
EUROPEAN MIDDLEWARE INITIATIVE

LOGGING AND BOOKKEEPING – USER’S GUIDE

Document version: 1.4.17

EMI Component Version: 4.x

Date: June 25, 2014

1/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

This work is co-funded by the European Commission as part of the EMI project under Grant Agreement
INFSO-RI-261611.

Copyright c©Members of the EGEE Collaboration. 2004-2010. See http://www.eu-egee.org/partners/
for details on the copyright holders.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, ei-
ther express or implied. See the License for the specific language governing permissions and
limitations under the License.

2/48

http://www.eu-egee.org/partners/
http://www.apache.org/licenses/LICENSE-2.0

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

CONTENTS

L&B DOCUMENTATION AND VERSIONS OVERVIEW 5

1 L&B ARCHITECTURE 7

1.1 CONCEPTS . 8

1.1.1 JOBS AND EVENTS . 8

1.1.2 EVENT GATHERING . 9

1.1.3 EVENT PROCESSING . 9

1.1.4 EVENT ORDERING . 10

1.1.5 QUERIES AND NOTIFICATIONS . 12

1.1.6 LOCAL VIEWS . 12

1.2 CURRENT L&B IMPLEMENTATION . 13

1.2.1 L&B API AND LIBRARY . 13

1.2.2 LOGGER . 13

1.2.3 SERVER . 14

1.2.4 PROXY . 15

1.2.5 SEQUENCE CODES FOR EVENT ORDERING 15

1.2.6 L&B DATA PROTECTION . 16

1.3 USER INTERACTION . 17

1.3.1 EVENT SUBMISSION . 17

1.3.2 QUERYING INFORMATION . 18

1.3.3 NOTIFICATIONS . 18

1.3.4 CAVEATS . 19

1.4 ADVANCED USE . 19

1.4.1 L&B AND REAL TIME MONITORING . 19

1.4.2 R-GMA FEED . 20

1.4.3 L&B JOB STATISTICS . 20

1.4.4 COMPUTING ELEMENT REPUTABILITY RANK 20

1.4.5 CREAM JOBS . 21

1.4.6 SANDBOX TRANSFERS . 21

1.4.7 NON-GLITE EVENT SOURCES . 21

1.4.8 CONTROLLING ACCESS TO JOB INFORMATION 21

2 USER TOOLS 23

2.1 ENVIRONMENT VARIABLES . 23

2.2 GLITE-WMS-JOB-STATUS AND GLITE-WMS-JOB-LOGGING-INFO 23

2.3 GLITE-LB-LOGEVENT . 24

2.3.1 EXAMPLE: LOGGING A USERTAG EVENT . 24

3/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

2.3.2 EXAMPLE: CHANGING JOB ACCESS CONTROL LIST 25

2.3.3 EXAMPLE: SETTING PAYLOAD OWNER . 26

2.4 GLITE-LB-NOTIFY . 27

2.4.1 EXAMPLE: REGISTRATION AND WAITING FOR SIMPLE NOTIFICATION 28

2.4.2 EXAMPLE: WAITING FOR NOTIFICATIONS ON ALL USER’S JOBS 29

2.4.3 EXAMPLE: REGISTERING FOR NOTIFICATIONS TO BE DELIVERED OVER AC-
TIVEMQ . 30

2.4.4 EXAMPLE: WAITING FOR MORE NOTIFICATIONS ON ONE SOCKET 30

2.4.5 EXAMPLE: WAITING FOR NOTIFICATIONS ON JOBS REACHING SELECTED
STATES . 31

2.4.6 EXAMPLE: NOTIFY ON JOB REACHING TERMINAL STATE 32

2.5 HTML AND PLAIN TEXT INTERFACE . 32

2.5.1 JOB ID OR NOTIFICATION ID AS URL . 32

2.5.2 PLAIN TEXT MODIFIER . 33

2.5.3 QUERYING FOR JOBS BY ATTRIBUTE . 33

2.5.4 APPLYING FLAGS . 34

2.5.5 READING L&B SERVER CONFIGURATION OVER HTTPS 35

2.5.6 SUMMARY OF APPLICABLE QUERY STRINGS 35

2.6 JOB STATE CHANGES AS AN RSS FEED . 35

2.7 OTHER USEFUL TOOLS . 36

3 TROUBLESHOOTING 37

4 FAQ—FREQUENTLY ASKED QUESTIONS 38

4.1 JOB IN STATE ‘RUNNING’ DESPITE HAVING RECEIVED THE ‘DONE’ EVENT FROM
LRMS . 38

4.2 WMS CANNOT PURGE JOBS OR PERFORM OTHER PRIVILEGED TASKS 38

4.2.1 FOR L&B VERSION 3.0.11 OR HIGHER, USING YAIM 38

4.2.2 FOR ALL VERSIONS OF L&B, USING YAIM . 38

4.2.3 FOR L&B VERSION 2.1 OR HIGHER, WITHOUT YAIM 38

4.3 L&B SERVER THROWS “DUPLICATE ENTRY . . . FOR KEY 1” ERRORS 39

A L&B EVENT TYPES 40

B L&B JOB STATES 43

B.1 CREAM JOB STATES MAPPING . 44

C ENVIRONMENT VARIABLES 45

4/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

L&B DOCUMENTATION AND VERSIONS OVERVIEW

The Logging and Bookkeeping service (L&B for short) was initially developed in the EU DataGrid project1

as a part of the Workload Management System (WMS). The development continued in the EGEE, EGEE-
II and EGEE-III projects,2 where L&B became an independent part of the gLite3 middleware [1], and then
in the EMI Project.4

The complete L&B Documentation consists of the following parts:

• L&B User’s Guide – this document. The User’s Guide explains how to use the Logging and
Bookkeeping (L&B) service from the user’s point of view. The service architecture is described
thoroughly. Examples on using L&B’s event logging commands to log user tags and change job
ACLs are given, as well as L&B query and notification use cases.

• L&B Administrator’s Guide [2]. The Administrator’s Guide explains how to administer the Logging
and Bookkeeping (L&B) service. Several deployment scenarios are described together with the
installation, configuration, running and troubleshooting steps.

• L&B Developer’s Guide [3]. The Developer’s Guide explains how to use the Logging and Book-
keeping (L&B) service API. Logging (producer), querying (consumer) and notification API as well
as the Web Services Interface is described in details together with programing examples.

• L&B Test Plan [4]. The Test Plan document explains how to test the Logging and Bookkeeping
(L&B) service. Two major categories of tests are described: integration tests (include installation,
configuration and basic service ping tests) and system tests (basic functionality tests, performance
and stress tests, interoperability tests and security tests).

The following versions of L&B service are covered by these documents:

• L&B version 4.0: included in the EMI-3 Monte Bianco release

• L&B version 3.2: included in the EMI-2 Matterhorn release

• L&B version 3.1: an update for the EMI-1 Kebnekaise release

• L&B version 3.0: included in the EMI-1 Kebnekaise release

• L&B version 2.1: replacement for L&B version 2.0 in gLite 3.2

• L&B version 2.0: included in gLite 3.2 release

• L&B version 1.x : included in gLite 3.1 release

L&B packages can be obtained from two distinguished sources:

• gLite releases: gLite node-type repositories, offering a specific repository for each node type such
as glite-LB. Only binary RPM packages are available from that source.

1http://eu-datagrid.web.cern.ch/eu-datagrid/
2http://www.eu-egee.org/
3http://www.glite.org
4http://www.eu-emi.eu/

5/48

http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.eu-egee.org/
http://www.glite.org
http://www.eu-emi.eu/

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

• emi releases: EMI repository5 or EGI’s UMD repository,6 offering all EMI middleware packages
from a single repository. There are RPM packages, both source and binary, the latter relying on
EPEL for dependencies. There are also DEB packages (starting with EMI-2) and tar.gz archives.

Note: Despite offering the same functionality, binary packages obtained from different repositories differ
and switching from one to the other for upgrades may not be altogether straightforward.

Updated information about L&B service (including the L&B service roadmap) is available at the L&B
homepage: http://egee.cesnet.cz/en/JRA1/LB

5http://emisoft.web.cern.ch/emisoft/
6http://repository.egi.eu/

6/48

http://egee.cesnet.cz/en/JRA1/LB
http://emisoft.web.cern.ch/emisoft/
http://repository.egi.eu/

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

1 L&B ARCHITECTURE

L&B’s primary purpose is tracking WMS jobs as they are processed by individual Grid components, not
counting on the WMS to provide this data. The information gathered from individual sources is collected,
stored in a database and made available at a single contact point. The user gets a complete view on
her job without the need to inspect several service logs (which she may not be authorized to see in the
entirety or she may not be even aware of their existence).

While L&B keeps track of submitted and running jobs, the information is kept by the L&B service also
after the job has been finished (successfully completed its execution, failed, or has been canceled for any
reason). The information is usually available several days after the last event related to the job arrived, to
give user an opportunity to check the job’s final state and eventually evaluate failure reasons.

As L&B collects also information provided by the WMS, the WMS services are no longer required to
provide a job-state querying interface. Most of the WMS services can be even designed as stateless—they
process a job and pass it over to another service, not keeping state information about the job anymore.
During development and deployment of the first WMS version this approach turned to be essential in order
to scale the services to the required extent [5].

L&B must collect information about all important events in the Grid job life. These include transitions
between components or services, results of matching and brokerage, waiting in queue systems or start
and end of actual execution. We decided to achieve this goal through provision of an API (and the
associated library) and instrumenting individual WMS services and other Grid components with direct
calls to this API. But as L&B is a centralized service (there exists a single point where all information
about a particular job must eventually arrive), direct synchronous transfer of data could have prohibiting
impact on the WMS operation. The temporary unavailability or overload of the remote L&B service must
not prevent (nor block) the instrumented service to perform as usual. An asynchronous model with a clear
asynchronous delivery semantics, see Sect. 1.1.2, is used to address this issue.

As individual Grid components have only local and transient view of a job, they are able to send only
information about individual events. This raw, fairly complex information is not a suitable form to be
presented to the user for frequent queries. It must be processed at the central service and users must
be presented primarily with this processed form. This form is derived from the job state and its transition,
not from the job events themselves. The raw information is still available, in case more detailed insight is
necessary.

While the removal of state information from (some of) the WMS services helped to achieve the high scal-
ability of the whole WMS, the state information is still essential for the decisions made within the resource
broker or during the matchmaking process. For example decision on job resubmission is usually affected
by the number of previous resubmission attempts. This kind of information is currently available in the L&B
only, so the next “natural” requirement has been to provide an interface for WMS (and other) services to
the L&B to query for the state information. However, this requirement contains two contradictions: (i) due
to the asynchronous event delivery model, the L&B information may not be up to date and remote queries
may lead to unexpected results (or even inconsistent ones—some older information may not be available
for one query but may arrive before a subsequent query is issued), and (ii) the dependence on a remote
service to provide vital state information may block the local service if the remote one is not responding.
These problems are addressed by providing local view of the L&B data, see Sect. 1.1.6

7/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

1.1 CONCEPTS

1.1.1 JOBS AND EVENTS

To keep track of user jobs on the Grid, we first need some reliable way to identify them. This is accom-
plished by assigning a unique identifier, which we call jobid (“Grid jobid”), to every job before it enters
the Grid. A unique jobid is assigned, making it the primary index to unambiguously identify any Grid job.
This jobid is then passed between Grid components together with the job description as the job flows
through the Grid; the components themselves may have (and usually do) their own job identifiers, which
are unique only within these components.

