. */ csize = CACHELINE_CEILING(size); malloc_mutex_lock(&base_mtx); /* Make sure there's enough space for the allocation. */ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) { if (base_pages_alloc(csize)) return (NULL); } /* Allocate. */ ret = base_next_addr; base_next_addr = (void *)((uintptr_t)base_next_addr + csize); #ifdef MALLOC_DECOMMIT /* Make sure enough pages are committed for the new allocation. */ if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) { void *pbase_next_addr = (void *)(PAGE_CEILING((uintptr_t)base_next_addr)); pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr - (uintptr_t)base_next_decommitted); base_next_decommitted = pbase_next_addr; } #endif malloc_mutex_unlock(&base_mtx); VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false); return (ret); } static void * base_calloc(size_t number, size_t size) { void *ret; ret = base_alloc(number * size); #ifdef MALLOC_VALGRIND if (ret != NULL) { VALGRIND_FREELIKE_BLOCK(ret, 0); VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, true); } #endif memset(ret, 0, number * size); return (ret); } static extent_node_t * base_node_alloc(void) { extent_node_t *ret; malloc_mutex_lock(&base_mtx); if (base_nodes != NULL) { ret = base_nodes; base_nodes = *(extent_node_t **)ret; VALGRIND_FREELIKE_BLOCK(ret, 0); VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(extent_node_t), 0, false); malloc_mutex_unlock(&base_mtx); } else { malloc_mutex_unlock(&base_mtx); ret = (extent_node_t *)base_alloc(sizeof(extent_node_t)); } return (ret); } static void base_node_dealloc(extent_node_t *node) { malloc_mutex_lock(&base_mtx); VALGRIND_FREELIKE_BLOCK(node, 0); VALGRIND_MALLOCLIKE_BLOCK(node, sizeof(extent_node_t *), 0, false); *(extent_node_t **)node = base_nodes; base_nodes = node; malloc_mutex_unlock(&base_mtx); } /******************************************************************************/ #ifdef MALLOC_STATS static void stats_print(arena_t *arena) { unsigned i, gap_start; #ifdef MOZ_MEMORY_WINDOWS malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s," " %I64u madvise%s, %I64u page%s purged\n", arena->ndirty, arena->ndirty == 1 ? "" : "s", arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", arena->stats.purged, arena->stats.purged == 1 ? "" : "s"); # ifdef MALLOC_DECOMMIT malloc_printf("decommit: %I64u decommit%s, %I64u commit%s," " %I64u page%s decommitted\n", arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s", arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s", arena->stats.decommitted, (arena->stats.decommitted == 1) ? "" : "s"); # endif malloc_printf(" allocated nmalloc ndalloc\n"); malloc_printf("small: %12Iu %12I64u %12I64u\n", arena->stats.allocated_small, arena->stats.nmalloc_small, arena->stats.ndalloc_small); malloc_printf("large: %12Iu %12I64u %12I64u\n", arena->stats.allocated_large, arena->stats.nmalloc_large, arena->stats.ndalloc_large); malloc_printf("total: %12Iu %12I64u %12I64u\n", arena->stats.allocated_small + arena->stats.allocated_large, arena->stats.nmalloc_small + arena->stats.nmalloc_large, arena->stats.ndalloc_small + arena->stats.ndalloc_large); malloc_printf("mapped: %12Iu\n", arena->stats.mapped); #else malloc_printf("dirty: %zu page%s dirty, %llu sweep%s," " %llu madvise%s, %llu page%s purged\n", arena->ndirty, arena->ndirty == 1 ? "" : "s", arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", arena->stats.purged, arena->stats.purged == 1 ? "" : "s"); # ifdef MALLOC_DECOMMIT malloc_printf("decommit: %llu decommit%s, %llu commit%s," " %llu page%s decommitted\n", arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s", arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s", arena->stats.decommitted, (arena->stats.decommitted == 1) ? "" : "s"); # endif malloc_printf(" allocated nmalloc ndalloc\n"); malloc_printf("small: %12zu %12llu %12llu\n", arena->stats.allocated_small, arena->stats.nmalloc_small, arena->stats.ndalloc_small); malloc_printf("large: %12zu %12llu %12llu\n", arena->stats.allocated_large, arena->stats.nmalloc_large, arena->stats.ndalloc_large); malloc_printf("total: %12zu %12llu %12llu\n", arena->stats.allocated_small + arena->stats.allocated_large, arena->stats.nmalloc_small + arena->stats.nmalloc_large, arena->stats.ndalloc_small + arena->stats.ndalloc_large); malloc_printf("mapped: %12zu\n", arena->stats.mapped); #endif malloc_printf("bins: bin size regs pgs requests newruns" " reruns maxruns curruns\n"); for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) { if (arena->bins[i].stats.nrequests == 0) { if (gap_start == UINT_MAX) gap_start = i; } else { if (gap_start != UINT_MAX) { if (i > gap_start + 1) { /* Gap of more than one size class. */ malloc_printf("[%u..%u]\n", gap_start, i - 1); } else { /* Gap of one size class. */ malloc_printf("[%u]\n", gap_start); } gap_start = UINT_MAX; } malloc_printf( #if defined(MOZ_MEMORY_WINDOWS) "%13u %1s %4u %4u %3u %9I64u %9I64u" " %9I64u %7u %7u\n", #else "%13u %1s %4u %4u %3u %9llu %9llu" " %9llu %7lu %7lu\n", #endif i, i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S", arena->bins[i].reg_size, arena->bins[i].nregs, arena->bins[i].run_size >> pagesize_2pow, arena->bins[i].stats.nrequests, arena->bins[i].stats.nruns, arena->bins[i].stats.reruns, arena->bins[i].stats.highruns, arena->bins[i].stats.curruns); } } if (gap_start != UINT_MAX) { if (i > gap_start + 1) { /* Gap of more than one size class. */ malloc_printf("[%u..%u]\n", gap_start, i - 1); } else { /* Gap of one size class. */ malloc_printf("[%u]\n", gap_start); } } } #endif /* * End Utility functions/macros. */ /******************************************************************************/ /* * Begin extent tree code. */ static inline int extent_szad_comp(extent_node_t *a, extent_node_t *b) { int ret; size_t a_size = a->size; size_t b_size = b->size; ret = (a_size > b_size) - (a_size < b_size); if (ret == 0) { uintptr_t a_addr = (uintptr_t)a->addr; uintptr_t b_addr = (uintptr_t)b->addr; ret = (a_addr > b_addr) - (a_addr < b_addr); } return (ret); } /* Generate red-black tree code for size/address-ordered extents. */ RB_GENERATE_STATIC(extent_tree_szad_s, extent_node_s, link_szad, extent_szad_comp) static inline int extent_ad_comp(extent_node_t *a, extent_node_t *b) { uintptr_t a_addr = (uintptr_t)a->addr; uintptr_t b_addr = (uintptr_t)b->addr; return ((a_addr > b_addr) - (a_addr < b_addr)); } /* Generate red-black tree code for address-ordered extents. */ RB_GENERATE_STATIC(extent_tree_ad_s, extent_node_s, link_ad, extent_ad_comp) /* * End extent tree code. */ /******************************************************************************/ /* * Begin chunk management functions. */ #ifdef MOZ_MEMORY_WINDOWS static void * pages_map(void *addr, size_t size) { void *ret; ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); return (ret); } static void pages_unmap(void *addr, size_t size) { if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { _malloc_message(_getprogname(), ": (malloc) Error in VirtualFree()\n", "", ""); if (opt_abort) abort(); } } #elif (defined(MOZ_MEMORY_DARWIN)) static void * pages_map(void *addr, size_t size) { void *ret; kern_return_t err; int flags; if (addr != NULL) { ret = addr; flags = 0; } else flags = VM_FLAGS_ANYWHERE; err = vm_allocate((vm_map_t)mach_task_self(), (vm_address_t *)&ret, (vm_size_t)size, flags); if (err != KERN_SUCCESS) ret = NULL; assert(ret == NULL || (addr == NULL && ret != addr) || (addr != NULL && ret == addr)); return (ret); } static void pages_unmap(void *addr, size_t size) { kern_return_t err; err = vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)addr, (vm_size_t)size); if (err != KERN_SUCCESS) { malloc_message(_getprogname(), ": (malloc) Error in vm_deallocate(): ", mach_error_string(err), "\n"); if (opt_abort) abort(); } } #define VM_COPY_MIN (pagesize << 5) static inline void pages_copy(void *dest, const void *src, size_t n) { assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest); assert(n >= VM_COPY_MIN); assert((void *)((uintptr_t)src & ~pagesize_mask) == src); vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n, (vm_address_t)dest); } #else /* MOZ_MEMORY_DARWIN */ static void * pages_map(void *addr, size_t size) { void *ret; /* * We don't use MAP_FIXED here, because it can cause the *replacement* * of existing mappings, and we only want to create new mappings. */ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); assert(ret != NULL); if (ret == MAP_FAILED) ret = NULL; else if (addr != NULL && ret != addr) { /* * We succeeded in mapping memory, but not in the right place. */ if (munmap(ret, size) == -1) { char buf[STRERROR_BUF]; strerror_r(errno, buf, sizeof(buf)); _malloc_message(_getprogname(), ": (malloc) Error in munmap(): ", buf, "\n"); if (opt_abort) abort(); } ret = NULL; } assert(ret == NULL || (addr == NULL && ret != addr) || (addr != NULL && ret == addr)); return (ret); } static void pages_unmap(void *addr, size_t size) { if (munmap(addr, size) == -1) { char buf[STRERROR_BUF]; strerror_r(errno, buf, sizeof(buf)); _malloc_message(_getprogname(), ": (malloc) Error in munmap(): ", buf, "\n"); if (opt_abort) abort(); } } #endif #ifdef MALLOC_DSS static void * chunk_alloc_dss(size_t size) { malloc_mutex_lock(&dss_mtx); if (dss_prev != (void *)-1) { intptr_t incr; /* * The loop is necessary to recover from races with other * threads that are using the DSS for something other than * malloc. */ do { void *ret; /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Calculate how much padding is necessary to * chunk-align the end of the DSS. */ incr = (intptr_t)size - (intptr_t)CHUNK_ADDR2OFFSET(dss_max); if (incr == (intptr_t)size) ret = dss_max; else { ret = (void *)((intptr_t)dss_max + incr); incr += size; } dss_prev = sbrk(incr); if (dss_prev == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev + incr); malloc_mutex_unlock(&dss_mtx); return (ret); } } while (dss_prev != (void *)-1); } malloc_mutex_unlock(&dss_mtx); return (NULL); } static void * chunk_recycle_dss(size_t size, bool zero) { extent_node_t *node, key; key.addr = NULL; key.size = size; malloc_mutex_lock(&dss_mtx); node = RB_NFIND(extent_tree_szad_s, &dss_chunks_szad, &key); if (node != NULL) { void *ret = node->addr; /* Remove node from the tree. */ RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, node); if (node->size == size) { RB_REMOVE(extent_tree_ad_s, &dss_chunks_ad, node); base_node_dealloc(node); } else { /* * Insert the remainder of node's address range as a * smaller chunk. Its position within dss_chunks_ad * does not change. */ assert(node->size > size); node->addr = (void *)((uintptr_t)node->addr + size); node->size -= size; RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node); } malloc_mutex_unlock(&dss_mtx); if (zero) memset(ret, 0, size); return (ret); } malloc_mutex_unlock(&dss_mtx); return (NULL); } #endif #ifdef MOZ_MEMORY_WINDOWS static inline void * chunk_alloc_mmap(size_t size) { void *ret; size_t offset; /* * Windows requires that there be a 1:1 mapping between VM * allocation/deallocation operations. Therefore, take care here to * acquire the final result via one mapping operation. This means * unmapping any preliminary result that is not correctly aligned. */ ret = pages_map(NULL, size); if (ret == NULL) return (NULL); offset = CHUNK_ADDR2OFFSET(ret); if (offset != 0) { /* Deallocate, then try to allocate at (ret + size - offset). */ pages_unmap(ret, size); ret = pages_map((void *)((uintptr_t)ret + size - offset), size); while (ret == NULL) { /* * Over-allocate in order to map a memory region that * is definitely large enough. */ ret = pages_map(NULL, size + chunksize); if (ret == NULL) return (NULL); /* * Deallocate, then allocate the correct size, within * the over-sized mapping. */ offset = CHUNK_ADDR2OFFSET(ret); pages_unmap(ret, size + chunksize); if (offset == 0) ret = pages_map(ret, size); else { ret = pages_map((void *)((uintptr_t)ret + chunksize - offset), size); } /* * Failure here indicates a race with another thread, so * try again. */ } } return (ret); } #else static inline void * chunk_alloc_mmap(size_t size) { void *ret; size_t offset; /* * Ideally, there would be a way to specify alignment to mmap() (like * NetBSD has), but in the absence of such a feature, we have to work * hard to efficiently create aligned mappings. The reliable, but * expensive method is to create a mapping that is over-sized, then * trim the excess. However, that always results in at least one call * to pages_unmap(). * * A more optimistic approach is to try