
Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 1

Intel® Fortran Composer XE 2013 for
Linux*
Installation Guide and Release Notes

Document number: 321415-004US

19 June 2013

Table of Contents
1 Introduction ... 4

1.1 Change History .. 4

1.1.1 Product Updates ... 4

1.1.2 Changes since Intel® Fortran Composer XE 2011 .. 5

1.2 Product Contents ... 6

1.3 System Requirements .. 6

1.4 Documentation ... 7

1.5 Optimization Notice .. 8

1.6 Japanese Language Support ... 8

1.7 Technical Support .. 8

2 Installation ... 9

2.1 Cluster Installation ... 9

2.2 Installation of Intel® Manycore Platform Software Stack (Intel® MPSS)10

2.3 Intel® Software Manager ..10

2.4 Silent Install ..10

2.5 Using a License Server ...10

2.6 Known Installation Issues..10

2.7 Installation Folders ..11

2.8 Removal/Uninstall ...12

3 Intel® Fortran Compiler ..12

3.1 Compatibility ...12

3.1.1 Stack Alignment Change for REAL(16) and COMPLEX(16) Datatypes13

3.2 New and Changed Features ...13

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 2

3.2.1 Features from Fortran 2003 ...13

3.2.2 Features from Fortran 2008 ...13

3.2.3 Intel® Many Integrated Core (Intel® MIC) ..13

3.2.4 Naming of compiled module files when using OFFLOAD14

3.2.5 New and Changed Directives ...14

3.2.6 OpenMP Changes ...14

3.2.7 ATTRIBUTES ALIGN for component of derived type (13.0.1)16

3.2.8 Additional Compiler Changes ...16

3.2.9 Change in File Buffering Behavior (13.1) ...16

3.3 New and Changed Compiler Options ..17

3.3.1 New -fimf-domain-exclusion Compiler Option ..18

3.3.2 New –vec-report7 Compiler Option (13.1.0) ...19

3.4 Other Changes and Notes ..19

3.4.1 Establishing the Compiler Environment..19

3.5 Known Issues ...19

3.5.1 Coarray Issues ...19

3.6 Coarrays ...19

3.6.1 How to Debug a Coarray Application ...20

3.6.2 Compiler Option to Improve Coarray Performance (13.0.1)22

3.6.3 Coarray Known Issues ...22

3.7 Fortran 2003 and Fortran 2008 Feature Summary ..22

4 Intel® Debugger (IDB) ...26

4.1 Support Deprecated for Intel® Debugger ..26

4.2 Setting up the Java* Runtime Environment ...26

4.3 Starting the Debugger ...26

4.4 Additional Documentation ...27

4.5 Debugger Features ...27

4.6 Known Issues and Changes ...27

4.6.1 Coarray elements cannot be viewed. ...27

4.6.2 Signals Dialog not working Signals Dialog not working ..27

4.6.3 Resizing GUI..27

4.6.4 $cdir, $cwd Directories ...27

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 3

4.6.5 info stack Usage ..27

4.6.6 $stepg0 Default Value Changed ...27

4.6.7 SIGTRAP error on some Linux* Systems ...28

4.6.8 idb GUI cannot be used to debug MPI processes ..28

4.6.9 Thread Syncpoint Creation in GUI ...28

4.6.10 Stack Alignment for IA-32 Architecture...28

4.6.11 GNOME Environment Issues ...28

4.6.12 Accessing Online-Help ...28

4.6.13 Debugger crashes if $HOME not set on calling shell..29

4.6.14 Command line parameter –parallel not supported ..29

4.6.15 Command line parameter –idb and -dbx not supported ..29

4.6.16 Core File Debugging ..29

5 Intel® Xeon Phi™ Coprocessors ..29

5.1 Introduction ...29

5.2 Documentation ..29

5.3 Debugger ..30

5.4 Changes and Known Issues ...30

5.4.1 *MIC* tag added to compile-time diagnostics ...30

5.4.2 Direct (native) mode requires transferring libiomp5.so to coprocessor30

5.4.3 Stepping “A” Hardware Requires –opt-streaming-stores never30

5.4.4 Runtime errors or crashes when running an application built with the initial Intel®

Composer XE 2013 product release with the offload libraries from a later update31