Every Grid component dealing with the job during its lifetime may be a source of information about the
job. The L&B gathers information from all the relevant components. This information is obtained in the
form of L&B events, pieces of data generated by Grid components, which mark important points in the
job lifetime (for example passing of job control between the Grid components are important milestones in
job lifetime independently on the actual Grid architecture); see Appendix A for a complete list. We collect
those events, store them into a database and simultaneously process them to provide higher level view
on the job’s state. The L&B collects redundant information—the event scheme has been designed to be
as redundant as possible—and this redundancy is used to improve resiliency in a presence of component
or network failures, which are omnipresent on any Grid.

The L&B events themselves are structured into attribute = value pairs, the set of required and optional
attributes is defined by the event type (or scheme). For the purpose of tracking job status on the Grid
and with the knowledge of WMS Grid middleware structure we defined an L&B schema with specific L&B
event types (see AppendixA). The schema contains a common base, the attributes that must be assigned
to every single event. The primary key is the jobid, which is also one of the required attributes. Among
other common attributes belong currently the timestamps of the event origin and of the event arrival to LB,
generating component name, the event type, its priority and sequence code (see Sect. 1.1.3) and so on.
For a complete list of attributes see [3].

While the necessary and sufficient condition for a global jobid is to be Grid-wide unique, additional desired
property relates to the transport of events through the network: All events belonging to the same job must
be sent to the same L&B database. This must be done on a per message basis, as each message
may be generated by a different component. The same problem is encountered by users when they
look for information about their job—they need to know where to find the appropriate L&B database too.
While it is possible to devise a global service where each job registers its jobid together with the address
of the appropriate database, such a service could easily become a bottleneck. We opted for another
solution, to keep the address of the L&B database within the jobid (actually, fully qualified hostname
is strongly recommended instead of numeric address and numeric IPv6 address is not supported for
backward compatibility reasons). This way, finding appropriate L&B database address becomes a local
operation (at most parsing the jobid) and users can use the same mechanism when connecting to the
L&B database to retrieve information about a particular job (users know its jobid). To simplify the situation
even further, the jobid has the form of an URL, where the protocol part is “https”, server and port identify
the machine running the appropriate L&B server (database) and the path contains base64 encoded MD5
hash of random number, timestamp, PID of the generating process and IP address of the machine, where
the jobid was generated. Jobid in this form can be used even in the web browser to obtain information
about the job, provided the L&B database runs a web server interface. This jobid is reasonably unique—
while in theory two different job identifications can have the same MD5 hash, the probability is low enough
for this jobid to represent a globally unique job identification.

8/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

1.1.2 EVENT GATHERING

As described in the previous section, information about jobs are gathered from all the Grid components
processing the job in the form of L&B events. The gathering is based on the push model where the
components are actively producing and sending events. The push model offers higher performance and
scalability than the pull model, where the components are to be queried by the server. In the push model,
the L&B server does not even have to know the event sources, it is sufficient to listen for and accept events
on defined interface.

The event delivery to the destination L&B server is asynchronous and based on the store–and–forward
model to minimize the performance impact on component processing. Only the local processing is syn-
chronous, the L&B event is sent synchronously only to the nearest L&B component responsible for event
delivery. This component is at the worst located in the same local area network (LAN) and usually it runs
on the same host as the producing component. The event is stored there (using persistent storage – disk
file) and confirmation is sent back to the producing component. From the component’s point of view, the
send event operation is fast and reliable, but its success only means the event was accepted for later
delivery. The L&B delivery components then handle the event asynchronously and ensure its delivery to
the L&B server even in the presence of network failures and host reloads.

It is important to note that this transport system does not guarantee ordered delivery of events to the L&B
server; it does guarantee reliable and secure delivery, however. The guarantees are statistical only, as the
protocol is not resilient to permanent disk or node crashes nor to the complete purge of the data from local
disk. Being part of the trusted infrastructure, even the local L&B components should run on a trusted and
maintained machine, where additional reliability may be obtained for example by a RAID disk subsystem.

1.1.3 EVENT PROCESSING

As described in the previous section, L&B gathers raw events from various Grid middleware components
and aggregates them on a single server on a per-job basis. The events contain a very low level detailed
information about the job processing at individual Grid components. This level of detail is valuable for
tracking various problems with the job and/or the components, and as complementary events are gathered
(for example each job control transfer is logged independently by two components), the information is
highly redundant. Moreover, the events could arrive in wrong order, making the interpretation of raw
information difficult and not straightforward. Users, on the other hand, are interested in a much higher
view, the overall state of their job.

For these reasons the raw events undergo complex processing, yielding a high level view, the job state,
that is the primary type of data presented to the user. Various job states form nodes of the job state
diagram (Fig. 1). See Appendix B for a list of the individual states.

L&B defines a job state machine that is responsible for updating the job state on receiving a new event.
The logic of this algorithm is non-trivial; the rest of this section deals with its main features.

Transitions between the job states happen on receiving events of particular type coming from particular
sources. There may be more distinct events assigned to a single edge of the state diagram. For instance,
the job becomes Scheduled when it enters batch system queue of a Grid computing element. The fact is
witnessed by either Transfer/OK event reported by the job submission service or by Accept event reported
by the computing element. Receiving any one of these events (in any order) triggers the state change.

This way, the state machine is highly fault-tolerant—it can cope with delayed, reordered or even lost
events. For example, when a job is in the Waiting state and the Done event arrives, it is not treated

9/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

SUBMITTED

WAITING

READY

CLEARED

ABORTEDCANCELLED

DONE(failed)

SCHEDULED

DONE(ok)

RUNNING

Figure 1: L&B job state diagram

as inconsistency but it is assumed that the intermediate events are delayed or lost and the job state is
switched to the Done state directly.

The L&B events carry various common and event-type specific attributes, for example timestamp (com-
mon) or destination (Transfer type). The job state record contains, besides the major state identification,
similar attributes, for example an array of timestamps indicating when the job entered each state, or lo-
cation—identification of the Grid component which is currently handling the job. Updating the job state
attributes is also the task of the state machine, employing the above mentioned fault tolerance—despite
a delayed event cannot switch the major job state back it still may carry valuable information to update the
job state attributes.

Jobs monitored by the L&B service may have different types. For gLite jobs, L&B supports simple jobs and
representations of sets of jobs – DAGs (with dependencies between subjobs described by a direct acyclic
graph) and collections (without dependencies between subjobs). In these cases, subjobs are monitored
in a standard way, with one addition – when job status changes, information is propagated also to the
parent job representing the corresponding collection or DAG. A parent job representing a collection or a
DAG can be used to monitor the overall status of the set, including information such as how many subjobs
have already finished, etc. Support for non-gLite jobs, namely for PBS or Condor systems, is described
in section 1.4.7

1.1.4 EVENT ORDERING

As described above, the ability to correctly order arriving events is essential for the job state computation.
As long as the job state diagram was acyclic (which was true for the initial WMS release), each event had
its unique place in the expected sequence hence event ordering could always be done implicitly from the
context. However, this approach is not applicable once job resubmission yielding cycles in the job state
diagram was introduced.

Event ordering that would rely on timestamps assigned to events upon their generation, assuming strict

10/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

clock synchronization over the Grid, turned to be a naive approach. Clocks on real machines are not
precisely synchronized and there are no reliable ways to enforce synchronization across administrative
domains.

To demonstrate a problem with desynchronized clocks, that may lead to wrong event interpretation, let us
consider a simplified example in Tab. 1. We assume that the workload manager (WM) sends the job to

1. WM: Accept 6. WM: Accept
2. WM: Match A 7. WM: Match B
3. WM: Transfer to A 8. WM: Transfer to B
4. CE A: Accept 9. CE B: Accept
5. CE A: Run 10. CE B: Run

. . . A dies

Table 1: Simplified L&B events in the CE failure scenario

a computing element (CE) A, where it starts running but the job dies in the middle. The failure is detected
and the job is resubmitted back to the WM which sends it to CE B then. However, if A’s clock is ahead
in time and B’s clock is correct (which means behind the A’s clock), the events in the right column are
treated as delayed. The state machine will interpret events incorrectly, assuming the job has been run on
B before sending it to A. The job would always (assuming the A’s events arrive before B’s events to the
L&B) be reported as “Running at A” despite the real state should follow the Waiting . . . Running sequence.
Even the Done event can be sent by B with a timestamp that says this happened before the job has been
submitted to A and the job state will end with a discrepancy—it has been reported to finish on B while still
reported to run on A.

Therefore we are looking for a more robust and general solution. We can discover severe clock bias if
the timestamp on an event is in a future with respect to the time on an L&B server, but this is generally
a dangerous approach (the L&B server clock could be severely behind the real time). We decided not to
rely on absolute time as reported by timestamps, but to introduce a kind of logical time that is associated
with the logic of event generation. The principal idea is arranging the pass through the job state diagram
(corresponding to a particular job life), that may include loops, into an execution tree that represents the
job history. Closing a loop in the pass through the state diagram corresponds to forking a branch in the
execution tree. The scenario in Tab. 1 is mapped to the tree in Fig. 2. The approach is quite general—any
finite pass through any state diagram (finite directed graph) can be encoded in this way.

WAITING (1) WAITING (2)

SUBMITTED

RUNNING (1) RUNNING (2)

RunRun

Accept

Figure 2: Job state sequence in the CE failure scenario, arranged into a tree. Solid lines form the
tree, arrows show state transitions.

11/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

Our goal is augmenting L&B events with sufficient information that

• identifies uniquely a branch on the execution tree,

• determines the sequence of events on the branch,

• orders the branches themselves, which means that it determines which one is more recent.

If such information is available, the execution tree can be reconstructed on the fly as the events arrive,
and even delayed events are sorted into the tree correctly. An incoming event is considered for job state
computation only if it belongs to the most recent branch.

The situation becomes even more complicated when the shallow resubmission WM advanced feature
is enabled. In this mode WM may resubmit the job before being sure the previous attempt is really
unsuccessful, potentially creating multiple parallel instances of the job. The situation maps to several
branches of the execution tree that evolve really in parallel. However, only one of the job instances
becomes active (really running) finally; the others are aborted. Because the choice of active instance is
done later, it may not correspond to the most recent execution branch. Therefore, when an event indicating
the choice of active instance arrives, the job state must be recomputed, using the corresponding active
branch instead the most recent one.

Section 1.2.5 describes the current implementation of event ordering mechanism based on ideas pre-
sented here.

1.1.5 QUERIES AND NOTIFICATIONS

According to the GMA classification the user retrieves data from the infrastructure in two modes, called
queries and notifications in L&B.

Querying L&B is fairly straightforward—the user specifies query conditions, connects to the querying in-
frastructure endpoint, and receives the results. For “single job” queries, where jobid is known, the endpoint
(the appropriate L&B server) is inhered from the jobid. More general queries must specify the L&B server
explicitely, and their semantics is intentionally restricted to “all such jobs known here”. We trade off gen-
erality for performance and reliability, leaving the problem of finding the right query endpoint(s), the right
L&B servers, to higher level information and service-discovery services.