mapping precisely the right * amount, then try to append another mapping if alignment is off. In * practice, this works out well as long as the application is not * interleaving mappings via direct mmap() calls. If we do run into a * situation where there is an interleaved mapping and we are unable to * extend an unaligned mapping, our best option is to momentarily * revert to the reliable-but-expensive method. This will tend to * leave a gap in the memory map that is too small to cause later * problems for the optimistic method. */ ret = pages_map(NULL, size); if (ret == NULL) return (NULL); offset = CHUNK_ADDR2OFFSET(ret); if (offset != 0) { /* Try to extend chunk boundary. */ if (pages_map((void *)((uintptr_t)ret + size), chunksize - offset) == NULL) { /* * Extension failed. Clean up, then revert to the * reliable-but-expensive method. */ pages_unmap(ret, size); /* Beware size_t wrap-around. */ if (size + chunksize <= size) return NULL; ret = pages_map(NULL, size + chunksize); if (ret == NULL) return (NULL); /* Clean up unneeded leading/trailing space. */ offset = CHUNK_ADDR2OFFSET(ret); if (offset != 0) { /* Leading space. */ pages_unmap(ret, chunksize - offset); ret = (void *)((uintptr_t)ret + (chunksize - offset)); /* Trailing space. */ pages_unmap((void *)((uintptr_t)ret + size), offset); } else { /* Trailing space only. */ pages_unmap((void *)((uintptr_t)ret + size), chunksize); } } else { /* Clean up unneeded leading space. */ pages_unmap(ret, chunksize - offset); ret = (void *)((uintptr_t)ret + (chunksize - offset)); } } return (ret); } #endif static void * chunk_alloc(size_t size, bool zero) { void *ret; assert(size != 0); assert((size & chunksize_mask) == 0); #ifdef MALLOC_DSS if (opt_dss) { ret = chunk_recycle_dss(size, zero); if (ret != NULL) { goto RETURN; } ret = chunk_alloc_dss(size); if (ret != NULL) goto RETURN; } if (opt_mmap) #endif { ret = chunk_alloc_mmap(size); if (ret != NULL) goto RETURN; } /* All strategies for allocation failed. */ ret = NULL; RETURN: #ifdef MALLOC_STATS if (ret != NULL) { stats_chunks.nchunks += (size / chunksize); stats_chunks.curchunks += (size / chunksize); } if (stats_chunks.curchunks > stats_chunks.highchunks) stats_chunks.highchunks = stats_chunks.curchunks; #endif assert(CHUNK_ADDR2BASE(ret) == ret); return (ret); } #ifdef MALLOC_DSS static extent_node_t * chunk_dealloc_dss_record(void *chunk, size_t size) { extent_node_t *node, *prev, key; key.addr = (void *)((uintptr_t)chunk + size); node = RB_NFIND(extent_tree_ad_s, &dss_chunks_ad, &key); /* Try to coalesce forward. */ if (node != NULL && node->addr == key.addr) { /* * Coalesce chunk with the following address range. This does * not change the position within dss_chunks_ad, so only * remove/insert from/into dss_chunks_szad. */ RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, node); node->addr = chunk; node->size += size; RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node); } else { /* * Coalescing forward failed, so insert a new node. Drop * dss_mtx during node allocation, since it is possible that a * new base chunk will be allocated. */ malloc_mutex_unlock(&dss_mtx); node = base_node_alloc(); malloc_mutex_lock(&dss_mtx); if (node == NULL) return (NULL); node->addr = chunk; node->size = size; RB_INSERT(extent_tree_ad_s, &dss_chunks_ad, node); RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node); } /* Try to coalesce backward. */ prev = RB_PREV(extent_tree_ad_s, &dss_chunks_ad, node); if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) == chunk) { /* * Coalesce chunk with the previous address range. This does * not change the position within dss_chunks_ad, so only * remove/insert node from/into dss_chunks_szad. */ RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, prev); RB_REMOVE(extent_tree_ad_s, &dss_chunks_ad, prev); RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, node); node->addr = prev->addr; node->size += prev->size; RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node); base_node_dealloc(prev); } return (node); } static bool chunk_dealloc_dss(void *chunk, size_t size) { malloc_mutex_lock(&dss_mtx); if ((uintptr_t)chunk >= (uintptr_t)dss_base && (uintptr_t)chunk < (uintptr_t)dss_max) { extent_node_t *node; /* Try to coalesce with other unused chunks. */ node = chunk_dealloc_dss_record(chunk, size); if (node != NULL) { chunk = node->addr; size = node->size; } /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Try to shrink the DSS if this chunk is at the end of the * DSS. The sbrk() call here is subject to a race condition * with threads that use brk(2) or sbrk(2) directly, but the * alternative would be to leak memory for the sake of poorly * designed multi-threaded programs. */ if ((void *)((uintptr_t)chunk + size) == dss_max && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size); if (node != NULL) { RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, node); RB_REMOVE(extent_tree_ad_s, &dss_chunks_ad, node); base_node_dealloc(node); } malloc_mutex_unlock(&dss_mtx); } else { malloc_mutex_unlock(&dss_mtx); #ifdef MOZ_MEMORY_WINDOWS VirtualAlloc(chunk, size, MEM_RESET, PAGE_READWRITE); #elif (defined(MOZ_MEMORY_DARWIN)) mmap(chunk, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_FIXED, -1, 0); #else madvise(chunk, size, MADV_FREE); #endif } return (false); } malloc_mutex_unlock(&dss_mtx); return (true); } #endif static void chunk_dealloc_mmap(void *chunk, size_t size) { pages_unmap(chunk, size); } static void chunk_dealloc(void *chunk, size_t size) { assert(chunk != NULL); assert(CHUNK_ADDR2BASE(chunk) == chunk); assert(size != 0); assert((size & chunksize_mask) == 0); #ifdef MALLOC_STATS stats_chunks.curchunks -= (size / chunksize); #endif #ifdef MALLOC_DSS if (opt_dss) { if (chunk_dealloc_dss(chunk, size) == false) return; } if (opt_mmap) #endif chunk_dealloc_mmap(chunk, size); } /* * End chunk management functions. */ /******************************************************************************/ /* * Begin arena. */ /* * Choose an arena based on a per-thread value (fast-path code, calls slow-path * code if necessary). */ static inline arena_t * choose_arena(void) { arena_t *ret; /* * We can only use TLS if this is a PIC library, since for the static * library version, libc's malloc is used by TLS allocation, which * introduces a bootstrapping issue. */ #ifndef NO_TLS if (__isthreaded == false) { /* Avoid the overhead of TLS for single-threaded operation. */ return (arenas[0]); } # ifdef MOZ_MEMORY_WINDOWS ret = TlsGetValue(tlsIndex); # else ret = arenas_map; # endif if (ret == NULL) { ret = choose_arena_hard(); assert(ret != NULL); } #else if (__isthreaded && narenas > 1) { unsigned long ind; /* * Hash _pthread_self() to one of the arenas. There is a prime * number of arenas, so this has a reasonable chance of * working. Even so, the hashing can be easily thwarted by * inconvenient _pthread_self() values. Without specific * knowledge of how _pthread_self() calculates values, we can't * easily do much better than this. */ ind = (unsigned long) _pthread_self() % narenas; /* * Optimistially assume that arenas[ind] has been initialized. * At worst, we find out that some other thread has already * done so, after acquiring the lock in preparation. Note that * this lazy locking also has the effect of lazily forcing * cache coherency; without the lock acquisition, there's no * guarantee that modification of arenas[ind] by another thread * would be seen on this CPU for an arbitrary amount of time. * * In general, this approach to modifying a synchronized value * isn't a good idea, but in this case we only ever modify the * value once, so things work out well. */ ret = arenas[ind]; if (ret == NULL) { /* * Avoid races with another thread that may have already * initialized arenas[ind]. */ malloc_spin_lock(&arenas_lock); if (arenas[ind] == NULL) ret = arenas_extend((unsigned)ind); else ret = arenas[ind]; malloc_spin_unlock(&arenas_lock); } } else ret = arenas[0]; #endif assert(ret != NULL); return (ret); } #ifndef NO_TLS /* * Choose an arena based on a per-thread value (slow-path code only, called * only by choose_arena()). */ static arena_t * choose_arena_hard(void) { arena_t *ret; assert(__isthreaded); #ifdef MALLOC_BALANCE /* * Seed the PRNG used for arena load balancing. We can get away with * using the same seed here as for the lazy_free PRNG without * introducing autocorrelation because the PRNG parameters are * distinct. */ SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self())); #endif if (narenas > 1) { #ifdef MALLOC_BALANCE unsigned ind; ind = PRN(balance, narenas_2pow); if ((ret = arenas[ind]) == NULL) { malloc_spin_lock(&arenas_lock); if ((ret = arenas[ind]) == NULL) ret = arenas_extend(ind); malloc_spin_unlock(&arenas_lock); } #else malloc_spin_lock(&arenas_lock); if ((ret = arenas[next_arena]) == NULL) ret = arenas_extend(next_arena); next_arena = (next_arena + 1) % narenas; malloc_spin_unlock(&arenas_lock); #endif } else ret = arenas[0]; #ifdef MOZ_MEMORY_WINDOWS TlsSetValue(tlsIndex, ret); #else arenas_map = ret; #endif return (ret); } #endif static inline int arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b) { uintptr_t a_chunk = (uintptr_t)a; uintptr_t b_chunk = (uintptr_t)b; assert(a != NULL); assert(b != NULL); return ((a_chunk > b_chunk) - (a_chunk < b_chunk)); } /* Generate red-black tree code for arena chunks. */ RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp) static inline int arena_run_comp(arena_run_t *a, arena_run_t *b) { uintptr_t a_run = (uintptr_t)a; uintptr_t b_run = (uintptr_t)b; assert(a != NULL); assert(b != NULL); return ((a_run > b_run) - (a_run < b_run)); } /* Generate red-black tree code for arena runs. */ RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp) static extent_node_t * arena_chunk_node_alloc(arena_chunk_t *chunk) { extent_node_t *ret; ret = RB_MIN(extent_tree_ad_s, &chunk->nodes); if (ret != NULL) RB_REMOVE(extent_tree_ad_s, &chunk->nodes, ret); else { ret = chunk->nodes_past; chunk->nodes_past = (extent_node_t *) ((uintptr_t)chunk->nodes_past + sizeof(extent_node_t)); assert((uintptr_t)ret + sizeof(extent_node_t) <= (uintptr_t)chunk + (arena_chunk_header_npages << pagesize_2pow)); } return (ret); } static void arena_chunk_node_dealloc(arena_chunk_t *chunk, extent_node_t *node) { node->addr = (void *)node; RB_INSERT(extent_tree_ad_s, &chunk->nodes, node); } static inline void * arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin) { void *ret; unsigned i, mask, bit, regind; assert(run->magic == ARENA_RUN_MAGIC); assert(run->regs_minelm < bin->regs_mask_nelms); /* * Move the first check outside the loop, so that run->regs_minelm can * be updated unconditionally, without the possibility of updating it * multiple times. */ i = run->regs_minelm; mask = run->regs_mask[i]; if (mask != 0) { /* Usable allocation found. */ bit = ffs((int)mask) - 1; regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); assert(regind < bin->nregs); ret = (void *)(((uintptr_t)run) + bin->reg0_offset + (bin->reg_size * regind)); /* Clear bit. */ mask ^= (1U << bit); run->regs_mask[i] = mask; return (ret); } for (i++; i < bin->regs_mask_nelms; i++) { mask = run->regs_mask[i]; if (mask != 0) { /* Usable allocation found. */ bit = ffs((int)mask) - 1; regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); assert(regind < bin->nregs); ret = (void *)(((uintptr_t)run) + bin->reg0_offset + (bin->reg_size * regind)); /* Clear bit. */ mask ^= (1U << bit); run->regs_mask[i] = mask; /* * Make a note that nothing before this element * contains a free region. */ run->regs_minelm = i; /* Low payoff: + (mask == 0); */ return (ret); } } /* Not reached. */ assert(0); return (NULL); } static inline void arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size) { /* * To divide by a number D that is not a power of two we multiply * by (2^21 / D) and then right shift by 21 positions. * * X / D * * becomes * * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT */ #define SIZE_INV_SHIFT 21 #define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1) static const unsigned size_invs[] = { SIZE_INV(3), SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7), SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11), SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15), SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19), SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23), SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27), SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31) #if (QUANTUM_2POW_MIN < 4) , SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35), SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39), SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43), SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47), SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51), SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55), SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59), SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63) #endif }; unsigned diff, regind, elm, bit; assert(run->magic == ARENA_RUN_MAGIC); assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3 >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN)); /* * Avoid doing division with a variable divisor if possible. Using * actual division here can reduce allocator throughput by over 20%! */ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset); if ((size & (size - 1)) == 0) { /* * log2_table allows fast division of a power of two in the * [1..128] range. * * (x / divisor) becomes (x >> log2_table[divisor - 1]). */ static const unsigned char log2_table[] = { 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7 }; if (size <= 128) regind = (diff >> log2_table[size - 1]); else if (size <= 32768) regind = diff >> (8 + log2_table[(size >> 8) - 1]); else { /* * The run size is too large for us to use the lookup * table. Use real division. */ regind = diff / size; } } else if (size <= ((sizeof(size_invs) / sizeof(unsigned)) << QUANTUM_2POW_MIN) + 2) { regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff; regind >>= SIZE_INV_SHIFT; } else { /* * size_invs isn't large enough to handle this size class, so * calculate regind using actual division. This only happens * if the user increases small_max via the 'S' runtime * configuration option. */ regind = diff / size; }; assert(diff == regind * size); assert(regind < bin->nregs); elm = regind >> (SIZEOF_INT_2POW + 3); if (elm < run->regs_minelm) run->regs_minelm = elm; bit = regind - (elm << (SIZEOF_INT_2POW + 3)); assert((run->regs_mask[elm] & (1U << bit)) == 0); run->regs_mask[elm] |= (1U << bit); #undef SIZE_INV #undef SIZE_INV_SHIFT } static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool small, bool zero) { arena_chunk_t *chunk; size_t run_ind, total_pages, need_pages, rem_pages, i; extent_node_t *nodeA, *nodeB, key; /* Insert a node into runs_alloced_ad for the first part of the run. */ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); nodeA = arena_chunk_node_alloc(chunk); nodeA->addr = run; nodeA->size = size; RB_INSERT(extent_tree_ad_s, &arena->runs_alloced_ad, nodeA); key.addr = run; nodeB = RB_FIND(extent_tree_ad_s, &arena->runs_avail_ad, &key); assert(nodeB != NULL); run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow); total_pages = nodeB->size >> pagesize_2pow; need_pages = (size >> pagesize_2pow); assert(need_pages > 0); assert(need_pages <= total_pages); assert(need_pages <= CHUNK_MAP_POS_MASK || small == false); rem_pages = total_pages - need_pages; for (i = 0; i < need_pages; i++) { #ifdef MALLOC_DECOMMIT /* * Commit decommitted pages if necessary. If a decommitted * page is encountered, commit all needed adjacent decommitted * pages in one operation, in order to reduce system call * overhead. */ if (chunk->map[run_ind + i] & CHUNK_MAP_DECOMMITTED) { size_t j; /* * Advance i+j to just past the index of the last page * to commit. Clear CHUNK_MAP_DECOMMITTED along the * way. */ for (j = 0; i + j < need_pages && (chunk->map[run_ind + i + j] & CHUNK_MAP_DECOMMITTED); j++) { chunk->map[run_ind + i + j] ^= CHUNK_MAP_DECOMMITTED; } pages_commit((void *)((uintptr_t)chunk + ((run_ind + i) << pagesize_2pow)), (j << pagesize_2pow)); # ifdef MALLOC_STATS arena->stats.ncommit++; # endif } #endif /* Zero if necessary. */ if (zero) { if ((chunk->map[run_ind + i] & CHUNK_MAP_UNTOUCHED) == 0) { memset((void *)((uintptr_t)chunk + ((run_ind + i) << pagesize_2pow)), 0, pagesize); /* CHUNK_MAP_UNTOUCHED is cleared below. */ } } /* Update dirty page accounting. */ if (chunk->map[run_ind + i] & CHUNK_MAP_DIRTY) { chunk->ndirty--; arena->ndirty--; } /* Initialize the chunk map. */ if (small) chunk->map[run_ind + i] = (uint8_t)i; else chunk->map[run_ind + i] = CHUNK_MAP_LARGE; } /* Keep track of trailing unused pages for later use. */ RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeB); if (rem_pages > 0) { /* * Update nodeB in runs_avail_*. Its position within * runs_avail_ad does not change. */ nodeB->addr = (void *)((uintptr_t)nodeB->addr + size); nodeB->size -= size; RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeB); } else { /* Remove nodeB from runs_avail_*. */ RB_REMOVE(extent_tree_ad_s, &arena->runs_avail_ad, nodeB); arena_chunk_node_dealloc(chunk, nodeB); } chunk->pages_used += need_pages; } static arena_chunk_t * arena_chunk_alloc(arena_t *arena) { arena_chunk_t *chunk; extent_node_t *node; if (arena->spare != NULL) { chunk = arena->spare; arena->spare = NULL; } else { chunk = (arena_chunk_t *)chunk_alloc(chunksize, true); if (chunk == NULL) return (NULL); VALGRIND_MALLOCLIKE_BLOCK(chunk, (arena_chunk_header_npages << pagesize_2pow), 0, false); #ifdef MALLOC_STATS arena->stats.mapped += chunksize; #endif chunk->arena = arena; RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk); /* * Claim that no pages are in use, since the header is merely * overhead. */ chunk->pages_used = 0; chunk->ndirty = 0; /* * Initialize the map to contain one maximal free untouched * run. */ memset(chunk->map, (CHUNK_MAP_LARGE | CHUNK_MAP_POS_MASK), arena_chunk_header_npages); #if 0 /* JG: this doesn't work in our lx24-amd64 build host: * ../3rdparty/jemalloc/jemalloc.c:3036:1: directives may not be used inside a macro argument */ memset(&chunk->map[arena_chunk_header_npages], (CHUNK_MAP_UNTOUCHED #ifdef MALLOC_DECOMMIT | CHUNK_MAP_DECOMMITTED #endif ), (chunk_npages - arena_chunk_header_npages)); #else memset(&chunk->map[arena_chunk_header_npages], (CHUNK_MAP_UNTOUCHED ), (chunk_npages - arena_chunk_header_npages)); #endif /* Initialize the tree of unused extent nodes. */ RB_INIT(&chunk->nodes); chunk->nodes_past = (extent_node_t *)QUANTUM_CEILING( (uintptr_t)&chunk->map[chunk_npages]); #ifdef MALLOC_DECOMMIT /* * Start out decommitted, in order to force a closer * correspondence between dirty pages and committed untouched * pages. */ pages_decommit((void *)((uintptr_t)chunk + (arena_chunk_header_npages << pagesize_2pow)), ((chunk_npages - arena_chunk_header_npages) << pagesize_2pow)); # ifdef MALLOC_STATS arena->stats.ndecommit++; arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages); # endif #endif } /* Insert the run into the runs_avail_* red-black trees. */ node = arena_chunk_node_alloc(chunk); node->addr = (void *)((uintptr_t)chunk + (arena_chunk_header_npages << pagesize_2pow)); node->size = chunksize - (arena_chunk_header_npages << pagesize_2pow); RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, node); RB_INSERT(extent_tree_ad_s, &arena->runs_avail_ad, node); return (chunk); } static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk) { extent_node_t *node, key; if (arena->spare != NULL) { RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, arena->spare); arena->ndirty -= arena->spare->ndirty; VALGRIND_FREELIKE_BLOCK(arena->spare, 0); chunk_dealloc((void *)arena->spare, chunksize); #ifdef MALLOC_STATS arena->stats.mapped -= chunksize; #endif } /* * Remove run from the runs trees, regardless of whether this chunk * will be cached, so that the arena does not use it. Dirty page * flushing only uses the chunks tree, so leaving this chunk in that * tree is sufficient for that purpose. */ key.addr = (void *)((uintptr_t)chunk + (arena_chunk_header_npages << pagesize_2pow)); node = RB_FIND(extent_tree_ad_s, &arena->runs_avail_ad, &key); assert(node != NULL); RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, node); RB_REMOVE(extent_tree_ad_s, &arena->runs_avail_ad, node); arena_chunk_node_dealloc(chunk, node); arena->spare = chunk; } static arena_run_t * arena_run_alloc(arena_t *arena, size_t size, bool small, bool zero) { arena_chunk_t *chunk; arena_run_t *run; extent_node_t *node, key; assert(size <= (chunksize - (arena_chunk_header_npages << pagesize_2pow))); assert((size & pagesize_mask) == 0); /* Search the arena's chunks for the lowest best fit. */ key.addr = NULL; key.size = size; node = RB_NFIND(extent_tree_szad_s, &arena->runs_avail_szad, &key); if (node != NULL) { run = (arena_run_t *)node->addr; arena_run_split(arena, run, size, small, zero); return (run); } /* * No usable runs. Create a new chunk from which to allocate the run. */ chunk = arena_chunk_alloc(arena); if (chunk == NULL) return (NULL); run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages << pagesize_2pow)); /* Update page map. */ arena_run_split(arena, run, size, small, zero); return (run); } static void arena_purge(arena_t *arena) { arena_chunk_t *chunk; #ifdef MALLOC_DEBUG size_t ndirty; ndirty = 0; RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) { ndirty += chunk->ndirty; } assert(ndirty == arena->ndirty); #endif assert(arena->ndirty > opt_dirty_max); #ifdef MALLOC_STATS arena->stats.npurge++; #endif /* * Iterate downward through chunks until enough dirty memory has been * purged. */ RB_FOREACH_REVERSE(chunk, arena_chunk_tree_s, &arena->chunks) { if (chunk->ndirty > 0) { size_t i; for (i = chunk_npages - 1; i >= arena_chunk_header_npages; i--) { if (chunk->map[i] & CHUNK_MAP_DIRTY) { size_t npages; chunk->map[i] = (CHUNK_MAP_LARGE | #ifdef MALLOC_DECOMMIT CHUNK_MAP_DECOMMITTED | #endif CHUNK_MAP_POS_MASK); chunk->ndirty--; arena->ndirty--; /* Find adjacent dirty run(s). */ for (npages = 1; i > arena_chunk_header_npages && (chunk->map[i - 1] & CHUNK_MAP_DIRTY); npages++) { i--; chunk->map[i] = (CHUNK_MAP_LARGE #ifdef MALLOC_DECOMMIT | CHUNK_MAP_DECOMMITTED #endif | CHUNK_MAP_POS_MASK); chunk->ndirty--; arena->ndirty--; } #ifdef MALLOC_DECOMMIT pages_decommit((void *)((uintptr_t) chunk + (i << pagesize_2pow)), (npages << pagesize_2pow)); # ifdef MALLOC_STATS arena->stats.ndecommit++; arena->stats.decommitted += npages; # endif #else madvise((void *)((uintptr_t)chunk + (i << pagesize_2pow)), pagesize * npages, MADV_FREE); #endif #ifdef MALLOC_STATS arena->stats.nmadvise++; arena->stats.purged += npages; #endif } } } } } static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty) { arena_chunk_t *chunk; extent_node_t *nodeA, *nodeB, *nodeC, key; size_t size, run_ind, run_pages; /* Remove run from runs_alloced_ad. */ key.addr = run; nodeB = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(nodeB != NULL); RB_REMOVE(extent_tree_ad_s, &arena->runs_alloced_ad, nodeB); size = nodeB->size; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow); assert(run_ind >= arena_chunk_header_npages); assert(run_ind < (chunksize >> pagesize_2pow)); run_pages = (size >> pagesize_2pow); /* Subtract pages from count of pages used in chunk. */ chunk->pages_used -= run_pages; if (dirty) { size_t i; for (i = 0; i < run_pages; i++) { assert((chunk->map[run_ind + i] & CHUNK_MAP_DIRTY) == 0); chunk->map[run_ind + i] |= CHUNK_MAP_DIRTY; chunk->ndirty++; arena->ndirty++; } } #ifdef MALLOC_DEBUG /* Set map elements to a bogus value in order to aid error detection. */ { size_t i; for (i = 0; i < run_pages; i++) { chunk->map[run_ind + i] |= (CHUNK_MAP_LARGE | CHUNK_MAP_POS_MASK); } } #endif /* Try to coalesce forward. */ key.addr = (void *)((uintptr_t)run + size); nodeC = RB_NFIND(extent_tree_ad_s, &arena->runs_avail_ad, &key); if (nodeC != NULL && nodeC->addr == key.addr) { /* * Coalesce forward. This does not change the position within * runs_avail_ad, so only remove/insert from/into * runs_avail_szad. */ RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeC); nodeC->addr = (void *)run; nodeC->size += size; RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeC); arena_chunk_node_dealloc(chunk, nodeB); nodeB = nodeC; } else { /* * Coalescing forward failed, so insert nodeB into runs_avail_*. */ RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeB); RB_INSERT(extent_tree_ad_s, &arena->runs_avail_ad, nodeB); } /* Try to coalesce backward. */ nodeA = RB_PREV(extent_tree_ad_s, &arena->runs_avail_ad, nodeB); if (nodeA != NULL && (void *)((uintptr_t)nodeA->addr + nodeA->size) == (void *)run) { /* * Coalesce with previous run. This does not change nodeB's * position within runs_avail_ad, so only remove/insert * from/into runs_avail_szad. */ RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeA); RB_REMOVE(extent_tree_ad_s, &arena->runs_avail_ad, nodeA); RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeB); nodeB->addr = nodeA->addr; nodeB->size += nodeA->size; RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeB); arena_chunk_node_dealloc(chunk, nodeA); } /* Deallocate chunk if it is now completely unused. */ if (chunk->pages_used == 0) arena_chunk_dealloc(arena, chunk); /* Enforce opt_dirty_max. */ if (arena->ndirty > opt_dirty_max) arena_purge(arena); } static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, extent_node_t *nodeB, arena_run_t *run, size_t oldsize, size_t newsize) { extent_node_t *nodeA; assert(nodeB->addr == run); assert(nodeB->size == oldsize); assert(oldsize > newsize); /* * Update the run's node in runs_alloced_ad. Its position does not * change. */ nodeB->addr = (void *)((uintptr_t)run + (oldsize - newsize)); nodeB->size = newsize; /* * Insert a node into runs_alloced_ad so that arena_run_dalloc() can * treat the leading run as separately allocated. */ nodeA = arena_chunk_node_alloc(chunk); nodeA->addr = (void *)run; nodeA->size = oldsize - newsize; RB_INSERT(extent_tree_ad_s, &arena->runs_alloced_ad, nodeA); arena_run_dalloc(arena, (arena_run_t *)run, false); } static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, extent_node_t *nodeA, arena_run_t *run, size_t oldsize, size_t newsize, bool dirty) { extent_node_t *nodeB; assert(nodeA->addr == run); assert(nodeA->size == oldsize); assert(oldsize > newsize); /* * Update the run's node in runs_alloced_ad. Its position does not * change. */ nodeA->size = newsize; /* * Insert a node into runs_alloced_ad so that arena_run_dalloc() can * treat the trailing run as separately allocated. */ nodeB = arena_chunk_node_alloc(chunk); nodeB->addr = (void *)((uintptr_t)run + newsize); nodeB->size = oldsize - newsize; RB_INSERT(extent_tree_ad_s, &arena->runs_alloced_ad, nodeB); arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize), dirty); } static arena_run_t * arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin) { arena_run_t *run; unsigned i, remainder; /* Look for a usable run. */ if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) { /* run is guaranteed to have available space. */ RB_REMOVE(arena_run_tree_s, &bin->runs, run); #ifdef MALLOC_STATS bin->stats.reruns++; #endif return (run); } /* No existing runs have any space available. */ /* Allocate a new run. */ run = arena_run_alloc(arena, bin->run_size, true, false); if (run == NULL) return (NULL); VALGRIND_MALLOCLIKE_BLOCK(run, sizeof(arena_run_t) + (sizeof(unsigned) * bin->regs_mask_nelms - 1), 0, false); /* Initialize run internals. */ run->bin = bin; for (i = 0; i < bin->regs_mask_nelms; i++) run->regs_mask[i] = UINT_MAX; remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1); if (remainder != 0) { /* The last element has spare bits that need to be unset. */ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3)) - remainder)); } run->regs_minelm = 0; run->nfree = bin->nregs; #ifdef MALLOC_DEBUG run->magic = ARENA_RUN_MAGIC; #endif #ifdef MALLOC_STATS bin->stats.nruns++; bin->stats.curruns++; if (bin->stats.curruns > bin->stats.highruns) bin->stats.highruns = bin->stats.curruns; #endif return (run); } /* bin->runcur must have space available before this function is called. */ static inline void * arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run) { void *ret; assert(run->magic == ARENA_RUN_MAGIC); assert(run->nfree > 0); ret = arena_run_reg_alloc(run, bin); assert(ret != NULL); run->nfree--; return (ret); } /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */ static void * arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin) { bin->runcur = arena_bin_nonfull_run_get(arena, bin); if (bin->runcur == NULL) return (NULL); assert(bin->runcur->magic == ARENA_RUN_MAGIC); assert(bin->runcur->nfree > 0); return (arena_bin_malloc_easy(arena, bin, bin->runcur)); } /* * Calculate bin->run_size such that it meets the following constraints: * * *) bin->run_size >= min_run_size * *) bin->run_size <= arena_maxclass * *) bin->run_size <= RUN_MAX_SMALL * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed). * * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are * also calculated here, since these settings are all interdependent. */ static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size) { size_t try_run_size, good_run_size; unsigned good_nregs, good_mask_nelms, good_reg0_offset; unsigned try_nregs, try_mask_nelms, try_reg0_offset; assert(min_run_size >= pagesize); assert(min_run_size <= arena_maxclass); assert(min_run_size <= RUN_MAX_SMALL); /* * Calculate known-valid settings before entering the run_size * expansion loop, so that the first part of the loop always copies * valid settings. * * The do..while loop iteratively reduces the number of regions until * the run header and the regions no longer overlap. A closed formula * would be quite messy, since there is an interdependency between the * header's mask length and the number of regions. */ try_run_size = min_run_size; try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ do { try_nregs--; try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0); try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) > try_reg0_offset); /* run_size expansion loop. */ do { /* * Copy valid settings before trying more aggressive settings. */ good_run_size = try_run_size; good_nregs = try_nregs; good_mask_nelms = try_mask_nelms; good_reg0_offset = try_reg0_offset; /* Try more aggressive settings. */ try_run_size += pagesize; try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ do { try_nregs--; try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0); try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) > try_reg0_offset); } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size); assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1)) <= good_reg0_offset); assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs); /* Copy final settings. */ bin->run_size = good_run_size; bin->nregs = good_nregs; bin->regs_mask_nelms = good_mask_nelms; bin->reg0_offset = good_reg0_offset; return (good_run_size); } #ifdef MALLOC_BALANCE static inline void arena_lock_balance(arena_t *arena) { unsigned contention; contention = malloc_spin_lock(&arena->lock); if (narenas > 1) { /* * Calculate the exponentially averaged contention for this * arena. Due to integer math always rounding down, this value * decays somewhat faster then normal. */ arena->contention = (((uint64_t)arena->contention * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1)) + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW; if (arena->contention >= opt_balance_threshold) arena_lock_balance_hard(arena); } } static void arena_lock_balance_hard(arena_t *arena) { uint32_t ind; arena->contention = 0; #ifdef MALLOC_STATS arena->stats.nbalance++; #endif ind = PRN(balance, narenas_2pow); if (arenas[ind] != NULL) { #ifdef MOZ_MEMORY_WINDOWS TlsSetValue(tlsIndex, arenas[ind]); #else arenas_map = arenas[ind]; #endif } else { malloc_spin_lock(&arenas_lock); if (arenas[ind] != NULL) { #ifdef MOZ_MEMORY_WINDOWS TlsSetValue(tlsIndex, arenas[ind]); #else arenas_map = arenas[ind]; #endif } else { #ifdef MOZ_MEMORY_WINDOWS TlsSetValue(tlsIndex, arenas_extend(ind)); #else arenas_map = arenas_extend(ind); #endif } malloc_spin_unlock(&arenas_lock); } } #endif static inline void * arena_malloc_small(arena_t *arena, size_t size, bool zero) { void *ret; arena_bin_t *bin; arena_run_t *run; if (size < small_min) { /* Tiny. */ size = pow2_ceil(size); bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW + 1)))]; #if (!defined(NDEBUG) || defined(MALLOC_STATS)) /* * Bin calculation is always correct, but we may need * to fix size for the purposes of assertions and/or * stats accuracy. */ if (size < (1U << TINY_MIN_2POW)) size = (1U << TINY_MIN_2POW); #endif } else if (size <= small_max) { /* Quantum-spaced. */ size = QUANTUM_CEILING(size); bin = &arena->bins[ntbins + (size >> opt_quantum_2pow) - 1]; } else { /* Sub-page. */ size = pow2_ceil(size); bin = &arena->bins[ntbins + nqbins + (ffs((int)(size >> opt_small_max_2pow)) - 2)]; } assert(size == bin->reg_size); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif if ((run = bin->runcur) != NULL && run->nfree > 0) ret = arena_bin_malloc_easy(arena, bin, run); else ret = arena_bin_malloc_hard(arena, bin); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } #ifdef MALLOC_STATS bin->stats.nrequests++; arena->stats.nmalloc_small++; arena->stats.allocated_small += size; #endif malloc_spin_unlock(&arena->lock); VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero); if (zero == false) { #ifdef MALLOC_FILL if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); #endif } else memset(ret, 0, size); return (ret); } static void * arena_malloc_large(arena_t *arena, size_t size, bool zero) { void *ret; /* Large allocation. */ size = PAGE_CEILING(size); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif ret = (void *)arena_run_alloc(arena, size, false, zero); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } #ifdef MALLOC_STATS arena->stats.nmalloc_large++; arena->stats.allocated_large += size; #endif malloc_spin_unlock(&arena->lock); VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero); if (zero == false) { #ifdef MALLOC_FILL if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); #endif } return (ret); } static inline void * arena_malloc(arena_t *arena, size_t size, bool zero) { assert(arena != NULL); assert(arena->magic == ARENA_MAGIC); assert(size != 0); assert(QUANTUM_CEILING(size) <= arena_maxclass); if (size <= bin_maxclass) { return (arena_malloc_small(arena, size, zero)); } else return (arena_malloc_large(arena, size, zero)); } static inline void * imalloc(size_t size) { assert(size != 0); if (size <= arena_maxclass) return (arena_malloc(choose_arena(), size, false)); else return (huge_malloc(size, false)); } static inline void * icalloc(size_t size) { if (size <= arena_maxclass) return (arena_malloc(choose_arena(), size, true)); else return (huge_malloc(size, true)); } /* Only handles large allocations that require more than page alignment. */ static void * arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size) { void *ret; size_t offset; arena_chunk_t *chunk; extent_node_t *node, key; assert((size & pagesize_mask) == 0); assert((alignment & pagesize_mask) == 0); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif ret = (void *)arena_run_alloc(arena, alloc_size, false, false); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret); offset = (uintptr_t)ret & (alignment - 1); assert((offset & pagesize_mask) == 0); assert(offset < alloc_size); if (offset == 0) { /* * Update the run's node in runs_alloced_ad. Its position * does not change. */ key.addr = ret; node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(node != NULL); arena_run_trim_tail(arena, chunk, node, ret, alloc_size, size, false); } else { size_t leadsize, trailsize; /* * Update the run's node in runs_alloced_ad. Its position * does not change. */ key.addr = ret; node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(node != NULL); leadsize = alignment - offset; if (leadsize > 0) { arena_run_trim_head(arena, chunk, node, ret, alloc_size, alloc_size - leadsize); ret = (void *)((uintptr_t)ret + leadsize); } trailsize = alloc_size - leadsize - size; if (trailsize != 0) { /* Trim trailing space. */ assert(trailsize < alloc_size); arena_run_trim_tail(arena, chunk, node, ret, size + trailsize, size, false); } } #ifdef MALLOC_STATS arena->stats.nmalloc_large++; arena->stats.allocated_large += size; #endif malloc_spin_unlock(&arena->lock); VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false); #ifdef MALLOC_FILL if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); #endif return (ret); } static inline void * ipalloc(size_t alignment, size_t size) { void *ret; size_t ceil_size; /* * Round size up to the nearest multiple of alignment. * * This done, we can take advantage of the fact that for each small * size class, every object is aligned at the smallest power of two * that is non-zero in the base two representation of the size. For * example: * * Size | Base 2 | Minimum alignment * -----+----------+------------------ * 96 | 1100000 | 32 * 144 | 10100000 | 32 * 192 | 11000000 | 64 * * Depending on runtime settings, it is possible that arena_malloc() * will further round up to a power of two, but that never causes * correctness issues. */ ceil_size = (size + (alignment - 1)) & (-alignment); /* * (ceil_size < size) protects against the combination of maximal * alignment and size greater than maximal alignment. */ if (ceil_size < size) { /* size_t overflow. */ return (NULL); } if (ceil_size <= pagesize || (alignment <= pagesize && ceil_size <= arena_maxclass)) ret = arena_malloc(choose_arena(), ceil_size, false); else { size_t run_size; /* * We can't achieve sub-page alignment, so round up alignment * permanently; it makes later calculations simpler. */ alignment = PAGE_CEILING(alignment); ceil_size = PAGE_CEILING(size); /* * (ceil_size < size) protects against very large sizes within * pagesize of SIZE_T_MAX. * * (ceil_size + alignment < ceil_size) protects against the * combination of maximal alignment and ceil_size large enough * to cause overflow. This is similar to the first overflow * check above, but it needs to be repeated due to the new * ceil_size value, which may now be *equal* to maximal * alignment, whereas before we only detected overflow if the * original size was *greater* than maximal alignment. */ if (ceil_size < size || ceil_size + alignment < ceil_size) { /* size_t overflow. */ return (NULL); } /* * Calculate the size of the over-size run that arena_palloc() * would need to allocate in order to guarantee the alignment. */ if (ceil_size >= alignment) run_size = ceil_size + alignment - pagesize; else { /* * It is possible that (alignment << 1) will cause * overflow, but it doesn't matter because we also * subtract pagesize, which in the case of overflow * leaves us with a very large run_size. That causes * the first conditional below to fail, which means * that the bogus run_size value never gets used for * anything important. */ run_size = (alignment << 1) - pagesize; } if (run_size <= arena_maxclass) { ret = arena_palloc(choose_arena(), alignment, ceil_size, run_size); } else if (alignment <= chunksize) ret = huge_malloc(ceil_size, false); else ret = huge_palloc(alignment, ceil_size); } assert(((uintptr_t)ret & (alignment - 1)) == 0); return (ret); } /* Return the size of the allocation pointed to by ptr. */ static size_t arena_salloc(const void *ptr) { size_t ret; arena_chunk_t *chunk; arena_chunk_map_t mapelm; size_t pageind; assert(ptr != NULL); assert(CHUNK_ADDR2BASE(ptr) != ptr); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); mapelm = chunk->map[pageind]; if ((mapelm & CHUNK_MAP_LARGE) == 0) { arena_run_t *run; /* Small allocation size is in the run header. */ pageind -= (mapelm & CHUNK_MAP_POS_MASK); run = (arena_run_t *)((uintptr_t)chunk + (pageind << pagesize_2pow)); assert(run->magic == ARENA_RUN_MAGIC); ret = run->bin->reg_size; } else { arena_t *arena = chunk->arena; extent_node_t *node, key; /* Large allocation size is in the extent tree. */ assert((mapelm & CHUNK_MAP_POS_MASK) == 0); arena = chunk->arena; malloc_spin_lock(&arena->lock); key.addr = (void *)ptr; node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(node != NULL); ret = node->size; malloc_spin_unlock(&arena->lock); } return (ret); } #if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN)) /* * Validate ptr before assuming that it points to an allocation. Currently, * the following validation is performed: * * + Check that ptr is not NULL. * * + Check that ptr lies within a mapped chunk. */ static inline size_t isalloc_validate(const void *ptr) { arena_chunk_t *chunk; if (ptr == NULL) return (0); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) { arena_t *arena; unsigned i; if (narenas > 1) { /* * Use arenas_lock as a memory barrier in order to * force an update of this processor's cache, so that * the arenas vector is sufficiently current for us to * be sure of searching all the arenas that existed * when ptr was allocated. * * Only do this when using multiple arenas, since when * there is only one arena, there are no race * conditions that allow arenas[0] to be stale on this * processor under any conditions that even remotely * resemble normal program behavior. */ malloc_spin_lock(&arenas_lock); malloc_spin_unlock(&arenas_lock); } for (i = 0; i < narenas; i++) { arena = arenas[i]; if (arena != NULL) { /* Make sure ptr is within a chunk. */ malloc_spin_lock(&arena->lock); if (RB_FIND(arena_chunk_tree_s, &arena->chunks, chunk) == chunk) { malloc_spin_unlock(&arena->lock); /* * We only lock in arena_salloc() for * large objects, so don't worry about * the overhead of possibly locking * twice. */ assert(chunk->arena->magic == ARENA_MAGIC); return (arena_salloc(ptr)); } malloc_spin_unlock(&arena->lock); } } return (0); } else { size_t ret; extent_node_t *node; extent_node_t key; /* Chunk. */ key.addr = (void *)chunk; malloc_mutex_lock(&huge_mtx); node = RB_FIND(extent_tree_ad_s, &huge, &key); if (node != NULL) ret = node->size; else ret = 0; malloc_mutex_unlock(&huge_mtx); return (ret); } } #endif static inline size_t isalloc(const void *ptr) { size_t ret; arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) { /* Region. */ assert(chunk->arena->magic == ARENA_MAGIC); ret = arena_salloc(ptr); } else { extent_node_t *node, key; /* Chunk (huge allocation). */ malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = __DECONST(void *, ptr); node = RB_FIND(extent_tree_ad_s, &huge, &key); assert(node != NULL); ret = node->size; malloc_mutex_unlock(&huge_mtx); } return (ret); } static inline void arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t pageind, arena_chunk_map_t mapelm) { arena_run_t *run; arena_bin_t *bin; size_t size; pageind -= (mapelm & CHUNK_MAP_POS_MASK); run = (arena_run_t *)((uintptr_t)chunk + (pageind << pagesize_2pow)); assert(run->magic == ARENA_RUN_MAGIC); bin = run->bin; size = bin->reg_size; #ifdef MALLOC_FILL if (opt_junk) memset(ptr, 0x5a, size); #endif arena_run_reg_dalloc(run, bin, ptr, size); run->nfree++; if (run->nfree == bin->nregs) { /* Deallocate run. */ if (run == bin->runcur) bin->runcur = NULL; else if (bin->nregs != 1) { /* * This block's conditional is necessary because if the * run only contains one region, then it never gets * inserted into the non-full runs tree. */ RB_REMOVE(arena_run_tree_s, &bin->runs, run); } #ifdef MALLOC_DEBUG run->magic = 0; #endif VALGRIND_FREELIKE_BLOCK(run, 0); arena_run_dalloc(arena, run, true); #ifdef MALLOC_STATS bin->stats.curruns--; #endif } else if (run->nfree == 1 && run != bin->runcur) { /* * Make sure that bin->runcur always refers to the lowest * non-full run, if one exists. */ if (bin->runcur == NULL) bin->runcur = run; else if ((uintptr_t)run < (uintptr_t)bin->runcur) { /* Switch runcur. */ if (bin->runcur->nfree > 0) { /* Insert runcur. */ RB_INSERT(arena_run_tree_s, &bin->runs, bin->runcur); } bin->runcur = run; } else RB_INSERT(arena_run_tree_s, &bin->runs, run); } #ifdef MALLOC_STATS arena->stats.allocated_small -= size; arena->stats.ndalloc_small++; #endif } static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr) { /* Large allocation. */ malloc_spin_lock(&arena->lock); #ifdef MALLOC_FILL #ifndef MALLOC_STATS if (opt_junk) #endif #endif { extent_node_t *node, key; size_t size; key.addr = ptr; node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(node != NULL); size = node->size; #ifdef MALLOC_FILL #ifdef MALLOC_STATS if (opt_junk) #endif memset(ptr, 0x5a, size); #endif #ifdef MALLOC_STATS arena->stats.allocated_large -= size; #endif } #ifdef MALLOC_STATS arena->stats.ndalloc_large++; #endif arena_run_dalloc(arena, (arena_run_t *)ptr, true); malloc_spin_unlock(&arena->lock); } static inline void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr) { size_t pageind; arena_chunk_map_t *mapelm; assert(arena != NULL); assert(arena->magic == ARENA_MAGIC); assert(chunk->arena == arena); assert(ptr != NULL); assert(CHUNK_ADDR2BASE(ptr) != ptr); pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); mapelm = &chunk->map[pageind]; if ((*mapelm & CHUNK_MAP_LARGE) == 0) { /* Small allocation. */ malloc_spin_lock(&arena->lock); arena_dalloc_small(arena, chunk, ptr, pageind, *mapelm); malloc_spin_unlock(&arena->lock); } else { assert((*mapelm & CHUNK_MAP_POS_MASK) == 0); arena_dalloc_large(arena, chunk, ptr); } VALGRIND_FREELIKE_BLOCK(ptr, 0); } static inline void idalloc(void *ptr) { arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) arena_dalloc(chunk->arena, chunk, ptr); else huge_dalloc(ptr); } static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize) { extent_node_t *node, key; assert(size < oldsize); /* * Shrink the run, and make trailing pages available for other * allocations. */ key.addr = (void *)((uintptr_t)ptr); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(node != NULL); arena_run_trim_tail(arena, chunk, node, (arena_run_t *)ptr, oldsize, size, true); #ifdef MALLOC_STATS arena->stats.allocated_large -= oldsize - size; #endif malloc_spin_unlock(&arena->lock); } static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize) { extent_node_t *nodeC, key; /* Try to extend the run. */ assert(size > oldsize); key.addr = (void *)((uintptr_t)ptr + oldsize); #ifdef MALLOC_BALANCE arena_lock_balance(arena); #else malloc_spin_lock(&arena->lock); #endif nodeC = RB_FIND(extent_tree_ad_s, &arena->runs_avail_ad, &key); if (nodeC != NULL && oldsize + nodeC->size >= size) { extent_node_t *nodeA, *nodeB; /* * The next run is available and sufficiently large. Split the * following run, then merge the first part with the existing * allocation. This results in a bit more tree manipulation * than absolutely necessary, but it substantially simplifies * the code. */ arena_run_split(arena, (arena_run_t *)nodeC->addr, size - oldsize, false, false); key.addr = ptr; nodeA = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(nodeA != NULL); key.addr = (void *)((uintptr_t)ptr + oldsize); nodeB = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key); assert(nodeB != NULL); nodeA->size += nodeB->size; RB_REMOVE(extent_tree_ad_s, &arena->runs_alloced_ad, nodeB); arena_chunk_node_dealloc(chunk, nodeB); #ifdef MALLOC_STATS arena->stats.allocated_large += size - oldsize; #endif malloc_spin_unlock(&arena->lock); return (false); } malloc_spin_unlock(&arena->lock); return (true); } /* * Try to resize a large allocation, in order to avoid copying. This will * always fail if growing an object, and the following run is already in use. */ static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize) { size_t psize; psize = PAGE_CEILING(size); if (psize == oldsize) { /* Same size class. */ #ifdef MALLOC_FILL if (opt_junk && size < oldsize) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } #endif return (false); } else { arena_chunk_t *chunk; arena_t *arena; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); arena = chunk->arena; assert(arena->magic == ARENA_MAGIC); if (psize < oldsize) { #ifdef MALLOC_FILL /* Fill before shrinking in order avoid a race. */ if (opt_junk) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } #endif arena_ralloc_large_shrink(arena, chunk, ptr, psize, oldsize); return (false); } else { bool ret = arena_ralloc_large_grow(arena, chunk, ptr, psize, oldsize); #ifdef MALLOC_FILL if (ret == false && opt_zero) { memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); } #endif return (ret); } } } static void * arena_ralloc(void *ptr, size_t size, size_t oldsize) { void *ret; size_t copysize; /* Try to avoid moving the allocation. */ if (size < small_min) { if (oldsize < small_min && ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1))) == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1)))) goto IN_PLACE; /* Same size class. */ } else if (size <= small_max) { if (oldsize >= small_min && oldsize <= small_max && (QUANTUM_CEILING(size) >> opt_quantum_2pow) == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow)) goto IN_PLACE; /* Same size class. */ } else if (size <= bin_maxclass) { if (oldsize > small_max && oldsize <= bin_maxclass && pow2_ceil(size) == pow2_ceil(oldsize)) goto IN_PLACE; /* Same size class. */ } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) { assert(size > bin_maxclass); if (arena_ralloc_large(ptr, size, oldsize) == false) return (ptr); } /* * If we get here, then size and oldsize are different enough that we * need to move the object. In that case, fall back to allocating new * space and copying. */ ret = arena_malloc(choose_arena(), size, false); if (ret == NULL) return (NULL); /* Junk/zero-filling were already done by arena_malloc(). */ copysize = (size < oldsize) ? size : oldsize; #ifdef VM_COPY_MIN if (copysize >= VM_COPY_MIN) pages_copy(ret, ptr, copysize); else #endif