5.4.5 Non-Contiguous Array Sections May Not Be Passed to an Offload Region31

5.4.6 Environment Variable for Controlling Offload Behavior ..32

5.4.7 OFFLOAD_DEVICES ..33

5.4.8 Debugging and Intel® Debugger ..33

6 Intel® Math Kernel Library ...34

6.1 What's New in Intel® MKL 11.0 update 5 ..34

6.2 What's New in Intel® MKL 11.0 update 4 ..35

6.3 What’s New in Intel® MKL 11.0 Update 3 ...35

6.4 What’s New in Intel® MKL 11.0 Update 2 ...36

6.5 What’s New in Intel® MKL 11.0 Update 1 ...38

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 4

6.6 What’s New in Intel® MKL 11.0 ..39

6.7 Deprecated and Removed Features ...40

6.8 Known Issues ...41

6.9 Attributions ..41

7 Disclaimer and Legal Information ...41

1 Introduction
This document describes how to install the product, provide a summary of new and changed

product features and includes notes about features and problems not described in the product

documentation.

1.1 Change History

This section highlights important changes from the previous product version and changes in

product updates. For information on what is new in each component, please read the individual

component release notes.

1.1.1 Product Updates

Update 5 – June 2013

 Intel® Fortran Compiler updated to 13.1.3

 Intel® Math Kernel Library updated to 11.0 Update 5

 Corrections to reported problems

o Compiler fix list

o Intel® MKL fix list

Update 4 – May 2013

 Intel® Fortran Compiler updated to 13.1.2

o Including the fix for 0_10711 Internal Compiler Error with Composer XE 2013

Update 3

 Intel® Math Kernel Library updated to 11.0 Update 4

 Corrections to reported problems

o Compiler fix list

o Intel® MKL fix list

Update 3 – March 2013

 Intel® Fortran Compiler updated to 13.1.1

o OpenMP: The default value for KMP_AFFINITY has changed for Intel® Xeon

Phi™ processors. The default is now “scatter,granularity=fine”.

 Intel® Math Kernel Library updated to 11.0 Update 3

http://software.intel.com/en-us/articles/intel-composer-xe-2013-compilers-fixes-list
http://software.intel.com/en-us/articles/intel-mkl-110-bug-fixes/
http://software.intel.com/en-us/articles/internal-error-0-10711-internal-compiler-error-with-composer-xe-2013-update-3
http://software.intel.com/en-us/articles/internal-error-0-10711-internal-compiler-error-with-composer-xe-2013-update-3
http://software.intel.com/en-us/articles/intel-composer-xe-2013-compilers-fixes-list
http://software.intel.com/en-us/articles/intel-mkl-110-bug-fixes/

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 5

 Corrections to reported problems

o Compiler fix list

o Intel® MKL fix list

Update 2 – January 2013

 Intel® Fortran Compiler updated to 13.1.0

o Added support for additional directives, clauses and procedures from OpenMP*

4.0

o Added the KMP_PLACE_THREADS run-time environment variable

o Added (in Update 1) a temporary option that can improve performance of coarray

applications

o Added –vec-report7 compiler option

o Added description of change in how sequential, unformatted files are buffered

during READs

o Added description of how compiled module files are named when offload regions

are used

o Added note on restriction on non-contiguous array sections passed into an

offload region

 Intel® Math Kernel Library updated to 11.0 Update 2

 Corrections to reported problems

o Compiler fix list

o Intel® MKL fix list

Update 1 – October 2012

 Intel® Fortran Compiler updated to 13.0.1

o ATTRIBUTES ALIGN may now be specified for an ALLOCATABLE or POINTER

component of a derived type

 Intel® Math Kernel Library updated to 11.0 Update 1

 Documentation on –fimf-domain-exclusion added

 Breaking binary compatibility change in Update 1 offload libraries for Intel® Many

Integrated Core Architecture

 -opt-streaming-stores never option must be used when compiling for Stepping “A” of

Intel® Xeon Phi™ coprocessors

 Corrections to reported problems

o Compiler fix list

o Intel® MKL fix list

1.1.2 Changes since Intel® Fortran Composer XE 2011

 Development of applications that offload work to or natively run on an Intel® Many