If the user is interested in one or more jobs, frequent polling of the L&B server may be cumbersome for
the user and creates unnecessary overload on the sever. A notification subscription is therefore available,
allowing users to subscribe to receive notification whenever a job starts matching user specified condi-
tions. Every subscription contains also the location of the user’s listener; successful subscription returns
time-limited notification handle. During the validity period of the subscription, the L&B infrastructure is
responsible for queuing and reliable delivery of the notifications. The user may even re-subscribe (provid-
ing the original handle) with different listener location (for example moving from office to home), and L&B
re-routes the notifications generated in the meantime to the new destination. The L&B event delivery in-
frastructure is reused for the notification transport. Alongside it, there is a possibility to deliver notification
messages thourgh the messaging infratstructure.

1.1.6 LOCAL VIEWS

WMS components are, besides logging information into L&B, interested in querying this information back
in order to avoid the need of keeping per-job state information. However, despite the required information

12/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

is present in L&B, the standard mode of L&B operation is not suitable for this purpose due to the following
reasons:

• Query interface is provided on the L&B component which gathers events belonging to the same
job but coming from different sources. Typically, this is a remote service with respect to the event
sources (WMS components). Therefore the query operation is sensitive to any network failure that
may occur, blocking the operation of the querying service for indefinite time.

• Due to the asynchronous logging semantics, there is a non-zero time window between successful
completion of the logging call and the point in time when the logged event starts affecting the query
result. This semantics may yield unexpected, seemingly inconsistent outcome.

The problem can be overcome by introducing local view on job data. Besides forwarding events to the
server where events belonging to a job are gathered from multiple sources, L&B infrastructure can store
the logged events temporarily on the event source, and perform the processing described in Sect. 1.1.3
In this setup, the logging vs. query semantics can be synchronous—it is guaranteed that a successfully
logged event is reflected in the result of an immediately following query, because no network operations
are involved. Only events coming from this particular physical node (but potentially from all services
running there) are considered, thus the locality of the view. On the other hand, certain L&B events are
designed to contain redundant information, therefore the local view on processed data (job state) becomes
virtually complete on a reasonably rich L&B data source like the Resource Broker node.

1.2 CURRENT L&B IMPLEMENTATION

The principal components of the L&B service and their interactions are shown in Figures 3 (gathering and
transferring L&B events) and 4 (L&B query and notification services).

1.2.1 L&B API AND LIBRARY

Both logging events and querying the service are implemented via calls to a public L&B API. The com-
plete API (both logging and queries) is available in ANSI C binding, most of the querying capabilities also
in C++. These APIs are provided as sets of C/C++ header files and shared libraries. The library im-
plements communication protocol with other L&B components (logger and server), including encryption,
authentication etc. Since L&B version 2.0 an experimental Java binding of the logging API is available.

We do not describe the API here in detail; it is documented in L&B Developer’s Guide[3], including com-
plete reference and both simple and complex usage examples.

Events can be also logged with a standalone program (using the C API in turn), intended for usage in
scripts.

The query interface is also available as a web-service provided by the L&B server (Sect. 1.2.3).

Finally, certain frequent queries (all user’s jobs, single job status, . . .) are available as HTML pages (by
pointing ordinary web browser to the L&B server endpoint), or as simple text queries (since L&B version
2.0) intended for scripts. See 2.5.1 for details.

1.2.2 LOGGER

The task of the logger component is taking over the events from the logging library, storing them reliably,
and forwarding to the destination server. The component should be deployed very close to each source

13/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

Figure 3: L&B components involved in gathering and transferring the events

of events—on the same machine ideally, or, in the case of computing elements with many worker nodes,
on the head node of the cluster7.

Technically the functionality is realized with two daemons:

• Local-logger accepts incoming events, appends them in a plain disk file (one file per Grid job), and
forwards to inter-logger. It is kept as simple as possible in order to achieve maximal reliability.

• Inter-logger accepts the events from the local-logger, implements the event routing (currently trivial
as the destination address is a part of the jobid), and manages delivery queues (one per destina-
tion server). It is also responsible for crash recovery—on startup, the queues are populated with
undelivered events read from the local-logger files. Finally, the inter-logger purges the files when
the events are delivered to their final destination.

1.2.3 SERVER

L&B server is the destination component where the events are delivered, stored and processed to be
made available for user queries. The server storage backend is implemented using MySQL database.

Incoming events are parsed, checked for correctness, authorized (only the job owner can store events
belonging to a particular job), and stored into the database. In addition, the current state of the job
is retrieved from the database, the event is fed into the state machine (Sect. 1.1.3), and the job state
updated accordingly.

7In this setup logger also serves as an application proxy, overcoming networking issues like private address space of the
worker nodes, blocked outbound connectivity etc.

14/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

On the other hand, the server exposes querying interface (Fig. 4, Sect. 1.1.5). The incoming user queries
are transformed into SQL queries on the underlying database engine. The query result is filtered, autho-
rization rules applied, and the result sent back to the user.

While using the SQL database, its full query power is not made available to end users. In order to avoid
either intentional or unintentional denial-of-service attacks, the queries are restricted in such a way that
the transformed SQL query must hit a highly selective index on the database. Otherwise the query is
refused, as full database scan would yield unacceptable load. The set of indices is configurable, and
it may involve both L&B system attributes (for example job owner, computing element, timestamps of
entering particular state, . . .) and user defined ones.

The server also maintains the active notification handles(Sect. 1.1.5) , providing the subscription interface
to the user. Whenever an event arrives and the updated job state is computed, it is matched against
the active handles8. Each match generates a notification message, an extended L&B event containing
the job state data, notification handle, and the current user’s listener location. The event is passed to
the notification inter-logger via persistent disk file and directly (see Fig. 4). The daemon delivers events
either in a standard way, using the specified listener as destination, or forwards them to a messaging
broker for delivery through the messaging infrastructure. When using the standard delivery mechanism,
the server generates control messages when the user re-subscribes, changing the listener location. Inter-
logger recognizes these messages, and changes the routing of all pending events belonging to this handle
accordingly.

1.2.4 PROXY

L&B proxy is the implementation of the concept of local view on job state (see Sect. 1.1.6). Since L&B
version 2.0, L&B proxy is intergrated into L&B server executable. When deployed (on the WMS node in
the current gLite middleware) it takes over the role of the local-logger daemon—it accepts the incoming
events, stores them in files, and forwards them to the inter-logger.

In addition, the proxy provides the basic principal functionality of L&B server, that is processing events
into job state and providing a query interface, with the following differences:

• only events coming from sources on this node are considered; hence the job state may be incom-
plete,

• proxy is accessed through local UNIX-domain socket instead of network interface,

• no authorization checks are performed—proxy is intended for privileged access only (enforced by
the file permissions on the socket),

• aggressive purge strategy is applied—whenever a job reaches a known terminal state (which means
that no further events are expected), it is purged from the local database immediately,

• no index checks are applied—we both trust the privileged parties and do not expect the database
to grow due to the purge strategy.

1.2.5 SEQUENCE CODES FOR EVENT ORDERING

As discussed in Sect. 1.1.4, sequence codes are used as logical timestamps to ensure proper event
ordering on the L&B server. The sequence code counter is incremented whenever an event is logged and

8The current implementation enforces specifying an actual jobid in the subscription hence the matching has minimal perfor-
mance impact.

15/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

the sequence code must be passed between individual Grid components together with the job control.
However, a single valued counter is not sufficient to support detection of branch forks within the execution
tree. When considering again the Computing Element failure scenario described in Sect. 1.1.4, there is
no way to know that the counter value of the last event logged by the failed CE A is 5 (see Table 1 on
page 11).

Therefore we define a hierarchical sequence code—an array of counters, each corresponding to a single
Grid component class handling the job9. Table 2 below shows the same scenario with a simplified two-
counter sequence code. The counters correspond to the WM and CE component classes and they are
incremented when each of the components logs an event. When WM receives the job back for resub-
mission, the CE counter becomes irrelevant (as the job control is on WM now), and the WM counter is
incremented again.

1:x WM: Accept 4:x WM: Accept
2:x WM: Match A 5:x WM: Match B
3:x WM: Transfer to A 6:x WM: Transfer to B
3:1 CE A: Accept 6:1 CE B: Accept
3:2 CE A: Run 6:2 CE B: Run
. . . A dies

Table 2: The same CE failure scenario: hierarchical sequence codes. “x” denotes an undefined and
unused value.

The state machine keeps the current (highest seen) code for the job, being able to detect a delayed event
by simple lexicographic comparison of the sequence codes. Delayed events are not used for major state
computation, then. Using another two assumptions (that are true for the current implementation):

• events coming from a single component arrive in order,

• the only branching point is WM,

it is safe to qualify events with lower WM counter (than the already received one) to belong to inactive
branches, hence ignore them even for update of job state attributes.

1.2.6 L&B DATA PROTECTION

Events passed between the L&B components as well as the results of their processing provide detailed
information about the corresponding job and its life and users obviously expect the job data provided by
the L&B server to be credible, reflecting the real jobs’ operation on the Grid. Therefore, the data must
be based solely on authentic information generated by legitimate grid components. The job data also
provides information about user’s activities, which many users want to keep private. In order to provide
a sufficient level of security, the L&B infrastructure implements a security mechanism that provides data
protection and access control to the data.

All the L&B components communicate solely over secure channels whenever they send data over a net-
work. The TLS protocol [6] is used for both mutual authentication of the client and server and also encryp-
tion of the communication. All the L&B components as well as the clients must possess a digital certificate

9Currently the following gLite components: Network Server, Workload Manager, Job Controller, Log Monitor, Job Wrapper,
and the application itself.

16/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

that they use to prove their identity. The L&B infrastructure supports both standard X.509 certificates or
proxy certificates [7] that are standard authentication mechanism in the gLite environment. Depending on
the server configuration and action requested, the users may be required to present VOMS attributes in
their proxy certificates.

By default, access to information about a job is only allowed to the user who submitted the job (that is
the job owner). The job owner can also assign an access control list to his or job in the L&B specifying
other users who are allowed to read the data from L&B. The ACLs are represented in the GridSite GACL
format [8] and are stored in the L&B database along with the job information. The stored ACL are checked
on each query requesting the data. The ACLs are under control of the job owner, who can add and remove
entries in the ACL arbitrarily using the L&B API or command-line tools (see 2.3.2). Each entry of an ACL
can specify either a user subject name, a name of a VOMS group, or an attribute specified in the Full
qualified attribute name format (the FQAN support is available since L&B version 2.0). An ACL assigned
to a job is returned as part of job status information.

Besides of using the ACLs, the L&B administrator can also specify a set of privileged users with access to
all job records on a particular L&B server (super-users). These privileged users can for example collect
information on usage and produce monitoring data based on the L&B information.

1.3 USER INTERACTION

Figure 4: L&B queries and notifications

So far we focused on the L&B internals and the interaction between its components. In this section we
describe the interaction of users with the service.

1.3.1 EVENT SUBMISSION

The event submission is mostly implicit, that is it is done transparently by the Grid middleware components
on behalf of the user. Typically, whenever an important point in the job life is reached, the involved
middleware component logs an appropriate L&B event. This process is not directly visible to the user.

A specific case is the initial registration of the job. This must be done synchronously, as otherwise sub-
sequent events logged for the same job may be refused with a “no such job” error report. Therefore
submission of a job to the WMS is the only synchronous event logging that does not return until the job
is successfully registered with the L&B server. Moreover, the initial registration is sent by the L&B client
library in parallel to L&B proxy (Sect. 1.2.4) and L&B server.