memcpy(ret, ptr, copysize); idalloc(ptr); return (ret); IN_PLACE: #ifdef MALLOC_FILL if (opt_junk && size < oldsize) memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); else if (opt_zero && size > oldsize) memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); #endif return (ptr); } static inline void * iralloc(void *ptr, size_t size) { size_t oldsize; assert(ptr != NULL); assert(size != 0); oldsize = isalloc(ptr); #ifndef MALLOC_VALGRIND if (size <= arena_maxclass) return (arena_ralloc(ptr, size, oldsize)); else return (huge_ralloc(ptr, size, oldsize)); #else /* * Valgrind does not provide a public interface for modifying an * existing allocation, so use malloc/memcpy/free instead. */ { void *ret = imalloc(size); if (ret != NULL) { if (oldsize < size) memcpy(ret, ptr, oldsize); else memcpy(ret, ptr, size); idalloc(ptr); } return (ret); } #endif } static bool arena_new(arena_t *arena) { unsigned i; arena_bin_t *bin; size_t pow2_size, prev_run_size; if (malloc_spin_init(&arena->lock)) return (true); #ifdef MALLOC_STATS memset(&arena->stats, 0, sizeof(arena_stats_t)); #endif /* Initialize chunks. */ RB_INIT(&arena->chunks); arena->spare = NULL; arena->ndirty = 0; RB_INIT(&arena->runs_avail_szad); RB_INIT(&arena->runs_avail_ad); RB_INIT(&arena->runs_alloced_ad); #ifdef MALLOC_BALANCE arena->contention = 0; #endif /* Initialize bins. */ prev_run_size = pagesize; /* (2^n)-spaced tiny bins. */ for (i = 0; i < ntbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; RB_INIT(&bin->runs); bin->reg_size = (1U << (TINY_MIN_2POW + i)); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } /* Quantum-spaced bins. */ for (; i < ntbins + nqbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; RB_INIT(&bin->runs); bin->reg_size = quantum * (i - ntbins + 1); pow2_size = pow2_ceil(quantum * (i - ntbins + 1)); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } /* (2^n)-spaced sub-page bins. */ for (; i < ntbins + nqbins + nsbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; RB_INIT(&bin->runs); bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1)); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } #ifdef MALLOC_DEBUG arena->magic = ARENA_MAGIC; #endif return (false); } /* Create a new arena and insert it into the arenas array at index ind. */ static arena_t * arenas_extend(unsigned ind) { arena_t *ret; /* Allocate enough space for trailing bins. */ ret = (arena_t *)base_alloc(sizeof(arena_t) + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1))); if (ret != NULL && arena_new(ret) == false) { arenas[ind] = ret; return (ret); } /* Only reached if there is an OOM error. */ /* * OOM here is quite inconvenient to propagate, since dealing with it * would require a check for failure in the fast path. Instead, punt * by using arenas[0]. In practice, this is an extremely unlikely * failure. */ _malloc_message(_getprogname(), ": (malloc) Error initializing arena\n", "", ""); if (opt_abort) abort(); return (arenas[0]); } /* * End arena. */ /******************************************************************************/ /* * Begin general internal functions. */ static void * huge_malloc(size_t size, bool zero) { void *ret; size_t csize; #ifdef MALLOC_DECOMMIT size_t psize; #endif extent_node_t *node; /* Allocate one or more contiguous chunks for this request. */ csize = CHUNK_CEILING(size); if (csize == 0) { /* size is large enough to cause size_t wrap-around. */ return (NULL); } /* Allocate an extent node with which to track the chunk. */ node = base_node_alloc(); if (node == NULL) return (NULL); ret = chunk_alloc(csize, zero); if (ret == NULL) { base_node_dealloc(node); return (NULL); } /* Insert node into huge. */ node->addr = ret; #ifdef MALLOC_DECOMMIT psize = PAGE_CEILING(size); node->size = psize; #else node->size = csize; #endif malloc_mutex_lock(&huge_mtx); RB_INSERT(extent_tree_ad_s, &huge, node); #ifdef MALLOC_STATS huge_nmalloc++; # ifdef MALLOC_DECOMMIT huge_allocated += psize; # else huge_allocated += csize; # endif #endif malloc_mutex_unlock(&huge_mtx); #ifdef MALLOC_DECOMMIT if (csize - psize > 0) pages_decommit((void *)((uintptr_t)ret + psize), csize - psize); #endif #ifdef MALLOC_DECOMMIT VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, zero); #else VALGRIND_MALLOCLIKE_BLOCK(ret, csize, 0, zero); #endif #ifdef MALLOC_FILL if (zero == false) { if (opt_junk) # ifdef MALLOC_DECOMMIT memset(ret, 0xa5, psize); # else memset(ret, 0xa5, csize); # endif else if (opt_zero) # ifdef MALLOC_DECOMMIT memset(ret, 0, psize); # else memset(ret, 0, csize); # endif } #endif return (ret); } /* Only handles large allocations that require more than chunk alignment. */ static void * huge_palloc(size_t alignment, size_t size) { void *ret; size_t alloc_size, chunk_size, offset; #ifdef MALLOC_DECOMMIT size_t psize; #endif extent_node_t *node; /* * This allocation requires alignment that is even larger than chunk * alignment. This means that huge_malloc() isn't good enough. * * Allocate almost twice as many chunks as are demanded by the size or * alignment, in order to assure the alignment can be achieved, then * unmap leading and trailing chunks. */ assert(alignment >= chunksize); chunk_size = CHUNK_CEILING(size); if (size >= alignment) alloc_size = chunk_size + alignment - chunksize; else alloc_size = (alignment << 1) - chunksize; /* Allocate an extent node with which to track the chunk. */ node = base_node_alloc(); if (node == NULL) return (NULL); #ifdef MOZ_MEMORY_WINDOWS /* * Windows requires that there be a 1:1 mapping between VM * allocation/deallocation operations. Therefore, take care here to * acquire the final result via one mapping operation. */ do { void *over; over = chunk_alloc(alloc_size, false); if (over == NULL) { base_node_dealloc(node); return (NULL); } offset = (uintptr_t)over & (alignment - 1); assert((offset & chunksize_mask) == 0); assert(offset < alloc_size); ret = (void *)((uintptr_t)over + offset); chunk_dealloc(over, alloc_size); ret = pages_map(ret, chunk_size); /* * Failure here indicates a race with another thread, so try * again. */ } while (ret == NULL); #else ret = chunk_alloc(alloc_size, false); if (ret == NULL) { base_node_dealloc(node); return (NULL); } offset = (uintptr_t)ret & (alignment - 1); assert((offset & chunksize_mask) == 0); assert(offset < alloc_size); if (offset == 0) { /* Trim trailing space. */ chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size - chunk_size); } else { size_t trailsize; /* Trim leading space. */ chunk_dealloc(ret, alignment - offset); ret = (void *)((uintptr_t)ret + (alignment - offset)); trailsize = alloc_size - (alignment - offset) - chunk_size; if (trailsize != 0) { /* Trim trailing space. */ assert(trailsize < alloc_size); chunk_dealloc((void *)((uintptr_t)ret + chunk_size), trailsize); } } #endif /* Insert node into huge. */ node->addr = ret; #ifdef MALLOC_DECOMMIT psize = PAGE_CEILING(size); node->size = psize; #else node->size = chunk_size; #endif malloc_mutex_lock(&huge_mtx); RB_INSERT(extent_tree_ad_s, &huge, node); #ifdef MALLOC_STATS huge_nmalloc++; # ifdef MALLOC_DECOMMIT huge_allocated += psize; # else huge_allocated += chunk_size; # endif #endif malloc_mutex_unlock(&huge_mtx); #ifdef MALLOC_DECOMMIT if (chunk_size - psize > 0) { pages_decommit((void *)((uintptr_t)ret + psize), chunk_size - psize); } #endif #ifdef MALLOC_DECOMMIT VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, false); #else VALGRIND_MALLOCLIKE_BLOCK(ret, chunk_size, 0, false); #endif #ifdef MALLOC_FILL if (opt_junk) # ifdef MALLOC_DECOMMIT memset(ret, 0xa5, psize); # else memset(ret, 0xa5, chunk_size); # endif else if (opt_zero) # ifdef MALLOC_DECOMMIT memset(ret, 0, psize); # else memset(ret, 0, chunk_size); # endif #endif return (ret); } static void * huge_ralloc(void *ptr, size_t size, size_t oldsize) { void *ret; size_t copysize; /* Avoid moving the allocation if the size class would not change. */ if (oldsize > arena_maxclass && CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) { #ifdef MALLOC_DECOMMIT size_t psize = PAGE_CEILING(size); #endif #ifdef MALLOC_FILL if (opt_junk && size < oldsize) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } #endif #ifdef MALLOC_DECOMMIT if (psize < oldsize) { extent_node_t *node, key; pages_decommit((void *)((uintptr_t)ptr + psize), oldsize - psize); /* Update recorded size. */ malloc_mutex_lock(&huge_mtx); key.addr = __DECONST(void *, ptr); node = RB_FIND(extent_tree_ad_s, &huge, &key); assert(node != NULL); assert(node->size == oldsize); # ifdef MALLOC_STATS huge_allocated -= oldsize - psize; # endif node->size = psize; malloc_mutex_unlock(&huge_mtx); } else if (psize > oldsize) { extent_node_t *node, key; pages_commit((void *)((uintptr_t)ptr + oldsize), psize - oldsize); /* Update recorded size. */ malloc_mutex_lock(&huge_mtx); key.addr = __DECONST(void *, ptr); node = RB_FIND(extent_tree_ad_s, &huge, &key); assert(node != NULL); assert(node->size == oldsize); # ifdef MALLOC_STATS huge_allocated += psize - oldsize; # endif node->size = psize; malloc_mutex_unlock(&huge_mtx); } #endif #ifdef MALLOC_FILL if (opt_zero && size > oldsize) { memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); } #endif return (ptr); } /* * If we get here, then size and oldsize are different enough that we * need to use a different size class. In that case, fall back to * allocating new space and copying. */ ret = huge_malloc(size, false); if (ret == NULL) return (NULL); copysize = (size < oldsize) ? size : oldsize; #ifdef VM_COPY_MIN if (copysize >= VM_COPY_MIN) pages_copy(ret, ptr, copysize); else #endif memcpy(ret, ptr, copysize); idalloc(ptr); return (ret); } static void huge_dalloc(void *ptr) { extent_node_t *node, key; malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = ptr; node = RB_FIND(extent_tree_ad_s, &huge, &key); assert(node != NULL); assert(node->addr == ptr); RB_REMOVE(extent_tree_ad_s, &huge, node); #ifdef MALLOC_STATS huge_ndalloc++; huge_allocated -= node->size; #endif malloc_mutex_unlock(&huge_mtx); /* Unmap chunk. */ #ifdef MALLOC_DSS #ifdef MALLOC_FILL if (opt_dss && opt_junk) memset(node->addr, 0x5a, node->size); #endif #endif #ifdef MALLOC_DECOMMIT chunk_dealloc(node->addr, CHUNK_CEILING(node->size)); #else chunk_dealloc(node->addr, node->size); #endif VALGRIND_FREELIKE_BLOCK(node->addr, 0); base_node_dealloc(node); } #ifdef MOZ_MEMORY_BSD static inline unsigned malloc_ncpus(void) { unsigned ret; int mib[2]; size_t len; mib[0] = CTL_HW; mib[1] = HW_NCPU; len = sizeof(ret); if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) { /* Error. */ return (1); } return (ret); } #elif (defined(MOZ_MEMORY_LINUX)) #include static inline unsigned malloc_ncpus(void) { unsigned ret; int fd, nread, column; char buf[1]; static const char matchstr[] = "processor\t:"; /* * sysconf(3) would be the preferred method for determining the number * of CPUs, but it uses malloc internally, which causes untennable * recursion during malloc initialization. */ fd = open("/proc/cpuinfo", O_RDONLY); if (fd == -1) return (1); /* Error. */ /* * Count the number of occurrences of matchstr at the beginnings of * lines. This treats hyperthreaded CPUs as multiple processors. */ column = 0; ret = 0; while (true) { nread = read(fd, &buf, sizeof(buf)); if (nread <= 0) break; /* EOF or error. */ if (buf[0] == '\n') column = 0; else if (column != -1) { if (buf[0] == matchstr[column]) { column++; if (column == sizeof(matchstr) - 1) { column = -1; ret++; } } else column = -1; } } if (ret == 0) ret = 1; /* Something went wrong in the parser. */ close(fd); return (ret); } #elif (defined(MOZ_MEMORY_DARWIN)) #include #include static inline unsigned malloc_ncpus(void) { kern_return_t error; natural_t n; processor_info_array_t pinfo; mach_msg_type_number_t pinfocnt; error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO, &n, &pinfo, &pinfocnt); if (error != KERN_SUCCESS) return (1); /* Error. */ else return (n); } #elif (defined(MOZ_MEMORY_SOLARIS)) static inline unsigned malloc_ncpus(void) { return sysconf(_SC_NPROCESSORS_ONLN); } #else static inline unsigned malloc_ncpus(void) { /* * We lack a way to determine the number of CPUs on this platform, so * assume 1 CPU. */ return (1); } #endif static void malloc_print_stats(void) { if (opt_print_stats) { char s[UMAX2S_BUFSIZE]; _malloc_message("___ Begin malloc statistics ___\n", "", "", ""); _malloc_message("Assertions ", #ifdef NDEBUG "disabled", #else "enabled", #endif "\n", ""); _malloc_message("Boolean MALLOC_OPTIONS: ", opt_abort ? "A" : "a", "", ""); #ifdef