Integrated Core (Intel® MIC) architecture coprocessor (Intel® Xeon Phi™ product family)

is now supported. For details, see the section on Intel® Xeon Phi™ Coprocessors

 Intel® Fortran Compiler updated to version 13.0

http://software.intel.com/en-us/articles/intel-composer-xe-2013-compilers-fixes-list
http://software.intel.com/en-us/articles/intel-mkl-110-bug-fixes/
http://software.intel.com/en-us/articles/intel-composer-xe-2013-compilers-fixes-list
http://software.intel.com/en-us/articles/intel-mkl-110-bug-fixes/
A#_Stepping_
http://software.intel.com/en-us/articles/intel-composer-xe-2013-compilers-fixes-list
http://software.intel.com/en-us/articles/intel-mkl-110-bug-fixes/

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 6

 Intel® Debugger updated to version 13.0

o Intel® Debugger support deprecated

 Intel® Math Kernel Library updated to version 11.0

o Intel® Math Kernel Library removed support for Intel® Pentium® III processors.

The minimum instruction set supported by Intel® MKL is Intel® SSE2. See

Intel® MKL section for additional changes

 Support for SUSE* LINUX Enterprise Server 11 SP2 added. Support for SP1 dropped.

 Support for Fedora* 17, Ubuntu 12.04 and Ubuntu 11.10* added.

 Support for the following versions of Linux distributions has been dropped:

o Asianux*

o Red Hat Enterprise Linux 4*

o Fedora 15*

o Ubuntu 11.04*

 The Intel® Software Manager has been added to help you manage product updates and

license activation

 Corrections to reported problems

1.2 Product Contents

Intel® Fortran Composer XE 2013 for Linux* includes the following components:

 Intel® Fortran Compiler XE 13.1.3 for building applications that run on IA-32, Intel® 64

architecture systems and Intel® Xeon Phi™ coprocessors running the Linux* operating

system

 Intel® Debugger 13.0

 Intel® Math Kernel Library 11.0 Update 5

 On-disk documentation

1.3 System Requirements

For an explanation of architecture names, see Intel® Architecture Terminology for Development

Tools

 A PC based on an IA-32 or Intel® 64 architecture processor supporting the Intel®

Streaming SIMD Extensions 2 (Intel® SSE2) instructions (Intel® Pentium® 4 processor

or later, or compatible non-Intel processor)

o Development of 64-bit applications, and those that offload work to Intel® Xeon

Phi™ coprocessors, is supported on a 64-bit version of the OS only.

Development of 32-bit applications is supported on either 32-bit or 64-bit versions

of the OS.

o Development for a 32-bit on a 64-bit host may require optional library

components (ia32-libs, lib32gcc1, lib32stdc++6, libc6-dev-i386, gcc-multilib) to be

installed from your Linux distribution.

 For the best experience, a multi-core or multi-processor system is recommended

 1GB of RAM (2GB recommended)

 2.5GB free disk space for all features

http://software.intel.com/en-us/articles/intel-architecture-platform-terminology/
http://software.intel.com/en-us/articles/intel-architecture-platform-terminology/

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 7

 For Intel® Xeon Phi™ coprocessor development/testing:

o Intel® Manycore Platform Software Stack (Intel® MPSS)

 For development of IA-32 or Intel® 64 architecture applications, one of the following

Linux distributions (this is the list of distributions tested by Intel; other distributions may

or may not work and are not recommended - please refer to Technical Support if you

have questions):

o Debian* 6.0

o Fedora* 17

o Red Hat Enterprise Linux* 5, 6

o SuSE LINUX Enterprise Server* 10,11 SP2

o Ubuntu* 11.10, 12.04

o Intel® Cluster Ready

o Pardus* 2011.2 (x64 only)

 Linux Developer tools component installed, including gcc, g++ and related tools

 Library libunwind.so is required in order to use the –traceback option. Some

Linux distributions may require that it be obtained and installed separately.