17/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

On the other hand, even the registration event may carry large data (e.g. JDL of huge job collection).
Therefore also an additional asychronous variant is used, causing two job registration events appear
typically.

However, the user may also store information into the L&B explicitly by logging user events—tags (or
annotations) of the form “name = value”. Authorization information is also manipulated in this way.

Description of tools for event submission and ACL manipulation can be found in Section 2

1.3.2 QUERYING INFORMATION

From the user point of view, the information retrieval (query) is the most important interaction with the
L&B service.

The typical L&B usage are queries on the high-level job state information. L&B supports not only single job
queries, it is also possible to retrieve information about jobs matching a specific condition. The conditions
may refer to both the L&B system attributes and the user annotations. Rather complex query semantics
can be supported, for example Which of my jobs annotated as “apple” or “pear” are already scheduled for
execution and are heading to the “garden” computing element? The L&B Developer’s Guide[3] provides
a series of similar examples of complex queries.

As another option, the user may retrieve raw L&B events. Such queries are mostly used for debug-
ging, identification of repeating problems, and similar purposes. The query construction refers to event
attributes rather than job state.

The query language supports common comparison operators, and it allows two-level nesting of condi-
tions (logically and-ed and or -ed). Our experience shows that it is sufficiently strong to cover most user
requirements while being simple enough to keep the query cost reasonable. Complete reference of the
query language can be found in L&B Developer’s Guide [3].

As of L&B version 3.3 a subset of the querying interface, allowing to query for jobs trhough query at-
tributes, is also accessible over L&B’s HTML interface (Section 2.5.3, page 33).

1.3.3 NOTIFICATIONS

L&B notifications are the other mode of user interaction.

The L&B infrastructure can notify its users when something interesting happens on an L&B server (typ-
ically a job status change). This allows users to wait comfortably until they are informed by the server,
rather than having to poll the L&B server periodically to detect changes.

Users register for notifications via the notification client glite-lb-notify, described in Section 2.4 Con-
ditions under which the notifications are sent can be specified. For example – job XY reaches state DONE.
In L&B version 1.x, one or more JOBID’s are required in the condition and only a single occurence of a
specific attribute is allowed among ANDed conditions. More complex conditions are allowed since L&B
version 2.0, including specification of job owner, or requesting to receive notifications only on actual job
state change. L&B version 3.0 introduces an option to deliver notification messages over OpenWire or
STOMP-based messaging infrastructure.10

Each registration is delivered to the L&B server where it is stored. At the same time, the server generates
a unique notification ID for the registration and returns it to the user.

10Such as Apache’s ActiveMQ.

18/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

The registration exists only for a limited amount of time. Validity information is returned by L&B server
together with the notification ID when registering. During this period the user can attach to the server
and receive notification messages, change conditions which triger the notification, prolong validity of the
registration, or remove the registration from the L&B server.

While the registration is valid, the user is able to repeatably connect to the L&B server from different places
in the network and continue receiving notifications associated with the given notification ID.11 Notifications
generated while the user was not connected are stored and waiting until the user reconnects.

Since L&B version 3.2, notification messages may also contain a history of all events received for a given
job so far.

1.3.4 CAVEATS

L&B is designed to perform well in the unreliable distributed Grid environment. An unwelcome but in-
evitable consequence of this design are certain contra-intuitive features in the system behavior, namely:

• Asynchronous, possibly delayed event delivery may yield seemingly inconsistent view on the job
state with respect to information that is available to the user via different channels. For example the
user may know that her job terminated because of monitoring the application progress directly, but
the L&B Done events indicating job termination are delayed so that L&B reports the job to be still in
the Running state.

• Due to the reasons described in Sect. 1.1.4 L&B is rather sensitive to event ordering based on
sequence codes. The situation becomes particularly complicated when there are multiple branches
of job execution. Consequently the user may see an L&B event that is easily interpreted that it
should switch the job state, however, it has no effect in fact because of being (correctly) sorted to
an already inactive branch.

• L&B is not a permanent job data storage. The data get purged from the server on timeout, unrelated
to any user’s action. Therefore, the L&B query may return “Identifier removed” error message (or not
include the job in a list of retrieved jobs) even if the same previous L&B query behaved differently.

1.4 ADVANCED USE

The usability of the L&B service is not limited to the simple tasks described earlier. It can be easily
extended to support real-time job monitoring (not only the notifications) and the aggregate information
collected in the L&B servers is a valuable source of data used for post-mortem statistical analysis of
jobs and also the Grid infrastructure behavior. Moreover, L&B data can be used to improve scheduling
decisions.

1.4.1 L&B AND REAL TIME MONITORING

The L&B server is extended to provide quickly and without any substantial load on the database engine
the following data:

11Should the user have opted to receive notification messages over the messaging infrastructure, then—obviously—they need
to connect to the correct topic on a messaging broker, rather than contacting the L&B sever. If unsure what messaging brokers
are available in your grid environment, read that information from BDII or use the L&B Server’s configuration page (Section
2.5.5).

19/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

1. number of jobs in the system grouped by internal status (Submitted, Running, Done, . . .),

2. number of jobs that reached final state in the last hour,

3. associated statistics like average, maximum, and minimum time spent by jobs in the system,

4. number of jobs that entered the WMS system in the last hour.

L&B server can be regularly queried to provide this data to give an overview about both jobs running on
the Grid and also the behavior of the Grid infrastructure as seen from the job (or end user) perspective.
Thus L&B becomes a data source for various real-tim Grid monitoring tools.

1.4.2 R-GMA FEED

Note: This feature is now obsolete and only available in L&B version 1.x.

The L&B server also supports streaming the most important data—the job state changes—to another
monitoring system. It works as the notification service, sending information about job state changes to
a specific listener that is the interface to a monitoring interface. As a particular example of such a generic
service, the R-GMA feed component has been developed. It supports sending job state changes to the
R-GMA infrastructure that is part of the Grid monitoring infrastructure used in the EGEE Grid.

Only basic information about job state changes is provided this way, taking into account the security
limitation of the R-GMA.

1.4.3 L&B JOB STATISTICS

Data collected within the L&B servers are regularly purged, complicating thus any long term post-mortem
statistical analysis. Without a Job Provenance, the data from the L&B must be copied in a controlled way
and made available in an environment where even non-indexed queries can be asked.

Using the L&B Job Statistics tools, one dump file per job is created when the job reaches a terminal
state. These dump files can be further processed to provide and XML encoded Job History Record12 that
contains all the relevant information from the job life. The Job History Records are fed into a statistical
tools to reveal interesting information about the job behavior within the Grid.

This functionality is being replaced by the direct download of all the relevant data from the Job Provenance.

1.4.4 COMPUTING ELEMENT REPUTABILITY RANK

Production operation of the EGEE middleware showed that misbehaving computing elements may have
significant impact on the overall Grid performance. The most serious problem is the “black hole” effect—
a CE that accepts jobs at a high rate but they all fail there. Such CE usually appears to be free in Grid
information services so the resource brokers keep to assign further jobs to it.

L&B data contain sufficient information to identify similar problems. By processing the incoming data
the information was made available as on-line auxiliary statistics like rate of incoming jobs per CE, rate
of job failure, average duration of job etc. The implementation is lightweight, allowing very high query
rate. On the RB the statistics are available as ClassAd functions, allowing the user to specify that similarly
misbehaving CE’s should be penalized or completely avoided when RB decides where jobs get submitted.

12http://egee.cesnet.cz/en/Schema/LB/JobRecord

20/48

http://egee.cesnet.cz/en/Schema/LB/JobRecord

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

1.4.5 CREAM JOBS

L&B version 3.2 implements support for CREAM jobs.13 L&B gathers events from CREAM, performing
both the mapping of CREAM attributes to WMS attributes (if possible) and storing CREAM-specific at-
tributes. Thus, jobs submitted directly to computing elements can be tracked by L&B. Moreover, jobs
submitted to WMS and from there to CREAM log WMS- and CREAM-specific data, which are integrated
by L&B to provide more detailed and up-to-date job status information. CREAM job states are mapped to
L&B’s state diagram according to Appendix B.1.

CREAM events are generated by the CREAM executor and LRMS; the generic CREAMStatus event is
generated when CREAM notifies that the job status has been changed.

1.4.6 SANDBOX TRANSFERS

A sandbox transfer is special entity in L&B, which tracks the transfer of input or output sandboxes of the
(compute) job. Thus, it allows to check state of sandboxes giving more detailed overview of the status of
compute job.

The sandbox transfer has its unique JobID and is cross-linked with the related compute job. There are
two types of sandboxes – the input sandbox and the output sandbox. Each job has at most one input and
one output sandbox associated, however, the sandbox can be created as a collection of sandboxes. The
sandbox collection includes the owner, the overall status and the list of children sandboxes, whereas the
regular sandbox tracks particular sandbox including data such as status, owner, source, destination.

Having its unique JobID, sandbox transfers are tracked by standard tools (API, command line utilities,
HTTPs, notifications) in the same manner as traditional compute jobs.

1.4.7 NON-GLITE EVENT SOURCES

L&B has been enhanced to support also non-gLite events, namely events from PBS or Condor batch
systems [9]. These events are handeled differently from gLite events, for a complete list of the PBS and
Condor events see Appendix A. Since job states in the batch system slightly differ from the states of a job
defined in L&B (see also Appendix B), events are processed separately from gLite events. Both PBS and
Condor events has its own state machine that processes the events and determines the now state of the
job.

Recently, there were also attempts to use L&B system to transport different types of events: Certificate
Revocation Lists or syslog messages. For a detailed description see [10].

1.4.8 CONTROLLING ACCESS TO JOB INFORMATION

Access to information about a job subjects to strong access control mechanism. By default, only the job
owner is allowed to access the information about their jobs. There are, however, means how additional
rights can be granted to other persons. The L&B server administrator can specify a server-level policy,
which grants specific rights to all jobs stored in the server, please refer to the L&B Administrators’ guide
for more information.

Besides the server-wide configuration, a job owner can also grant access to their jobs to other users.
Each job can be assigned an Access control list (ACL), which specifyies which users are allowed to work

13Essential support was already available in L&B version 2.1.

21/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

with the job information. If a job owner wants other users to be allowed to obtain information about their
job, they provide an ACL rule granting READ access for the users. The users can be identified either by
their X.509 subject name or their VOMS attributes. As of L&B version 3.0, it is also possible to grant a TAG
right, which allows multiple users to add user tags to the same job. The current ACL of a job is returned
as a part of the job status. Management of the ACL entries is done using logging a special L&B event in
a standard way (see 2.3.2 for particular examples).

Starting from L&B version 3.0, it is also possible to specify the owner of the actual payload of a job.
The feature has been introduced for better support of multi-user pilot jobs, where the pilot submitter
differs from the owner of actual payload. In order to set the payload owner, the job owner has to
log a GrantPayloadOwnership event which specifies the subject owner of the payload owner. This
event is supposed to come from a pilot job factory which monitors the pilot jobs and keeps an overview
about when a particular payload is started. The new payload owner has to confirm the transition with a
TakePayloadOwnership logged to the job using his or her credentials. The payload and job owners have
the same rights to the jobs, they both can query the job, etc. The identity of the current payload owner is
returned as part of the job status information.

22/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

2 USER TOOLS

In this section we give a description of the CLI tools that a regular grid user might want to use. If not stated
otherwise, the tools are distributed in the glite-lb-client package.