MALLOC_DSS _malloc_message(opt_dss ? "D" : "d", "", "", ""); #endif #ifdef MALLOC_FILL _malloc_message(opt_junk ? "J" : "j", "", "", ""); #endif #ifdef MALLOC_DSS _malloc_message(opt_mmap ? "M" : "m", "", "", ""); #endif _malloc_message("P", "", "", ""); #ifdef MALLOC_UTRACE _malloc_message(opt_utrace ? "U" : "u", "", "", ""); #endif #ifdef MALLOC_SYSV _malloc_message(opt_sysv ? "V" : "v", "", "", ""); #endif #ifdef MALLOC_XMALLOC _malloc_message(opt_xmalloc ? "X" : "x", "", "", ""); #endif #ifdef MALLOC_FILL _malloc_message(opt_zero ? "Z" : "z", "", "", ""); #endif _malloc_message("\n", "", "", ""); _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", ""); _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", ""); #ifdef MALLOC_BALANCE _malloc_message("Arena balance threshold: ", umax2s(opt_balance_threshold, s), "\n", ""); #endif _malloc_message("Pointer size: ", umax2s(sizeof(void *), s), "\n", ""); _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", ""); _malloc_message("Max small size: ", umax2s(small_max, s), "\n", ""); _malloc_message("Max dirty pages per arena: ", umax2s(opt_dirty_max, s), "\n", ""); _malloc_message("Chunk size: ", umax2s(chunksize, s), "", ""); _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", ""); #ifdef MALLOC_STATS { size_t allocated, mapped; #ifdef MALLOC_BALANCE uint64_t nbalance = 0; #endif unsigned i; arena_t *arena; /* Calculate and print allocated/mapped stats. */ /* arenas. */ for (i = 0, allocated = 0; i < narenas; i++) { if (arenas[i] != NULL) { malloc_spin_lock(&arenas[i]->lock); allocated += arenas[i]->stats.allocated_small; allocated += arenas[i]->stats.allocated_large; #ifdef MALLOC_BALANCE nbalance += arenas[i]->stats.nbalance; #endif malloc_spin_unlock(&arenas[i]->lock); } } /* huge/base. */ malloc_mutex_lock(&huge_mtx); allocated += huge_allocated; mapped = stats_chunks.curchunks * chunksize; malloc_mutex_unlock(&huge_mtx); malloc_mutex_lock(&base_mtx); mapped += base_mapped; malloc_mutex_unlock(&base_mtx); #ifdef MOZ_MEMORY_WINDOWS malloc_printf("Allocated: %lu, mapped: %lu\n", allocated, mapped); #else malloc_printf("Allocated: %zu, mapped: %zu\n", allocated, mapped); #endif #ifdef MALLOC_BALANCE malloc_printf("Arena balance reassignments: %llu\n", nbalance); #endif /* Print chunk stats. */ { chunk_stats_t chunks_stats; malloc_mutex_lock(&huge_mtx); chunks_stats = stats_chunks; malloc_mutex_unlock(&huge_mtx); malloc_printf("chunks: nchunks " "highchunks curchunks\n"); malloc_printf(" %13llu%13lu%13lu\n", chunks_stats.nchunks, chunks_stats.highchunks, chunks_stats.curchunks); } /* Print chunk stats. */ malloc_printf( "huge: nmalloc ndalloc allocated\n"); #ifdef MOZ_MEMORY_WINDOWS malloc_printf(" %12llu %12llu %12lu\n", huge_nmalloc, huge_ndalloc, huge_allocated); #else malloc_printf(" %12llu %12llu %12zu\n", huge_nmalloc, huge_ndalloc, huge_allocated); #endif /* Print stats for each arena. */ for (i = 0; i < narenas; i++) { arena = arenas[i]; if (arena != NULL) { malloc_printf( "\narenas[%u]:\n", i); malloc_spin_lock(&arena->lock); stats_print(arena); malloc_spin_unlock(&arena->lock); } } } #endif /* #ifdef MALLOC_STATS */ _malloc_message("--- End malloc statistics ---\n", "", "", ""); } } /* * FreeBSD's pthreads implementation calls malloc(3), so the malloc * implementation has to take pains to avoid infinite recursion during * initialization. */ #if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN)) #define malloc_init() false #else static inline bool malloc_init(void) { if (malloc_initialized == false) return (malloc_init_hard()); return (false); } #endif #ifndef MOZ_MEMORY_WINDOWS static #endif bool malloc_init_hard(void) { unsigned i; char buf[PATH_MAX + 1]; const char *opts; long result; #ifndef MOZ_MEMORY_WINDOWS int linklen; #endif #ifndef MOZ_MEMORY_WINDOWS malloc_mutex_lock(&init_lock); #endif if (malloc_initialized) { /* * Another thread initialized the allocator before this one * acquired init_lock. */ #ifndef MOZ_MEMORY_WINDOWS malloc_mutex_unlock(&init_lock); #endif return (false); } if (getenv("JEMALLOC_TEST")) { printf("jemalloc is enabled\n"); } #ifdef MOZ_MEMORY_WINDOWS /* get a thread local storage index */ tlsIndex = TlsAlloc(); #endif /* Get page size and number of CPUs */ #ifdef MOZ_MEMORY_WINDOWS { SYSTEM_INFO info; GetSystemInfo(&info); result = info.dwPageSize; pagesize = (unsigned) result; ncpus = info.dwNumberOfProcessors; } #else ncpus = malloc_ncpus(); result = sysconf(_SC_PAGESIZE); assert(result != -1); pagesize = (unsigned) result; #endif /* * We assume that pagesize is a power of 2 when calculating * pagesize_mask and pagesize_2pow. */ assert(((result - 1) & result) == 0); pagesize_mask = result - 1; pagesize_2pow = ffs((int)result) - 1; for (i = 0; i < 3; i++) { unsigned j; /* Get runtime configuration. */ switch (i) { case 0: #ifndef MOZ_MEMORY_WINDOWS if ((linklen = readlink("/etc/malloc.conf", buf, sizeof(buf) - 1)) != -1) { /* * Use the contents of the "/etc/malloc.conf" * symbolic link's name. */ buf[linklen] = '\0'; opts = buf; } else #endif { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 1: if (issetugid() == 0 && (opts = getenv("MALLOC_OPTIONS")) != NULL) { /* * Do nothing; opts is already initialized to * the value of the MALLOC_OPTIONS environment * variable. */ } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 2: if (_malloc_options != NULL) { /* * Use options that were compiled into the * program. */ opts = _malloc_options; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; default: /* NOTREACHED */ buf[0] = '\0'; opts = buf; assert(false); } for (j = 0; opts[j] != '\0'; j++) { unsigned k, nreps; bool nseen; /* Parse repetition count, if any. */ for (nreps = 0, nseen = false;; j++, nseen = true) { switch (opts[j]) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': nreps *= 10; nreps += opts[j] - '0'; break; default: goto MALLOC_OUT; } } MALLOC_OUT: if (nseen == false) nreps = 1; for (k = 0; k < nreps; k++) { switch (opts[j]) { case 'a': opt_abort = false; break; case 'A': opt_abort = true; break; case 'b': #ifdef MALLOC_BALANCE opt_balance_threshold >>= 1; #endif break; case 'B': #ifdef MALLOC_BALANCE if (opt_balance_threshold == 0) opt_balance_threshold = 1; else if ((opt_balance_threshold << 1) > opt_balance_threshold) opt_balance_threshold <<= 1; #endif break; case 'd': #ifdef MALLOC_DSS opt_dss = false; #endif break; case 'D': #ifdef MALLOC_DSS opt_dss = true; #endif break; case 'f': opt_dirty_max >>= 1; break; case 'F': if (opt_dirty_max == 0) opt_dirty_max = 1; else if ((opt_dirty_max << 1) != 0) opt_dirty_max <<= 1; break; #ifdef MALLOC_FILL case 'j': opt_junk = false; break; case 'J': opt_junk = true; break; #endif case 'k': /* * Chunks always require at least one * header page, so chunks can never be * smaller than two pages. */ if (opt_chunk_2pow > pagesize_2pow + 1) opt_chunk_2pow--; break; case 'K': if (opt_chunk_2pow + 1 < (sizeof(size_t) << 3)) opt_chunk_2pow++; break; case 'm': #ifdef MALLOC_DSS opt_mmap = false; #endif break; case 'M': #ifdef MALLOC_DSS opt_mmap = true; #endif break; case 'n': opt_narenas_lshift--; break; case 'N': opt_narenas_lshift++; break; case 'p': opt_print_stats = false; break; case 'P': opt_print_stats = true; break; case 'q': if (opt_quantum_2pow > QUANTUM_2POW_MIN) opt_quantum_2pow--; break; case 'Q': if (opt_quantum_2pow < pagesize_2pow - 1) opt_quantum_2pow++; break; case 's': if (opt_small_max_2pow > QUANTUM_2POW_MIN) opt_small_max_2pow--; break; case 'S': if (opt_small_max_2pow < pagesize_2pow - 1) opt_small_max_2pow++; break; #ifdef MALLOC_UTRACE case 'u': opt_utrace = false; break; case 'U': opt_utrace = true; break; #endif #ifdef MALLOC_SYSV case 'v': opt_sysv = false; break; case 'V': opt_sysv = true; break; #endif #ifdef MALLOC_XMALLOC case 'x': opt_xmalloc = false; break; case 'X': opt_xmalloc = true; break; #endif #ifdef MALLOC_FILL case 'z': opt_zero = false; break; case 'Z': opt_zero = true; break; #endif default: { char cbuf[2]; cbuf[0] = opts[j]; cbuf[1] = '\0'; _malloc_message(_getprogname(), ": (malloc) Unsupported character " "in malloc options: '", cbuf, "'\n"); } } } } } #ifdef MALLOC_DSS /* Make sure that there is some method for acquiring memory. */ if (opt_dss == false && opt_mmap == false) opt_mmap = true; #endif /* Take care to call atexit() only once. */ if (opt_print_stats) { #ifndef MOZ_MEMORY_WINDOWS /* Print statistics at exit. */ atexit(malloc_print_stats); #endif } /* Set variables according to the value of opt_small_max_2pow. */ if (opt_small_max_2pow < opt_quantum_2pow) opt_small_max_2pow = opt_quantum_2pow; small_max = (1U << opt_small_max_2pow); /* Set bin-related variables. */ bin_maxclass = (pagesize >> 1); assert(opt_quantum_2pow >= TINY_MIN_2POW); ntbins = opt_quantum_2pow - TINY_MIN_2POW; assert(ntbins <= opt_quantum_2pow); nqbins = (small_max >> opt_quantum_2pow); nsbins = pagesize_2pow - opt_small_max_2pow - 1; /* Set variables according to the value of opt_quantum_2pow. */ quantum = (1U << opt_quantum_2pow); quantum_mask = quantum - 1; if (ntbins > 0) small_min = (quantum >> 1) + 1; else small_min = 1; assert(small_min <= quantum); /* Set variables according to the value of opt_chunk_2pow. */ chunksize = (1LU << opt_chunk_2pow); chunksize_mask = chunksize - 1; chunk_npages = (chunksize >> pagesize_2pow); { size_t header_size; /* * Compute the header size such that it is large * enough to contain the page map and enough nodes for the * worst case: one node per non-header page plus one extra for * situations where we briefly have one more node allocated * than we will need. */ header_size = sizeof(arena_chunk_t) + (sizeof(arena_chunk_map_t) * (chunk_npages - 1)) + (sizeof(extent_node_t) * chunk_npages); arena_chunk_header_npages = (header_size >> pagesize_2pow) + ((header_size & pagesize_mask) != 0); } arena_maxclass = chunksize - (arena_chunk_header_npages << pagesize_2pow); UTRACE(0, 0, 0); #ifdef MALLOC_STATS memset(&stats_chunks, 0, sizeof(chunk_stats_t)); #endif /* Various sanity checks that regard configuration. */ assert(quantum >= sizeof(void *)); assert(quantum <= pagesize); assert(chunksize >= pagesize); assert(quantum * 4 <= chunksize); /* Initialize chunks data. */ malloc_mutex_init(&huge_mtx); RB_INIT(&huge); #ifdef MALLOC_DSS malloc_mutex_init(&dss_mtx); dss_base = sbrk(0); dss_prev = dss_base; dss_max = dss_base; RB_INIT(&dss_chunks_szad); RB_INIT(&dss_chunks_ad); #endif #ifdef MALLOC_STATS huge_nmalloc = 0; huge_ndalloc = 0; huge_allocated = 0; #endif /* Initialize base allocation data structures. */ #ifdef MALLOC_STATS base_mapped = 0; #endif #ifdef MALLOC_DSS /* * Allocate a base chunk here, since it doesn't actually have to be * chunk-aligned. Doing this before allocating any other chunks allows * the use of space that would otherwise be wasted. */ if (opt_dss) base_pages_alloc(0); #endif base_nodes = NULL; malloc_mutex_init(&base_mtx); if (ncpus > 1) { /* * For SMP systems, create four times as many arenas as there * are CPUs by default. */ opt_narenas_lshift += 2; } /* Determine how many arenas to use. */ narenas = ncpus; if (opt_narenas_lshift > 0) { if ((narenas << opt_narenas_lshift) > narenas) narenas <<= opt_narenas_lshift; /* * Make sure not to exceed the limits of what base_alloc() can * handle. */ if (narenas * sizeof(arena_t *) > chunksize) narenas = chunksize / sizeof(arena_t *); } else if (opt_narenas_lshift < 0) { if ((narenas >> -opt_narenas_lshift) < narenas) narenas >>= -opt_narenas_lshift; /* Make sure there is at least one arena. */ if (narenas == 0) narenas = 1; } #ifdef MALLOC_BALANCE assert(narenas != 0); for (narenas_2pow = 0; (narenas >> (narenas_2pow + 1)) != 0; narenas_2pow++); #endif #ifdef NO_TLS if (narenas > 1) { static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263}; unsigned nprimes, parenas; /* * Pick a prime number of hash arenas that is more than narenas * so that direct hashing of pthread_self() pointers tends to * spread allocations evenly among the arenas. */ assert((narenas & 1) == 0); /* narenas must be even. */ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW); parenas = primes[nprimes - 1]; /* In case not enough primes. */ for (i = 1; i < nprimes; i++) { if (primes[i] > narenas) { parenas = primes[i]; break; } } narenas = parenas; } #endif #ifndef NO_TLS # ifndef MALLOC_BALANCE next_arena = 0; # endif #endif /* Allocate and initialize arenas. */ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); if (arenas == NULL) { #ifndef MOZ_MEMORY_WINDOWS malloc_mutex_unlock(&init_lock); #endif return (true); } /* * Zero the array. In practice, this should always be pre-zeroed, * since it was just mmap()ed, but let's be sure. */ memset(arenas, 0, sizeof(arena_t *) * narenas); /* * Initialize one arena here. The rest are lazily created in * choose_arena_hard(). */ arenas_extend(0); if (arenas[0] == NULL) { #ifndef MOZ_MEMORY_WINDOWS malloc_mutex_unlock(&init_lock); #endif return (true); } #ifndef NO_TLS /* * Assign the initial arena to the initial thread, in order to avoid * spurious creation of an extra arena if the application switches to * threaded mode. */ #ifdef MOZ_MEMORY_WINDOWS TlsSetValue(tlsIndex, arenas[0]); #else arenas_map = arenas[0]; #endif #endif /* * Seed here for the initial thread, since choose_arena_hard() is only * called for other threads. The seed values don't really matter. */ #ifdef MALLOC_BALANCE SPRN(balance, 42); #endif malloc_spin_init(&arenas_lock); malloc_initialized = true; #ifndef MOZ_MEMORY_WINDOWS malloc_mutex_unlock(&init_lock); #endif #if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN)) /* Prevent potential deadlock on malloc locks after fork. */ /* * On some older Linux versions pthread_atfork depends on malloc(). Therefor * we need to register the handler after jemalloc is initialized */ pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork); #endif return (false); } /* XXX Why not just expose malloc_print_stats()? */ #ifdef MOZ_MEMORY_WINDOWS void malloc_shutdown() { malloc_print_stats(); } #endif /* * End general internal functions. */ /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ VISIBLE #ifdef MOZ_MEMORY_DARWIN inline void * moz_malloc(size_t size) #else void * malloc(size_t size) #endif { void *ret; if (malloc_init()) { ret = NULL; goto RETURN; } if (size == 0) { #ifdef MALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef MALLOC_SYSV else { ret = NULL; goto RETURN; } #endif } ret = imalloc(size); RETURN: if (ret == NULL) { #ifdef MALLOC_XMALLOC if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in malloc(): out of memory\n", "", ""); abort(); } #endif errno = ENOMEM; } UTRACE(0, size, ret); return (ret); } #ifdef MOZ_MEMORY_DARWIN VISIBLE inline void * moz_memalign(size_t alignment, size_t size) #elif (defined(MOZ_MEMORY_SOLARIS)) # ifdef __SUNPRO_C void * memalign(size_t alignment, size_t size); #pragma no_inline(memalign) # elif (defined(__GNU_C__)) __attribute__((noinline)) # endif VISIBLE void * memalign(size_t alignment, size_t size) #else VISIBLE inline void * memalign(size_t alignment, size_t size) #endif { void *ret; assert(((alignment - 1) & alignment) == 0 && alignment >= sizeof(void *)); if (malloc_init()) { ret = NULL; goto RETURN; } ret = ipalloc(alignment, size); RETURN: #ifdef MALLOC_XMALLOC if (opt_xmalloc && ret == NULL) { _malloc_message(_getprogname(), ": (malloc) Error in memalign(): out of memory\n", "", ""); abort(); } #endif UTRACE(0, size, ret); return (ret); } VISIBLE #ifdef MOZ_MEMORY_DARWIN inline int moz_posix_memalign(void **memptr, size_t alignment, size_t size) #else int posix_memalign(void **memptr, size_t alignment, size_t size) #endif { void *result; /* Make sure that alignment is a large enough power of 2. */ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) { #ifdef MALLOC_XMALLOC if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in posix_memalign(): " "invalid alignment\n", "", ""); abort(); } #endif return (EINVAL); } #ifdef MOZ_MEMORY_DARWIN result = moz_memalign(alignment, size); #else result = memalign(alignment, size); #endif if (result == NULL) return (ENOMEM); *memptr = result; return (0); } VISIBLE #ifdef MOZ_MEMORY_DARWIN inline void * moz_valloc(size_t size) #else void * valloc(size_t size) #endif { #ifdef MOZ_MEMORY_DARWIN return (moz_memalign(pagesize, size)); #else return (memalign(pagesize, size)); #endif } VISIBLE #ifdef MOZ_MEMORY_DARWIN inline void * moz_calloc(size_t num, size_t size) #else void * calloc(size_t num, size_t size) #endif { void *ret; size_t num_size; if (malloc_init()) { num_size = 0; ret = NULL; goto RETURN; } num_size = num * size; if (num_size == 0) { #ifdef MALLOC_SYSV if ((opt_sysv == false) && ((num == 0) || (size == 0))) #endif num_size = 1; #ifdef MALLOC_SYSV else { ret = NULL; goto RETURN; } #endif /* * Try to avoid division here. We know that it isn't possible to * overflow during multiplication if neither operand uses any of the * most significant half of the bits in a size_t. */ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) && (num_size / size != num)) { /* size_t overflow. */ ret = NULL; goto RETURN; } ret = icalloc(num_size); RETURN: if (ret == NULL) { #ifdef MALLOC_XMALLOC if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in calloc(): out of memory\n", "", ""); abort(); } #endif errno = ENOMEM; } UTRACE(0, num_size, ret); return (ret); } VISIBLE #ifdef MOZ_MEMORY_DARWIN inline void * moz_realloc(void *ptr, size_t size) #else void * realloc(void *ptr, size_t size) #endif { void *ret; if (size == 0) { #ifdef MALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef MALLOC_SYSV else { if (ptr != NULL) idalloc(ptr); ret = NULL; goto RETURN; } #endif } if (ptr != NULL) { assert(malloc_initialized); ret = iralloc(ptr, size); if (ret == NULL) { #ifdef MALLOC_XMALLOC if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in realloc(): out of " "memory\n", "", ""); abort(); } #endif errno = ENOMEM; } } else { if (malloc_init()) ret = NULL; else ret = imalloc(size); if (ret == NULL) { #ifdef MALLOC_XMALLOC if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in realloc(): out of " "memory\n", "", ""); abort(); } #endif errno = ENOMEM; } } #ifdef MALLOC_SYSV RETURN: #endif UTRACE(ptr, size, ret); return (ret); } VISIBLE #ifdef MOZ_MEMORY_DARWIN inline void moz_free(void *ptr) #else void free(void *ptr) #endif { UTRACE(ptr, 0, 0); if (ptr != NULL) { assert(malloc_initialized); idalloc(ptr); } } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ VISIBLE #ifdef MOZ_MEMORY_DARWIN inline size_t moz_malloc_usable_size(const void *ptr) #else size_t sge_malloc_usable_size(const void *ptr) #endif { #ifdef MALLOC_VALIDATE return (isalloc_validate(ptr)); #else assert(ptr != NULL); return (isalloc(ptr)); #endif } #ifdef MOZ_MEMORY_WINDOWS void* _recalloc(void *ptr, size_t count, size_t size) { size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0; size_t newsize = count * size; /* * In order for all trailing bytes to be zeroed, the caller needs to * use calloc(), followed by recalloc(). However, the current calloc() * implementation only zeros the bytes requested, so if recalloc() is * to work 100% correctly, calloc() will need to change to zero * trailing bytes. */ ptr = realloc(ptr, newsize); if (ptr != NULL && oldsize < newsize) { memset((void *)((uintptr_t)ptr + oldsize), 0, newsize - oldsize); } return ptr; } /* * This impl of _expand doesn't ever actually expand or shrink blocks: it * simply replies that you may continue using a shrunk block. */ void* _expand(void *ptr, size_t newsize) { if (isalloc(ptr) >= newsize) return ptr; return NULL; } size_t _msize(const void *ptr) { return sge_malloc_usable_size(ptr); } #endif /* * End non-standard functions. */ /******************************************************************************/ /* * Begin library-private functions, used by threading libraries for protection * of malloc during fork(). These functions are only called if the program is * running in threaded mode, so there is no need to check whether the program * is threaded here. */ void _malloc_prefork(void) { unsigned i; /* Acquire all mutexes in a safe order. */ malloc_spin_lock(&arenas_lock); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_spin_lock(&arenas[i]->lock); } malloc_spin_unlock(&arenas_lock); malloc_mutex_lock(&base_mtx); malloc_mutex_lock(&huge_mtx); #ifdef MALLOC_DSS malloc_mutex_lock(&dss_mtx); #endif } void _malloc_postfork(void) { unsigned i; /* Release all mutexes, now that fork() has completed. */ #ifdef MALLOC_DSS malloc_mutex_unlock(&dss_mtx); #endif malloc_mutex_unlock(&huge_mtx); malloc_mutex_unlock(&base_mtx); malloc_spin_lock(&arenas_lock); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_spin_unlock(&arenas[i]->lock); } malloc_spin_unlock(&arenas_lock); } /* * End library-private functions. */ /******************************************************************************/ #ifdef HAVE_DLOPEN # include #endif #ifdef MOZ_MEMORY_DARWIN static malloc_zone_t zone; static struct malloc_introspection_t zone_introspect; static size_t zone_size(malloc_zone_t *zone, void *ptr) { /* * There appear to be places within Darwin (such as setenv(3)) that * cause calls to this function with pointers that *no* zone owns. If * we knew that all pointers were owned by *some* zone, we could split * our zone into two parts, and use one as the default allocator and * the other as the default deallocator/reallocator. Since that will * not work in practice, we must check all pointers to assure that they * reside within a mapped chunk before determining size. */ return (isalloc_validate(ptr)); } static void * zone_malloc(malloc_zone_t *zone, size_t size) { return (moz_malloc(size)); } static void * zone_calloc(malloc_zone_t *zone, size_t num, size_t size) { return (moz_calloc(num, size)); } static void * zone_valloc(malloc_zone_t *zone, size_t size) { void *ret = NULL; /* Assignment avoids useless compiler warning. */ moz_posix_memalign(&ret, pagesize, size); return (ret); } static void zone_free(malloc_zone_t *zone, void *ptr) { moz_free(ptr); } static void * zone_realloc(malloc_zone_t *zone, void *ptr, size_t size) { return (moz_realloc(ptr, size)); } static void * zone_destroy(malloc_zone_t *zone) { /* This function should never be called. */ assert(false); return (NULL); } static size_t zone_good_size(malloc_zone_t *zone, size_t size) { size_t ret; void *p; /* * Actually create an object of the appropriate size, then find out * how large it could have been without moving up to the next size * class. */ p = moz_malloc(size); if (p != NULL) { ret = isalloc(p); moz_free(p); } else ret = size; return (ret); } static void zone_force_lock(malloc_zone_t *zone) { _malloc_prefork(); } static void zone_force_unlock(malloc_zone_t *zone) { _malloc_postfork(); } static malloc_zone_t * create_zone(void) { assert(malloc_initialized); zone.size = (void *)zone_size; zone.malloc = (void *)zone_malloc; zone.calloc = (void *)zone_calloc; zone.valloc = (void *)zone_valloc; zone.free = (void *)zone_free; zone.realloc = (void *)zone_realloc; zone.destroy = (void *)zone_destroy; zone.zone_name = "jemalloc_zone"; zone.batch_malloc = NULL; zone.batch_free = NULL; zone.introspect = &zone_introspect; zone_introspect.enumerator = NULL; zone_introspect.good_size = (void *)zone_good_size; zone_introspect.check = NULL; zone_introspect.print = NULL; zone_introspect.log = NULL; zone_introspect.force_lock = (void *)zone_force_lock; zone_introspect.force_unlock = (void *)zone_force_unlock; zone_introspect.statistics = NULL; return (&zone); } __attribute__((constructor)) void jemalloc_darwin_init(void) { extern unsigned malloc_num_zones; extern malloc_zone_t **malloc_zones; if (malloc_init_hard()) abort(); /* * The following code is *not* thread-safe, so it's critical that * initialization be manually triggered. */ /* Register the custom zones. */ malloc_zone_register(create_zone()); assert(malloc_zones[malloc_num_zones - 1] == &zone); /* * Shift malloc_zones around so that zone is first, which makes it the * default zone. */ assert(malloc_num_zones > 1); memmove(&malloc_zones[1], &malloc_zones[0], sizeof(malloc_zone_t *) * (malloc_num_zones - 1)); malloc_zones[0] = &zone; } #elif defined(__GLIBC__) && !defined(__UCLIBC__) /* * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible * to inconsistently reference libc's malloc(3)-compatible functions * (Bugzilla@Mozilla 493541). * * These definitions interpose hooks in glibc. The functions are actually * passed an extra argument for the caller return address, which will be * ignored. */ void (*__free_hook)(void *ptr) = free; void *(*__malloc_hook)(size_t size) = malloc; void *(*__realloc_hook)(void *ptr, size_t size) = realloc; void *(*__memalign_hook)(size_t alignment, size_t size) = memalign; #elif defined(RTLD_DEEPBIND) /* * XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their * implementations permit similar inconsistencies? Should STV_SINGLETON * visibility be used for interposition where available? */ # error "Interposing malloc is unsafe on this system without libc malloc hooks." #endif