Additional Requirements to use the Graphical User Interface of the Intel® Debugger

 IA-32 architecture system or Intel® 64 architecture system

 Java* Runtime Environment (JRE) 6.0 (1.6)

o A 32-bit JRE must be used on an IA-32 architecture system and a 64-bit JRE

must be used on an Intel® 64 architecture system

Notes

 The Intel® compilers are tested with a number of different Linux distributions, with

different versions of gcc. Some Linux distributions may contain header files different

from those we have tested, which may cause problems. The version of glibc you use

must be consistent with the version of gcc in use. For best results, use only the gcc

versions as supplied with distributions listed above.

 The default for the Intel® compilers is to build IA-32 architecture applications that require

a processor supporting the Intel® SSE2 instructions - for example, the Intel® Pentium®

4 processor. A compiler option is available to generate code that will run on any IA-32

architecture processor. However, Intel® MKL requires Intel® SSE2 as a minimum

instruction set.

 Compiling very large source files (several thousands of lines) using advanced

optimizations such as -O3, -ipo and -openmp, may require substantially larger amounts

of RAM.

 Some optimization options have restrictions regarding the processor type on which the

application is run. Please see the documentation of these options for more information.

1.4 Documentation

Product documentation can be found in the Documentation folder as shown under Installation

Folders.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 8

1.5 Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors

for optimizations that are not unique to Intel microprocessors. These optimizations include

SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee

the availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable

product User and Reference Guides for more information regarding the specific instruction

sets covered by this notice.

Notice revision #20110804

1.6 Japanese Language Support

Intel® compilers optionally provide support for Japanese language users when the combined

English-Japanese product is installed. Error messages, visual development environment dialogs

and some documentation are provided in Japanese in addition to English. By default, the

language of error messages and dialogs matches that of your operating system language

selection. Japanese-language documentation can be found in the ja_JP subdirectory for

documentation and samples.

Japanese language support is not provided with every update of the product.

If you wish to use Japanese-language support on an English-language operating system, or

English-language support on a Japanese-language operating system, you will find instructions

at Changing Language Setting to see English on a Japanese OS environment or Vice Versa on

Linux*

1.7 Technical Support

Register your license at the Intel® Software Development Products Registration Center.

Registration entitles you to free technical support, product updates and upgrades for the

duration of the support term.

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips

and tricks, and other support information, please visit:

http://www.intel.com/software/products/support/

Note: If your distributor provides technical support for this product, please contact them for

support rather than Intel.

http://software.intel.com/en-us/articles/changing-language-setting-to-see-english-on-a-japanese-os-environment-or-vice-versa-on-linux/
http://software.intel.com/en-us/articles/changing-language-setting-to-see-english-on-a-japanese-os-environment-or-vice-versa-on-linux/
https://registrationcenter.intel.com/
http://www.intel.com/software/products/support/

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 9

2 Installation
The installation of the product requires a valid license file or serial number. If you are evaluating

the product, you can also choose the “Evaluate this product (no serial number required)” option

during installation

If you received your product on DVD, mount the DVD, change the directory (cd) to the top-

level directory of the mounted DVD and begin the installation using the command:

./install.sh

If you received the product as a downloadable file, first unpack it into a writeable directory of

your choice using the command:

tar –xzvf name-of-downloaded-file

Then change the directory (cd) to the directory containing the unpacked files and begin the

installation using the command:

./install.sh

Follow the prompts to complete installation.

Note that there are several different downloadable files available, each providing different

combinations of components. Please read the download web page carefully to determine which

file is appropriate for you.

You do not need to uninstall previous versions or updates before installing a newer version –

the new version will coexist with the older versions.

2.1 Cluster Installation

If a license for Intel® Cluster Studio XE is present, and the installation detects that the installing

system is a member of a cluster, you will have the option of installing on multiple nodes of the

cluster.

To install on multiple nodes, follow these steps:

1. Passwordless ssh must be configured among the nodes of the cluster

2. During install step 4, “Options”, select “Cluster installation”.

3. You will be prompted to provide the path to a machines.LINUX file with IP addresses,

hostnames, or Fully Qualified Domain Names (FQDNs) of the cluster nodes, one per

line. The first line is expected to be the current (master) node.