2.1 ENVIRONMENT VARIABLES

Behaviour of the commands can be changed by setting enviroment variables, specifing mostly location of
servers or setting timeouts for various operations. For a complete list of environment variables, their form
and default value description, see Appendix C. Setting the environment variable is for some commands
mandatory, so reading the documentaion below and appropriate manpages is highly recommended.

2.2 GLITE-WMS-JOB-STATUS AND GLITE-WMS-JOB-LOGGING-INFO

We start with tools that are distributed in glite-wms-ui-cli-python package and that can be found
probably on all UI machines. Description of all user commands that are used during the job submission
process (generating proxy, creating a JDL describing the job, submitting a job, retrieving output, cancelling
a job, etc.) is beoynd this document and it can be found for example in [11]. We mention here only the
commands that are related to job monitoring.

Once job has been submitted to WMS (by glite-wms-job-submit), a user can retrieve the job status
by

glite-wms-job-status <jobId>

or if job ID is saved in the file

glite-wms-job-status -i <job_id_file>

or if user wants to see status of all his/her jobs

glite-wms-job-status --all

List of all possible job states is summarised in Appendix B.

Logging details on submitted job can be accessed via

glite-wms-job-logging-info -v <verbosity_level> <job_ID>

or if job ID is saved in the file

glite-wms-job-logging-info -v <verbosity_level> -i <job_id_file>

where verbosity level can be from 0 to 3.

23/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

2.3 GLITE-LB-LOGEVENT

Besides the API’s L&B offers its users a simple command-line interface for logging events. The command
glite-lb-logevent is used for this purpose. However, it is intended for internal WMS debugging tests
in the first place and should not be used for common event logging because of possibility of confusing
L&B server job state automaton.

The command glite-lb-logevent is a complex logging tool and the complete list of parameters can be
obtained using the -h option. However, the only legal user usage is for logging UserTag and ChangeACL
events. The following description is therefore concentrating only on options dealing with these two events.

Command usage is:

glite-lb-logevent [-h] [-p] [-c seq_code]
-j <dg_jobid> -s Application -e <event_name> [key=value ...]

where
-p --priority send a priority event
-c --sequence event sequence code
-j --jobid JobId
-e --event select event type (see -e help)

Each event specified after -e option has different sub-options enabling to set event specific values.

Address of local-logger, daemon responsible for further message delivery, must be specified by environ-
ment variable GLITE_WMS_LOG_DESTINATION in a form address:port.

Because user is allowed to change ACL or add user tags only for her jobs, paths to valid X509 user
credentials has to be set to authorise her. This is done using standard X509 environment variables
X509_USER_KEY and X509_USER_CERT.

For additional information see also manual page glite-lb-logevent(1).

2.3.1 EXAMPLE: LOGGING A USERTAG EVENT

User tag is an arbitrary “name=value” pair with which the user can assign additional information to a job.
Further on, LB can be queried based also on values of user tags. L&B treats all values as strings only,
semantic meaning is left to user application. For internal reasons, all tag names are stored in lower-case
format. Support for case-sensitivenes is planned in future versions of L&B.

In order to add user tag for a job a special event UserTag is used. This event can be logged by the
job owner using the glite-lb-logevent command (see also sec.2.3). Here we suppose the command is
used from user’s running application because a correct setting of environment variables needed by the
command is assured.

General template for adding user tag is as follows:

glite-lb-logevent -s Application -e UserTag
-j <job_id>
-c <seq_code>
--name <tag_name>
--value <tag_value>

24/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

where
<tag_name> specifies the name of user tag
<tag_value> specifies the value of user tag

The user application is always executed from within a JobWrapper script (part of Workload Management
System [5]). The wrapper sets the appropriate JobId in the environment variable GLITE_WMS_JOBID.
The user should pass this value to the -j option of glite-lb-logevent. Similarly, the wrapper sets an
initial value of the event sequence code in the environment variable GLITE_WMS_SEQUENCE_CODE.

If the user application calls glite-lb-logevent just once, it is sufficient to pass this value to the -c
option. However, if there are more subsequent calls, the user is responsible for capturing an updated
sequence code from the stdout of glite-lb-logevent and using it in subsequent calls. The L&B design
requires the sequence codes in order to be able to sort events correctly while not relying on strictly
synchronized clocks.

The example bellow is a job consisting of 100 phases. A user tag phase is used to log the phase currently
being executed. Subsequently, the user may monitor execution of the job phases as a part of the job
status returned by L&B.

#!/bin/sh

for p in ‘seq 1 100‘; do

log the UserTag event
GLITE_WMS_SEQUENCE_CODE=‘glite-lb-logevent -s Application

-e UserTag
-j $GLITE_WMS_JOBID -c $GLITE_WMS_SEQUENCE_CODE
--name=phase --value=$p‘

do the actual computation here
done

2.3.2 EXAMPLE: CHANGING JOB ACCESS CONTROL LIST

In order to change the Access Control List (ACL) for a job (see also 1.4.8), a special event ChangeACL
is used. This event can be logged by the job owner using the glite-lb-logevent command (see also
Sect. 2.3). The general template for changing the ACL is as follows:

glite-lb-logevent -e ChangeACL -s UserInterface -p -j <job_id>
--user_id <user_id>
--user_id_type <user_id_type>
--permission READ
--permission_type <permission_type> --operation <operation>

where

25/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

<job_id> specifies the job to change access to
<user_id> specifies the user to grant or revoke permission. The parameter can be either

an X.500 name (subject name), a VOMS group (of the form VO:Group), or a
Full qualified attribute name (FQAN).

<user_id_type> indicates the type of the user_id given above. DN, GROUP, and FQAN can be
given to specify X.500 name, VOMS group, or FQAN, respectively

<permission> ACL permission to change, currently only READ is supported. Starting from
L&B version 3.0, the permission TAG can also be used.

<permission_type> Type of permission requested. ALLOW or DENY can be specified.
<operation> Operation requested to be performed with ACL. ADD or REMOVE can be speci-

fied.

Adding a user specified by his or her subject name to the ACL (that is granting access rights to another
user):

glite-lb-logevent -e ChangeACL -s UserInterface -p -j <job_id> \
--user_id ’/O=CESNET/O=Masaryk University/CN=Daniel Kouril’ \
--user_id_type DN --permission READ --permission_type ALLOW \
--operation ADD

Removing a user specified by his or her subject name from the ACL (that is revoking access right to
another user):

glite-lb-logevent -e ChangeACL -s UserInterface -p -j <job_id> \
--user_id ’/O=CESNET/O=Masaryk University/CN=Daniel Kouril’ \
--user_id_type DN --permission READ --permission_type ALLOW \
--operation REMOVE

Adding a VOMS attribute to the ACL:

glite-lb-logevent -e ChangeACL -s UserInterface -p -j <job_id> \
--user_id ’/VOCE/Role=Administrator’ --user_id_type FQAN \
--permission TAG --permission_type ALLOW \
--operation ADD

Note that L&B version 1.x supported only using VOMS group names, not full FQANs, whose support has
been introduced in L&B version 2.0. L&B version 1.x also did not allow the users to use symbolic names
for the values specifying ACL setting and integers must be used instead. For example, to grant access
right on a L&B version 1.x server one has to use following syntax:

glite-lb-logevent -e ChangeACL -s UserInterface -p -j <job_id> \
--user_id ’/O=CESNET/O=Masaryk University/CN=Daniel Kouril’ \
--user_id_type 0 --permission 1 --permission_type 0 --operation 0

2.3.3 EXAMPLE: SETTING PAYLOAD OWNER

In order to change the owner of the payload (see also 1.4.8), a pair of L&B events is used. In order
for a job owner to specify a new owner of the payload, the GrantPayloadOwnership event is used, for
example:

26/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

glite-lb-logevent -e GrantPayloadOwnership -s UserInterface -j <job_id> \
--payload_owner <subject_name>

where
<job_id> specifies the job to change access to
<subject_name_id> specifies the X.509 subject name of the new payload user.

The new payload owner confirm they accept the ownership using the TakePayloadOwnership event.
Note that this event event must be logged using the credentials of the new user:

glite-lb-logevent -e TakePayloadOwnership -s UserInterface -j <job_id>

2.4 GLITE-LB-NOTIFY

glite-lb-notify is a fairly simple wrapper on the L&B notification API (see also [3]). It allows to create
a notification (with a restricted richness of specifying conditions), bind to it for receiving notifications, and
drop it finally.

L&B notification is a user-initiated trigger at the server. Whenever a job enters a state matching conditions
specified with the notification, the current state of the job is sent to the notification client. On the other
hand, the notification client is a network listener which receives server-initiated connections to get the
notifications. Unless -s is specified, the notification library creates the listener socket.

Within the notification validity, clients can disappear and even migrate. However, only a single active client
for a notification is allowed.

L&B server and port to contact must be specified with GLITE_WMS_NOTIF_SERVER environment vari-
able.

glite-lb-notify is supported by L&B version 2.x and newer. In L&B version 1.x, glite-lb-notify
with very limited functionality can be found in examples directory.

glite-lb-notify support these actions:

new Create new notification registration.
bind Binds an notification registration to a client.
refresh Enlarge notification registration validity.
receive Binds to an existing notification registration and listen to server.
drop Drop the notification registration.

For action new, command usage is:

glite-lb-notify new [{ -s socket_fd | -a fake_addr } -t requested_validity
-j jobid { -o owner | -O } -n network_server
-v virtual_organization --state state1,state2,... -c -J -B -T -H -f flags]

For action bind, command usage is:

glite-lb-notify bind [{ -s socket_fd | -a fake_addr } -t requested_validity]
notifid

For action refresh, command usage is:

glite-lb-notify refresh [-t requested_validity] notifid

27/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

For action receive, command usage is:

glite-lb-notify receive [{ -s socket_fd | -a fake_addr }] [-t requested_validity] [-i timeout] [-r] [-f field1,field2,...] [notifid]

For action drop, command usage is:

glite-lb-notify drop notifid

where
notifid Notification ID
-s socket_fd allows to pass a opened listening socket
-a fake_addr fake the client address
-t requested_validity requested validity of the notification (in seconds)
-j jobid job ID to connect notification registration with
-o owner match this owner DN
-O match owner on current user’s DN
-n network_server match only this network server (WMS entry point)
-v virtual_organization match only jobs of this Virtual Organization
-i timeout timeout to receive operation in seconds
-f field1,field2,... list of status fields to print (only owner by default)
-c notify only on job state change
-S, --state state1,state2,... match on events resulting in listed states
-r refresh automatically the notification registration while receiv-

ing data
-J, --jdl Attach JDL to job status being returned
-B, --bootstrap Also send past events matching conditions
-T, --terminal Notify only when a job reaches terminal state
-H, --history Same as -T plus attach a history of all job’s events
-N, --aNonymize Anonymize all owner data in all messages under this regis-

tration

For additional information see also manual page glite-lb-notify(1).

2.4.1 EXAMPLE: REGISTRATION AND WAITING FOR SIMPLE NOTIFICATION

Following steps describe basic testing procedure of the notification system by registering a notification on
any state change of this job and waiting for notification.