4. Once the machines.LINUX file is found, additional options will appear, including

“Number of parallel installations” and “Check for shared installation directory”. Select the

desired options.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 10

5. Once all options are configured and the install is started, the installation will check

connectivity to all the nodes; if successful, it will attempt the install on all indicated

nodes.

2.2 Installation of Intel® Manycore Platform Software Stack (Intel® MPSS)

The Intel® Manycore Platform System Software (Intel® MPSS) may be installed before or after

installing the Intel® Composer XE 2013 for Linux* product.

Refer to the Intel® MPSS documentation for the necessary steps to install the user space and

kernel drivers.

2.3 Intel® Software Manager

The installation now provides an Intel® Software Manager to provide a simplified delivery

mechanism for product updates and provide current license status and news on all installed

Intel® software products.

You can also volunteer to provide Intel anonymous usage information about these products to

help guide future product design. This option, the Intel® Software Improvement Program, is not

enabled by default – you can opt-in during installation or at a later time, and may opt-out at any

time. For more information please see Intel® Software Improvement Program.

2.4 Silent Install

For information on automated or “silent” install capability, please see Intel® Compilers for Linux*

Silent Installation Guide.

2.5 Using a License Server

If you have purchased a “floating” license, see Licensing: Setting Up the Client for a Floating

License. This article also provides a source for the Intel® License Manager for FLEXlm* product

that can be installed on any of a wide variety of systems.

2.6 Known Installation Issues

 On some versions of Linux, auto-mounted devices do not have the "exec" permission

and therefore running the installation script directly from the DVD will result in an error

such as:

bash: ./install.sh: /bin/bash: bad interpreter: Permission denied

If you see this error, remount the DVD with exec permission, for example:

mount /media/<dvd_label> -o remount,exec

and then try the installation again.

 The product is fully supported on Ubuntu and Debian Linux distributions for IA-32 and

Intel® 64 architecture systems as noted above under System Requirements. Due to a

restriction in the licensing software, however, it is not possible to use the Trial License

http://software.intel.com/en-us/articles/software-improvement-program/
http://software.intel.com/en-us/articles/intel-compilers-for-linux-silent-installation-guides/
http://software.intel.com/en-us/articles/intel-compilers-for-linux-silent-installation-guides/
http://software.intel.com/en-us/articles/licensing-setting-up-the-client-floating-license/
http://software.intel.com/en-us/articles/licensing-setting-up-the-client-floating-license/

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 11

feature when evaluating IA-32 components on an Intel® 64 architecture system under

Ubuntu or Debian. This affects using a Trial License only. Use of serial numbers,

license files, floating licenses or other license manager operations, and off-line activation

(with serial numbers) is not affected. If you need to evaluate IA-32 components of the

product on an Intel® 64 architecture Ubuntu or Debian system, please visit the Intel®

Software Evaluation Center to obtain an evaluation serial number.

2.7 Installation Folders

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir>

in the remainder of this document. You are able to specify a different location, and can also

perform a “non-root” install in the location of your choice.

Under <install-dir> are the following directories:

 bin – contains symbolic links to executables for the latest installed version

 lib – symbolic link to the lib directory for the latest installed version

 include – symbolic link to the include directory for the latest installed version

 man – symbolic link to the directory containing man pages for the latest installed version

 mkl – symbolic link to the directory for the latest installed version of Intel® Math Kernel

Library

 composerxe – symbolic link to the composer_xe_2013 directory

 composer_xe_2013 – directory containing symbolic links to subdirectories for the latest

installed Intel® Composer XE 2013 product release

 composer_xe_2013.<n>.<pkg> - physical directory containing files for a specific

update version. <n> is the update number, and <pkg> is a package build identifier

Each composer_xe_2013 directory contains the following directories that reference the latest

installed Intel® Composer XE 2013 product:

 bin – directory containing scripts to establish the compiler environment and symbolic

links to compiler executables for the host platform

 pkg_bin – symbolic link to the compiler bin directory

 include – symbolic link to the compiler include directory

 lib – symbolic link to the compiler lib directory

 mkl – symbolic link to the mkl directory

 debugger – symbolic link to the debugger directory

 man – symbolic link to the directory containing man pages for the latest installed version

 Documentation – symbolic link to the documentation directory

 Samples – symbolic link to the samples directory

 eclipse_support – symbolic link to a directory created by the Intel Debugger

component that is shared between Intel Fortran and Intel C++. Intel does not provide

Eclipse support for Fortran.

http://software.intel.com/en-us/intel-software-evaluation-center
http://software.intel.com/en-us/intel-software-evaluation-center

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 12

Each composer_xe_2013.<n>.<pkg> directory contains the following directories that

reference a specific update of the Intel® Composer XE 2013 compiler:

 bin – all executables

 compiler – shared libraries and include/header files

 debugger – debugger files

 Documentation – documentation files

 eclipse_support –directory created by the Intel Debugger component that is shared

between Intel Fortran and Intel C++. Intel does not provide Eclipse support for Fortran.

 man – man pages

 mkl – Intel® Math Kernel Library libraries and header files

 mpirt – Intel® MPI Library run-time files used by Fortran coarray support

 Samples – Product samples and tutorial files

If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a

given version and update.

This directory layout allows you to choose whether you want the latest product update, no

matter which version, the latest update of the Intel® Composer XE 2013 product, or a specific

update. Most users will reference <install-dir>/bin for the compilervars.sh [.csh]

script, which will always get the latest product installed. This layout should remain stable for

future releases.

2.8 Removal/Uninstall

Removing (uninstalling) the product should be done by the same user who installed it (root or a

non-root user). If sudo was used to install, it must be used to uninstall as well. It is not possible

to remove the compiler while leaving any of the performance library components installed.

1. Open a terminal window and set default (cd) to any folder outside <install-dir>

2. Type the command: <install-dir>/bin/uninstall.sh

3. Follow the prompts

4. Repeat steps 2 and 3 to remove additional platforms or versions

If you also have the same-numbered version of Intel® C++ Compiler installed, it may also be

removed.

3 Intel® Fortran Compiler
This section summarizes changes, new features and late-breaking news about the Intel Fortran

Compiler.

3.1 Compatibility

In general, object code and modules compiled with earlier versions of Intel Fortran Compiler for

Linux* (8.0 and later) may be used in a build with version 13. Exceptions include:

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 13

 Sources that use the CLASS keyword to declare polymorphic variables and which were

built with a compiler version earlier than 12.0 must be recompiled.

 Objects built with the multi-file interprocedural optimization (-ipo) option must be

recompiled.

 Objects that use the REAL(16) , REAL*16, COMPLEX(16) or COMPLEX*32 datatypes

and which were compiled with versions earlier than 12.0 must be recompiled.

 Objects built for the Intel® 64 architecture with a compiler version earlier than 10.0 and

that have module variables must be recompiled. If non-Fortran sources reference these

variables, the external names may need to be changed to remove an incorrect leading

underscore.

 Modules that specified an ATTRIBUTES ALIGN directive outside of a derived type and

were compiled with versions earlier than 11.0 must be recompiled. The compiler will

notify you if this issue is encountered.

 Modules that specified an ATTRIBUTES ALIGN directive inside a derived type

declaration cannot be used by compilers older than 13.0.1.

3.1.1 Stack Alignment Change for REAL(16) and COMPLEX(16) Datatypes

In versions prior to 12.0, when a REAL(16) or COMPLEX(16) (REAL*16 or COMPLEX*32) item

was passed by value, the stack address was aligned at 4 bytes. For improved performance, the

version 12 and later compilers align such items at 16 bytes and expects received arguments to

be aligned on 16-byte boundaries. This change is also compatible with gcc.

This change primarily affects compiler-generated calls to library routines that do computations

on REAL(16) values, including intrinsics. If you have code compiled with earlier versions and

link it with the version 12 libraries, or have an application linked to the shared version of the Intel

run-time libraries, it may give incorrect results.

In order to avoid errors, you must recompile all Fortran sources that use the REAL(16) and

COMPLEX(16) datatypes if they were compiled by compiler versions earlier than 12.0.