Register notification for a given jobid with validity 2 hours (7200 seconds):

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify new \
-j https://skurut68-2.cesnet.cz:9100/D1qbFGwvXLnd927JOcja1Q -t 7200

returns:

notification ID: https://skurut68-2.cesnet.cz:9100/NOTIF:tOsgB19Wz-M884anZufyUw

Wait for notification (with timeout 120 seconds):

28/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify receive \
-i 120 https://skurut68-2.cesnet.cz:9100/NOTIF:tOsgB19Wz-M884anZufyUw

returns:

notification is valid until: ’2008-07-29 15:04:41’ (1217343881)
https://skurut68-2.cesnet.cz:9100/D1qbFGwvXLnd927JOcja1Q Waiting

/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda
https://skurut68-2.cesnet.cz:9100/D1qbFGwvXLnd927JOcja1Q Ready

/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda
https://skurut68-2.cesnet.cz:9100/D1qbFGwvXLnd927JOcja1Q Scheduled

/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda
https://skurut68-2.cesnet.cz:9100/D1qbFGwvXLnd927JOcja1Q Running

/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

Destroy notification:

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify drop \
https://skurut68-2.cesnet.cz:9100/NOTIF:tOsgB19Wz-M884anZufyUw

2.4.2 EXAMPLE: WAITING FOR NOTIFICATIONS ON ALL USER’S JOBS

Instead of waiting for one job, user may want to accept notification about state changes of all his jobs.

Register notification for actual user:

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify new -O

returns:

notification ID: https://skurut68-2.cesnet.cz:9100/NOTIF:tOsgB19Wz-M884anZufyUw

And continue with glite-lb-notify receive similarly to previous example. But in this case, we want
to display also other information about job – not job owner, but destination (where job is running) and
location (which component is serving job):

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify receive \
-i 240 -f destination,location \
https://skurut68-2.cesnet.cz:9100/NOTIF:tOsgB19Wz-M884anZufyUw

returns:

notification is valid until: ’2008-07-29 15:43:41’ (1217346221)

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Waiting
(null) NetworkServer/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Waiting
(null) destination queue/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Waiting

29/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

(null) WorkloadManager/erebor.ics.muni.cz/
https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Waiting
(null) name of the called component/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Waiting
destination CE/queue WorkloadManager/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Waiting
destination CE/queue WorkloadManager/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Ready
destination CE/queue destination queue/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Ready
destination CE/queue JobController/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Ready
destination CE/queue LRMS/destination hostname/destination instance

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Ready
destination CE/queue LogMonitor/erebor.ics.muni.cz/

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Scheduled
destination CE/queue LRMS/destination hostname/destination instance

https://skurut68-2.cesnet.cz:9100/qbRFxDFCg2qO4-9WYBiiig Running
destination CE/queue LRMS/worknode/worker node

2.4.3 EXAMPLE: REGISTERING FOR NOTIFICATIONS TO BE DELIVERED OVER ACTIVEMQ

Delivering notification messages over the messaging infrastructure provided by ActiveMQ is a feature
introduced in L&B version 3.0. It uses the fake address capability (-a option) to specify messaging topic
to use when generating messages.

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify new \
-O -a x-msg://grid.emi.lbexample

Rather than using the L&B notification API to receive messages, access the messaging infrastructure and
tap into the given messaging topic (grid.emi.lbexample in our case).

Note that production environments can impose restrictions on topic names. In the context of EGI, for
instance, prefix “grid.emi.” is mandatory. A full list of permissible topic may be obtained from the L&B
Server’s configuration page (Section 2.5.5).

Also note that in case you are unsure what messaging brokers are available in your grid environment, you
can read that information in the L&B Server’s configuration page (Section 2.5.5).

2.4.4 EXAMPLE: WAITING FOR MORE NOTIFICATIONS ON ONE SOCKET

The foloving example demonstrates possibility to reuse existing socket for receiving multiple notifica-
tions. Perl script notify.pl (available in examples directory) creates socket, which is then reused for all
glite-lb-notify commands.

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 NOTIFY_CMD=glite-lb-notify \
./notify.pl -O

30/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

returns:

notification ID: https://skurut68-2.cesnet.cz:9100/NOTIF:EO73rjsmexEZJXuSoSZVDg
valid: ’2008-07-29 15:14:06’ (1217344446)
got connection
https://skurut68-2.cesnet.cz:9100/ANceuj5fXdtaCCkfnhBIXQ Submitted
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda
glite-lb-notify: Connection timed out (read message)
got connection
https://skurut68-2.cesnet.cz:9100/p2jBsy5WkFItY284lW2o8A Submitted
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda
glite-lb-notify: Connection timed out (read message)
got connection
https://skurut68-2.cesnet.cz:9100/p2jBsy5WkFItY284lW2o8A Waiting
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

2.4.5 EXAMPLE: WAITING FOR NOTIFICATIONS ON JOBS REACHING SELECTED STATES

This example shows how to set up notifications for jobs reaching state done or aborted. Since we prefer
to receive just one notification per job, we will also use the -c option, which makes sure that notifications
will be generated only on actual job state change.

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify new \
--state done,aborted -c

returns:

notification ID: https://skurut68-2.cesnet.cz:9100/NOTIF:6krjMRshTouH2n7D9t-xdg
valid: ’2009-04-30 06:59:18 UTC’ (1241074758)

Wait for notification (with timeout 120 seconds):

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify receive \
-i 120 https://skurut68-2.cesnet.cz:9100/NOTIF:6krjMRshTouH2n7D9t-xdg

returns:

https://skurut68-2.cesnet.cz:9100/eIbQNz3oHpv-OkYVu-cXNg Done
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

https://skurut68-2.cesnet.cz:9100/GpBy2gfIZOAXR2hKOAYGgg Aborted
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

https://skurut68-2.cesnet.cz:9100/KWXmsqvsTQKizQ4OMiXItA Done
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

https://skurut68-2.cesnet.cz:9100/O1zs50Nm1r03vx2GLyaxQw Done
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

31/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

2.4.6 EXAMPLE: NOTIFY ON JOB REACHING TERMINAL STATE

This example shows how to register for notifications on finished jobs, i.e. jobs reaching one of the possible
terminal states. The user does not need to specify a list of states – terminal states are recognized on
server side.14 This use case applies to users who wish to be notified only when their jobs finish, and
possibly also pack a history of events with the notification (using argument -H).

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify new -T

returns:

notification ID: https://skurut68-2.cesnet.cz:9100/NOTIF:NLGsqGqvFpzFirHW4UCA6Q
valid: ’2012-01-11 13:06:22 UTC’ (1326287182)

Wait for notification (with timeout 120 seconds):

GLITE_WMS_NOTIF_SERVER=skurut68-2.cesnet.cz:9100 glite-lb-notify receive \
-i 120 https://skurut68-2.cesnet.cz:9100/NOTIF:NLGsqGqvFpzFirHW4UCA6Q

returns:

https://skurut68-2.cesnet.cz:9100/2NziNtvLRcuh88FXLs96GA Cleared
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

https://skurut68-2.cesnet.cz:9100/ERkZaVtRX1E3y6UaNVtAmg Aborted
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

https://skurut68-2.cesnet.cz:9100/N_Bb0kztImcLnGWc5keDug Cleared
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

https://skurut68-2.cesnet.cz:9100/Z88Q_i4cI26bSAZqbfdRVg Cleared
/DC=cz/DC=cesnet-ca/O=Masaryk University/CN=Miroslav Ruda

2.5 HTML AND PLAIN TEXT INTERFACE

It is possible to use a standard Web browser or a command-line tool such as wget or curl to extract
information from the L&B server. Although the querying power is higly limited, the HTTP or Plain Text
interface can still serve as a simple tool to access information.

2.5.1 JOB ID OR NOTIFICATION ID AS URL

Since the gLite jobId has the form of a unique URL, it is possible to cut and paste it directly to the web
browser to view the information about the job (esp. its status), e.g.

firefox https://pelargir.ics.muni.cz:9000/1234567890

To list all user’s jobs, it is possible to query only the L&B server address, e.g.

firefox https://pelargir.ics.muni.cz:9000

14Since L&B version 3.2, where this feature was released, terminal states are: cleared, aborted, cancelled, and purged

32/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

To list all user’s notification registrations curently valid on a given L&B server, use an URL constructed as
in folowing example:

firefox https://pelargir.ics.muni.cz:9000/NOTIF

On top of that, L&B super users may use query strings ?all or ?foreign to display registrations belong-
ing to anyone or anyone but themselves, respectively.

A notification ID also takes the form of an URL. If you direct your browser to a particular notification ID,
the L&B server will provide related registration details.

firefox https://pelargir.ics.muni.cz:9000/NOTIF:1234567890

In all cases it is necessary to have the user certificate installed in the browser.

2.5.2 PLAIN TEXT MODIFIER

Since L&B version 2.0, it is also possible to obtain the above results in a machine readable key=value
form by adding a suffix text to the above URLs. For example

curl -3 --key $X509_USER_KEY --cert $X509_USER_CERT \
--capath /etc/grid-security/certificates \
https://pelargir.ics.muni.cz:9000?text

or

curl -3 --key $X509_USER_KEY --cert $X509_USER_CERT \
--capath /etc/grid-security/certificates \
https://pelargir.ics.muni.cz:9000/1234567890?text

2.5.3 QUERYING FOR JOBS BY ATTRIBUTE

A subset of the L&B querying API—specifically job queries—has been made available over the HTML
interface as of L&B version 3.3. It supports the full range15 of job queries as discussed in [3] and is
also subject to the same limitations, i. e., that multiple conditions may only be combined in the following
structure:

(attr1cond1∨ . . .∨attr1condn)∧ . . .∧ (attrncond1∨ . . .∨attrncondn)

In other words, different attributes given in the query are always ANDed, meaning that they must all be
satisfied at once, but different OR conditions can be given for the same attribute within the same query.

Conditions are conveyed to the L&B server through a query string starting with ?query, which becomes
a part of the URL, allowing frequently used queries to be stored as bookmarks in any Web browser. For
instance, to check for all your currenlty running jobs, an URL constructed along the following pattern could
be used:

https://pelargir.ics.muni.cz:9000/?query=status=running

15There a single exception: it does not implement any syntax for using the within operator, which must therefore be expressed
as a combination of greater than AND lower than conditions

33/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

It is important to note that in its default configuration, L&B server requires at least one indexed attribute
to be included in the query.16 In most installations, attributes such as owner or last update time will be
indexed. To query for all running jobs in such conditions, add an indexed attribute to your query. For
instance:

https://pelargir.ics.muni.cz:9000/?query=status=running&lastupdatetime>1577836800

Note that temporal attributes such as last update time or state enter time accept UNIX time values.

For more convenience, temporal attributes can also be specified relative to “now”, i. e., the value will be
subtracted from the current timestamp. This is achieved by prefixing the timestamp value with a last or
past literal.17 For instance, the following query will return all jobs active witin past 30 days (= 2592000 s):

https://pelargir.ics.muni.cz:9000/?query=lastupdatetime>past2592000

Since ORed conditions may only apply to a single attribute, the name of the attribute is given only once in
the condition. For instance, to query for jobs in state running or scheduled :

https://pelargir.ics.muni.cz:9000/?query=status=scheduled|=running

Currently the query attributes supported are: jobid, owner, status, location, destination, donecode,
usertag, time, level, host, source, instance, type, chkpt_tag, resubmitted, parent_job, exitcode,
jdl, stateentertime, lastupdatetime, networkserver and jobtype.

Supported operators are: =, <>, > or <.