3.2 New and Changed Features

3.2.1 Features from Fortran 2003

 Default initialization of polymorphic variables

 The keyword MODULE may be omitted from MODULE PROCEDURE in a generic

interface block when referring to an external procedure

3.2.2 Features from Fortran 2008

 ATOMIC_DEFINE and ATOMIC_REF

3.2.3 Intel® Many Integrated Core (Intel® MIC)

Support has been added to build applications that offload work to an Intel® Many Integrated

Core (Intel® MIC) architecture coprocessor (Intel® Xeon Phi™ product family). This support

adds the following features:

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 14

 ATTRIBUTES OFFLOAD directive

 OFFLOAD and END OFFLOAD directives

 OMP OFFLOAD directive

 Intrinsic functions OFFLOAD_GET_DEVICE_NUMBER,

OFFLOAD_NUMBER_OF_DEVICES

 Sample programs under samples/mic_samples

For more information on how to write, build and run applications that use Intel® MIC, please see

Intel® Xeon Phi™ Coprocessors and the compiler documentation

3.2.4 Naming of compiled module files when using OFFLOAD

When a Fortran source that uses the OFFLOAD directive, to offload work to an Intel® Xeon

Phi™ coprocessor, is compiled, the source is compiled twice – once for native execution and

once for execution on the coprocessor. If the source contains module subprograms, these are

compiled twice as well. If the module source has dependencies on the execution target, this can

cause the compiled module files to be different. If the same file naming convention was used,

the compilation for Intel® MIC architecture would overwrite the compilation for native code.

The Intel® Fortran compiler resolves this problem by creating the compiled module file for Intel®

MIC architecture with a .modmic file type rather than the default .mod file type, but this is done if

and only if the module source includes an offload region. When compiling for Intel® MIC

architecture, the compiler first looks for a .modmic file – if that does not exist then it looks for a

.mod file. You may need to adjust makefiles or build scripts to accommodate this different

behavior.

3.2.5 New and Changed Directives

The following general compiler directives are new or changed in Intel® Composer XE 2013 –

please see the documentation for details:

 ATTRIBUTES CVF

 ATTRIBUTES OFFLOAD

 OFFLOAD/END OFFLOAD

 ORDERED/END ORDERED

 SIMD VECTORLENGTHFOR

3.2.6 OpenMP Changes

The following changes to OpenMP* support are in Intel® Composer XE 2013

 OMP OFFLOAD directive

3.2.6.1 OpenMP 4.0 Changes (13.1.0)

The following directives, clauses and procedures, new in OpenMP* 4.0, are supported by the

13.1.0 (Composer XE 2013 Update 2) compiler. Until the product documentation is updated,

please refer to OpenMP* 4.0 Features in Intel® Fortran Composer XE 2013.

http://software.intel.com/en-us/articles/openmp-40-features-in-intel-fortran-composer-xe-2013

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 15

SIMD Directives:

 OMP SIMD

 OMP DECLARE SIMD

 OMP DO SIMD

 OMP PARALLEL DO SIMD

Coprocessor directives:

 OMP TARGET DATA

 OMP TARGET

 OMP TARGET UPDATE

 OMP DECLARE TARGET

 OMP DECLARE TARGET MIRROR

 OMP DECLARE TARGET LINKABLE

Clauses:

 MAP

 MAPFROM

 MAPTO

 SCRATCH

Procedures:

 OMP_GET_DEVICE_NUM

 OMP_GET_PROC_BIND

 OMP_SET_DEVICE_NUM

3.2.6.2 KMP_PLACE_THREADS Environment Variable (13.1.0)

This environment variable allows the user to simplify the specification of the number of cores

and threads per core used by an OpenMP application, as an alternative to writing explicit affinity

settings or a process affinity mask.

Syntax

value = (int ["C" | "T"] [delim] | delim) [int ["T"]

[delim]] [int ["O"]];

delim = "," | "x";

Effect

Specifies the number of cores, with optional offset value and number of threads per core to use.

The "C" indicates cores, "T" indicates threads, "O" is used to specify an offset. Either cores or

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 16

threads should be specified. If omitted, the default value is the available number of cores

(threads).