Supported job state values (attribute status) are listed in Appendix B.

Supported job type values are: simple, dag, collection, pbs, condor, cream, file_transfer_collection,
file_transfer, virtual_machine.

All queries result in a list of JobIDs of jobs that match the specified criteria.

This feature is supported since L&B version 3.3

2.5.4 APPLYING FLAGS

Query conditions explained in Section 2.5.3 but also simple requests may be combined with flags supplied
through the ?flags query string. For instance, when querying for a colection status, the following use
of flags will initiate thorough recalculation of child job state histogram and make sure that classad data
(namely JDL) are retrieved.

https://skurut68-2.cesnet.cz:9100/D1qbFGwvXLnd927JOcja1Q?flags=classadd+childhist_thorough

The following flags are supported in job and job status queries: classadd, children, childstat,
no_jobs, no_states, childhist_fast, childhist_thorough, anonymized, and history.

This feature is supported since L&B version 3.3

16The list of indexed attributes can be received from the given L&B server’s configuration page (see Section 2.5.5).
17The literals are recognized by L&B version newer than 4.0.10. Both have the same effect. Two distinguished literals are

introduced simply because if only one was recognized, it could be difficult for users to remember which one.

34/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

2.5.5 READING L&B SERVER CONFIGURATION OVER HTTPS

As of L&B version 3.0, it is also possible to use the HTTPs interface to retrieve essential information on
L&B Server configuration. For example:

firefox https://pelargir.ics.muni.cz:9000/?configuration

Among others, the following fields may be discerned from the URL:

msg_brokers A list of messaging brokers that L&B server uses to deliver messages.
msg_prefixes A list of permissible prefixes that must be used in messaging topics.
server_version Version of the L&B server binary.
server_identity The subject of the L&B server’s certificate.
server_indices Indices configured in the the L&B server’s database. L&B job queries typically

require at least one indexed attribute among the query conditions.

Configuration details shown only to L&B super users:

database_name Name of database storing L&B data.
database_host Database server used by L&B.
authz_policy_file Full copy of the current authz configuration file.
admins A list of DNs that are allowed super-user access. The list will include supe-

rusers given in the authz file as well as those specified from command line
through the --super-user option.

dump_start Starting time of the latest server dump.
dump_end Finishing time of the latest server dump.

2.5.6 SUMMARY OF APPLICABLE QUERY STRINGS

?agu Suppresses normal output and returns up-to-date WSDL for AGU methods
?all Applies only to notifications. Makes sure notification registrations by all users are

displayed if privileges suffice. Explained in 2.5.1.
?configuration Suppresses normal output and displays various configuration properties of the

server. Explained in 2.5.5.
?flags Specifies query flags, explained in 2.5.4.
?foreign Applies only to notifications. Makes sure notification registrations by all users but

yourselves are displayed if privileges suffice. Explained in 2.5.1.
?query Specifies query conditions when querying for jobs. Explained in 2.5.3.
?stats Suppresses normal output and displays server usage statistics instead.
?text Instead of HTML, returns output in plain text key=value format. Explained

in 2.5.2.
?types Suppresses normal output and returns up-to-date WSDL for WS type definitions.
?version Suppresses normal output and displays server version instead.
?wsdl Suppresses normal output and returns the up-to-date WSDL used by L&B’s WS

interface.

2.6 JOB STATE CHANGES AS AN RSS FEED

L&B includes an RSS interface allowing users to keep track of their jobs in a very simple way using an
RSS reader. There are pre-defined feeds, which require no additional configuration. As of L&B version
4.0, custom feeds can also be set up with the use of any recognized job condition.

35/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

The address of a pre-defined feed is given by the URL of the L&B server and a /RSS:rss_feed_name
postfix, e.g.

https://pelargir.ics.muni.cz:9000/RSS:finished

L&B version 2.x and 3.x implemented three distingushed feeds:

• finished for jobs in terminal states (Done/OK, Aborted and Canceled)

• running for running jobs

• aborted for aborted jobs

L&B version 4.0 adds two new pre-defined feeds:

• runningVM for running virtual machines

• doneVM for succesfully finished virtual machines

Besides that, L&B version 4.0 makes the ?query query string (explained in Section 2.5.3) available for
defining custom RSS feeds. To set up a custom feed, do not specify a feed name but add the ?query
query string to your URL, after the RSS: prefix. For instance, to set up an RSS feed of jobs in either
submitted or scheduled state:

https://pelargir.ics.muni.cz:9000/RSS:?query=status=submitted|=scheduled

2.7 OTHER USEFUL TOOLS

For debugging purposes, low-level commands for getting L&B job status and job related events are
provided in examples directory (glite-lb-job_status and glite-lb-job_log). The same direc-
tory contains also debugging commands for getting of all user jobs (glite-lb-user_jobs) and CE-
reputability rank (see Section 1.4.4, glite-lb-stats).

36/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

3 TROUBLESHOOTING

Please, report usage problems via the GGUS support system at

https://gus.fzk.de/index.html

Apparent software bugs are tracked in Savannah at

https://savannah.cern.ch/bugs/?func=additem&group=jra1mdw

When submitting a L&B specific problem/bug, the following information might be useful:

• version of software used (all glite-lb-* packages installed at your site)

• description of the problem, the jobId, addresses of all relevant machines (L&B server, ...), envi-
ronment variables set, etc.

• output from the following commands:

glite-wms-job-status <jobId>
glite-wms-job-logging-info -v 3 <jobID>

• information on your proxy:

voms-proxy-info -debug -all

or, if VOMS client is not installed,

grid-proxy-info -debug

• sometimes additional information can be found in the output from the commands

glite-lb-job_status <jobId>
glite-lb-job_log <jobId>

that should be available in the $GLITE_LOCATION/examples directory,

• appropriate excerpts from the logs on the server side are also highly appreciated, please tell your
administrator to look at the Troubleshooting section in LB Administrator’s Guide [2] to follow the
steps there and provide you the necessary information.

Users are encouradged to send developers all non-bugs comments and questions by email to address
egee-jra1@lindir.ics.muni.cz.

37/48

https://gus.fzk.de/index.html
https://savannah.cern.ch/bugs/?func=additem&group=jra1mdw
mailto:egee-jra1@lindir.ics.muni.cz

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

4 FAQ—FREQUENTLY ASKED QUESTIONS

4.1 JOB IN STATE ‘RUNNING’ DESPITE HAVING RECEIVED THE ‘DONE’ EVENT FROM LRMS

Jobs stay in state Running until a Done event is received from the workload management system. Done
events from local resource managers are not enough since the job in question may have been resubmitted
in the meantime.

4.2 WMS CANNOT PURGE JOBS OR PERFORM OTHER PRIVILEGED TASKS

In short, WMS has not been given adequate permissions when configuring the L&B server. You need to
modify your configuration and restart the server:

4.2.1 FOR L&B version 3.0.11 or higher, USING YAIM

Modify your siteinfo.def, specifying the DN of your WMS server in YAIM parameter GLITE_LB_WMS_DN;
for instance:

GLITE_LB_WMS_DN=/DC=cz/DC=cesnet-ca/O=CESNET/CN=wms01.cesnet.cz

Then rerun YAIM: /opt/glite/yaim/bin/yaim -c -s site-info.def -n glite-LB

This will give your WMS exactly the right permissions to carry out all required operations.

4.2.2 FOR ALL VERSIONS OF L&B, USING YAIM

Modify your siteinfo.def, specifying the DN of your WMS server in YAIM parameter GLITE_LB_SUPER_USERS;
for instance:

GLITE_LB_SUPER_USERS=/DC=cz/DC=cesnet-ca/O=CESNET/CN=wms01.cesnet.cz

Then rerun YAIM: /opt/glite/yaim/bin/yaim -c -s site-info.def -n glite-LB

This will give your WMS adequate rights to perform its operations and requests (running purge, querying
for statistics, etc.) but it will also grant it additional administrator rights (such as granting job ownership).
On newer installations, the method explained in section 4.2.1 is preferable.

4.2.3 FOR L&B version 2.1 or higher, WITHOUT YAIM

L&B’s authorization settings can be found in file [/opt/glite]/etc/glite-lb/glite-lb-authz.conf

Permit actions PURGE, READ_ALL and GET_STATISTICS for your WMS and restart the L&B server. This will
lead to results equivalent to 4.2.1. For instance, change the adequate sections in glite-lb-authz.conf
to:

action "READ_ALL" {
rule permit {

subject = "/DC=cz/DC=cesnet-ca/O=CESNET/CN=wms01.cesnet.cz"

38/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

}
}

action "PURGE" {
rule permit {

subject = "/DC=cz/DC=cesnet-ca/O=CESNET/CN=wms01.cesnet.cz"
}

}

action "GET_STATISTICS" {
rule permit {

subject = "/DC=cz/DC=cesnet-ca/O=CESNET/CN=wms01.cesnet.cz"
}

}

4.3 L&B SERVER THROWS “DUPLICATE ENTRY . . . FOR KEY 1” ERRORS

The L&B server will occasionally report errors through syslog saying,

ERROR CONTROL - ... : File exists (Duplicate entry ’...’ for key 1)

These error messages are caused by certain portions of code that take care of storing database records
for keys, which may or may not already exist in the database, and do so by trying to insert the record first
(hence the key violation) and modify the record if the insert fails. This has the unfortunate side effect of
the unsuccessful insert being reported as an ERROR in the logging output.

Unless you are experiencing trouble with the specific data entity18 referenced in the error message, it is
safe to disregard.

18Usually a Job ID

39/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

APPENDIX

A L&B EVENT TYPES

Complete list of all events’ names together with their description follows.

EVENTS FOR GLITE WORLD:

1. Transfer: Start, success, or failure of job transfer to another component.
2. Accepted: Accepting job (successful counterpart to Transfer).
3. Refused: Refusing job (unsuccessful counterpart to Transfer).
4. EnQueued: The job has been enqueued in an inter-component queue.
5. DeQueued: The job has been dequeued from an inter-component queue.
6. HelperCall: Helper component is called.
7. HelperReturn: Helper component is returning the control.
8. Running: Job wrapper started.
9. Resubmission: Result of resubmission decision.
10. Done: Execution terminated (normally or abnormally).
11. Cancel: Cancel operation has been attempted on the job.
12. Abort: Job aborted by system.
13. Clear: Job cleared, output sandbox removed
14. Purge: Job is purged from bookkepping server.
15. Match: Matching CE found.
16. Pending: No matching CE found yet.
17. RegJob: New job registration.
18. Chkpt: Application-specific checkpoint record.
19. Listener: Listening network port for interactive control.
20. CurDescr: Current state of job processing (optional event).
21. UserTag: User tag – arbitrary name=value pair.
22. ChangeACL: Management of ACL stored on bookkepping server.
23. Notification: Management of notification service.
24. ResourceUsage: Resource (CPU, memory etc.) consumption.
25. ReallyRunning: User payload started.
26. Suspend: Job execution (queuing) was suspended.
27. Resume: Job execution (queuing) was resumed.
28. CollectionState: State of the collection.
29. GrantPayloadOwnership: Hand over ownership of actual job payload (e.g. of a pilot job)
30. TakePayloadOwnership: Take over ownership of actual job payload
31. ConnectJob: Connect two jobs
32. DisconnectJob: Disconnect two jobs

40/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

EVENTS FOR PBS WORLD:

101. PBSInternalStateChange: Change of internal PBS job state
102. PBSTransfer: Start, success, or failure of job transfer to another component.
103. PBSAccepted: Accepting job (successful counterpart to Transfer).
104. PBSRefused: Refusing job (unsuccessful counterpart to Transfer).
105. PBSQueued: Job enqued
106. PBSDequeued: Job dequeued
107. PBSMatch: Scheduler created exec host
108. PBSPending: Scheduler is not able to find exec host, or some error occured
109. PBSWaiting: Job is waiting for some condition
110. PBSRun: Job attempted to be run by the logging component
111. PBSRerun: Job rerun requested
112. PBSAbort: Job aborted
113. PBSDone: Job terminated
114. PBSResourceUsage: Resources requested/consumed
115. PBSError: Any error occured

EVENTS FOR CONDOR WORLD:

201. CondorMatch: Job MATCHed
202. CondorReject: Job REJECTed
203. CondorShadowStarted: Condor Shadow Started
204. CondorShadowExited: Condor Shadow Exited
205. CondorStarterStarted: Condor Starter Started
206. CondorStarterExited: Condor Starter Exited
207. CondorResourceUsage: Resources requested/consumed
208. CondorError: Any Error occured

EVENTS FOR CREAM WORLD:

301. CREAMStart: Start processing registered job
302. CREAMPurge: Purge request (by user)
303. CREAMAccepted: Accepting job (successful counterpart to Transfer).
304. CREAMStore:
305. CREAMCall: Processing command and calling BLAH or LRMS
306. CREAMRunning:
307. CREAMReallyRunning:
308. CREAMDone:
309. CREAMCancel:
310. CREAMAbort:
311. CREAMStatus:
312. CREAMSuspend: Job execution (queuing) was suspended.
313. CREAMResume: Job execution (queuing) was resumed.

41/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

EVENTS FOR TRANSFER WORLD:

401. FileTransferRegister: register file transfer
402. FileTransfer: transfer job logs progress
403. Sandbox: event for logging relationship between (compute) job and (file) transfer

job

EVENTS FOR VIRTUALMACHINE WORLD:

501. VMCreate: create (register) virtual machine
502. VMHost:
503. VMImage:
504. VMRunning: VM is running
505. VMShutdown:
506. VMStop:
507. VMResume:
508. VMDone:

42/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

B L&B JOB STATES

Complete list of all job’ states together with their description follows.

Submitted: Entered by the user to the User Interface or registered by Job Partitioner.
Waiting: Accepted by WMS, waiting for resource allocation.
Ready: Matching resources found.
Scheduled: Accepted by LRMS queue.
Running: Executable is running.
Done: Execution finished, output is available.
Cleared: Output transfered back to user and freed.
Aborted: Aborted by system (at any stage).
Cancelled: Cancelled by user.
Unknown: Status cannot be determined.
Purged: Job has been purged from bookkeeping server (for LB-RGMA interface).

SUBMITTED

WAITING

READY

CLEARED

ABORTEDCANCELLED

DONE(failed)

SCHEDULED

DONE(ok)

RUNNING

Figure 5: L&B job state diagram

43/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

B.1 CREAM JOB STATES MAPPING

Support of CREAM jobs is available since L&B version 2.1. This is the implemented mapping of job states
between CREAM and L&B:

CREAM state L&B state
Registered Submited
Pending Waiting
Idle Scheduled
Running Running
Really Running Running
Done OK Done
Done Failed Done
Aborted Aborted
Cancelled Cancelled

44/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

C ENVIRONMENT VARIABLES

Complete list of all environment variables affecting LB behaviour follows with their description and default
values (if applicable).

45/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

GLITE_WMS_LOG_DESTINATION address of the glite-lb-logd daemon (for logging
events), in form hostname:port, default value is
localhost:9002

GLITE_WMS_LOG_TIMEOUT timeout (in seconds) for asynchronous logging, default
value is 120 seconds, maximum value is 300 seconds

GLITE_WMS_LOG_SYNC_TIMEOUT timeout (in seconds) for synchronous logging, default
value is 120 seconds, maximum value is 600 seconds

GLITE_WMS_NOTIF_SERVER address of the glite-lb-bkserver daemon (for
receiving notifications) in form hostname:port, for
receiving notifications, there is no default value,
mandatory for glite-lb-notify

GLITE_WMS_NOTIF_TIMEOUT timeout (in seconds) for notification registration, default
value is 120 seconds, maximum value is 1800 seconds

GLITE_WMS_QUERY_SERVER address of the glite-lb-bkserver daemon (for
queries), in form hostname:port, there is no default
value

GLITE_WMS_QUERY_TIMEOUT timeout (in seconds) for queries, default value is 120
seconds, maximum value is 1800 seconds

GLITE_WMS_LBPROXY_STORE_SOCK UNIX socket location for logging to LB Proxy, default
value is /tmp/lb_proxy_store.sock

GLITE_WMS_LBPROXY_SERVE_SOCK UNIX socket location for queries to LB Proxy, default
value is /tmp/lb_proxy_serve.sock

GLITE_WMS_LBPROXY_USER user credentials (DN) when communicating with LB
Proxy, there is no default value

GLITE_WMS_LBPROXY_SERVERNAME in collocated L&B Proxy/Server installations, this holds
the hostname:port of the server local (!) to the proxy.
This information is used on job registration to avoid
redundand registration through both the proxy and
directly to the server.

X509_USER_CERT, X509_USER_KEY location of user credentials (certificate and private key),
default values are /.globus/usercert,key.pem

GLOBUS_HOSTNAME hostname to appear as event origin, useful only for
debugging, default value is hostname

QUERY_SERVER_OVERRIDE values defined in QUERY_SERVER will override also
values in jobid in queries, useful for debugging only,
default value no

QUERY_JOBS_LIMIT maximal size of results for query on jobs, default value is
0 (unlimited)

QUERY_EVENTS_LIMIT maximal size of results for query on events, default value
is 0 (unlimited)

QUERY_RESULTS specifies behavior of query functions when size limit is
reached, value can be None (no results are returned),
All (all results are returned, even if over specified limit),
Limited (size of results is limited to size specified by
QUERY_JOBS_LIMIT or QUERY_EVENTS_LIMIT)

CONNPOOL_SIZE maximal number of open connections in logging library,
for developers only, default value is 50

For backward compatibility, all GLITE_WMS_* variables can be prefixed by EDG_WL_ instead, for example

46/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

EDG_WL_LOG_DESTINATION.

47/48

TITLE:
Logging and Bookkeeping – User’s Guide

Date: June 25, 2014

REFERENCES

[1] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso, P. Buncic, P. Kunszt,
A. Di Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini, M. Sgaravatto, and O. Mulmo. Middleware for
the next generation grid infrastructure. In Computing in High Energy Physics and Nuclear Physics
(CHEP 2004), 2004.

[2] A. Křenek et al. L&B Administrator’s Guide. http://egee.cesnet.cz/en/JRA1/LB/.

[3] A. Křenek et al. L&B Developer’s Guide. http://egee.cesnet.cz/en/JRA1/LB/.

[4] A. Křenek et al. L&B Test Plan. http://egee.cesnet.cz/en/JRA1/LB/.

[5] G. Avellino et al. The DataGrid Workload Management System: Challenges and Results. Journal of
Grid Computing, 2(4):353–367, Dec 2004.

[6] T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246 (Standards Track), January
1999.

[7] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 Public Key Infras-
tructure (PKI) proxy certificate profile. IETF RFC 3820, June 2004.

[8] A. McNab and S. Kaushal. Web services with gridsite and c/c++/scripts. In Computing in High
Energy and Nuclear Physics (CHEP 2006), 2006.

[9] Miroslav Ruda, Aleš Křenek, Miloš Mulač, Jan Pospíšil, and Zdeněk Šustr. A uniform job monitoring
service in multiple job universes. In GMW ’07: Proceedings of the 2007 workshop on Grid monitoring,
pages 17–22, New York, NY, USA, 2007. ACM.

[10] Daniel Kouril, Ludek Matyska, and Michal Prochazka. A robust and efficient mechanism to dis-
tribute certificate revocation information using the grid monitoring architecture,. In 21st International
Conference on Advanced Information Networking and Applications Workshops (AINAW’07), pages
614–619, 2007.

[11] F. Pacini et al. WMS User’s Guide. https://edms.cern.ch/file/572489/1/WMS-guide.pdf.

48/48

http://egee.cesnet.cz/en/JRA1/LB/
http://egee.cesnet.cz/en/JRA1/LB/
http://egee.cesnet.cz/en/JRA1/LB/
https://edms.cern.ch/file/572489/1/WMS-guide.pdf

	L&B Documentation and versions overview
	1 L&B Architecture
	1.1 Concepts
	1.1.1 Jobs and events
	1.1.2 Event gathering
	1.1.3 Event processing
	1.1.4 Event ordering
	1.1.5 Queries and notifications
	1.1.6 Local views

	1.2 Current L&B implementation
	1.2.1 L&B API and library
	1.2.2 Logger
	1.2.3 Server
	1.2.4 Proxy
	1.2.5 Sequence codes for event ordering
	1.2.6 L&B data protection

	1.3 User interaction
	1.3.1 Event submission
	1.3.2 Querying information
	1.3.3 Notifications
	1.3.4 Caveats

	1.4 Advanced use
	1.4.1 L&B and real time monitoring
	1.4.2 R-GMA feed
	1.4.3 L&B Job Statistics
	1.4.4 Computing Element reputability rank
	1.4.5 CREAM jobs
	1.4.6 Sandbox transfers
	1.4.7 Non-gLite event sources
	1.4.8 Controlling access to job information

	2 User tools
	2.1 Environment variables
	2.2 glite-wms-job-status and glite-wms-job-logging-info
	2.3 glite-lb-logevent
	2.3.1 Example: Logging a UserTag event
	2.3.2 Example: Changing Job Access Control List
	2.3.3 Example: Setting payload owner

	2.4 glite-lb-notify
	2.4.1 Example: Registration and waiting for simple notification
	2.4.2 Example: Waiting for notifications on all user's jobs
	2.4.3 Example: Registering for notifications to be delivered over ActiveMQ
	2.4.4 Example: Waiting for more notifications on one socket
	2.4.5 Example: Waiting for notifications on jobs reaching selected states
	2.4.6 Example: Notify on job reaching terminal state

	2.5 HTML and plain text interface
	2.5.1 Job ID or Notification ID as URL
	2.5.2 Plain Text Modifier
	2.5.3 Querying for Jobs by Attribute
	2.5.4 Applying Flags
	2.5.5 Reading L&B Server Configuration over HTTPs
	2.5.6 Summary of Applicable Query Strings

	2.6 Job state changes as an RSS feed
	2.7 Other useful tools

	3 Troubleshooting
	4 FAQ---Frequently Asked Questions
	4.1 Job in State `Running' Despite Having Received the `Done' Event from LRMS
	4.2 WMS Cannot Purge Jobs or Perform Other Privileged Tasks
	4.2.1 For L&B version 3.0.11 or higher, using YAIM
	4.2.2 For all versions of L&B, using YAIM
	4.2.3 For L&B version 2.1 or higher, without YAIM

	4.3 L&B Server Throws ``Duplicate entry … for key 1'' Errors

	A L&B Event Types
	B L&B Job States
	B.1 CREAM Job States Mapping

	C Environment variables