Examples

5C,3T,1O - use 5 cores with offset 1, 3 threads per core

5,3,1 - same as above

24 - use first 24 cores, all available threads per core

2T - use all cores, 2 threads per core

,2 - same as above

3x2 - use 3 cores, 2 threads per core

4C12O - use 4 cores with offset 12, all available threads per core

3.2.7 ATTRIBUTES ALIGN for component of derived type (13.0.1)

As of compiler version 13.0.1, the ATTRIBUTES ALIGN directive may be specified for an

ALLOCATABLE or POINTER component of a derived type. The directive must be placed within

the derived type declaration, and if it is an extended type, the directive must not name a

component in a parent type.

If this is specified, the compiler will apply the indicated alignment when the component is

allocated, either through an explicit ALLOCATE or, for ALLOCATABLE components, through

implicit allocation according to Fortran language rules.

A module containing an ATTRIBUTES ALIGN directive for a derived type component cannot be

used with a compiler earlier than version 13.0.1.

3.2.8 Additional Compiler Changes

 The output of the G format edit descriptor has been changed to more properly conform to

the Fortran 2008 standard. The changes involve effects of rounding on representation of

values that round to -0

 When on output using a D, E, G, EN or ES format the exponent field overflows the implicit

exponent width, the output field is filled with asterisks. In earlier versions, the exponent

would be displayed in a manner inconsistent with the standard

 The compiler can now vectorize references to the RANDOM_NUMBER and RANF intrinsic

subroutines.

3.2.9 Change in File Buffering Behavior (13.1)

In product versions prior to Intel® Fortran Composer XE 2013 (compiler version 13.0), the

Fortran Runtime Library buffered all input when reading variable length, unformatted sequential

file records. This default buffering was accomplished by the Fortran Runtime Library allocating

an internal buffer large enough to hold any sized, variable length record in memory. For

extremely large records this could result in an excessive use of memory, and in the worst cases

could result in available memory being exhausted. The user had no ability to change this

default buffering behavior on such READs. There was always the ability to request or deny

buffering of these records when writing them, but not when reading them.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 17

This default buffering behavior was changed with the release of Intel® Fortran Composer XE

2013. Beginning with this version, all such records are not buffered by default, but rather read

directly from disk to the user program’s variables. This change helped programs that needed to

conserve memory, but could in fact result in a performance degradation when reading records

that are made of many small components. Some users have reported this performance

degradation.

The Intel® Fortran Composer XE 2013 Update 2 (compiler version 13.1) release of the Fortran

Runtime Library now provides a method for a user to choose whether or not to buffer these

variable length, unformatted records. The default behavior remains as it was in 13.0; these

records are not buffered by default. If you experience performance degradation when using

13.1 with this type of I/O, you can enable buffering of the input the same way that you choose

whether to enable buffering of the output of these records – one of the following:

 specifying BUFFERED=”YES” on the file's OPEN statement

 specifying the environment variable FORT_BUFFERED to be YES, TRUE or an

integer value greater than 0

 specifying -assume buffered_io on the compiler command line

In the past, these mechanisms applied only when issuing a WRITE of variable length,

unformatted, sequential files. They can now be used to request that the Fortran Runtime

Library buffer all input records from such files, regardless of the size of the records in the file.

Using these mechanisms returns the READing of such records to the pre-13.0 behavior.

3.3 New and Changed Compiler Options

Please refer to the compiler documentation for details

 -align array8byte

 -align array16byte

 -align array32byte

 -align array64byte

 -align array128byte

 -align array256byte

 -assume [no]std_intent_in

 -diag-enable sc-enums

 -diag-enable sc-{full|concise|precise}

 -diag-enable sc-single-file

 -fimf-domain-exclusion=classlist[:funclist] (See below.)

 -guide-profile=<file|dir>[,[file|dir],…]

 -mmic

 -no-offload

 -offload-attribute-target=<name>

 -offload-option<target>,<tool>,"option list"

 -openmp-link <library>

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 18

 -vec-report6

 -vec-report7 (13.1.0)

For a list of deprecated compiler options, see the Compiler Options section of the

documentation.

3.3.1 New -fimf-domain-exclusion Compiler Option

The following information was omitted from the on-disk documentation.

fimf-domain-exclusion

Indicates the domain on which a function is evaluated.

IDE Equivalent

None

Architectures

Intel® 64 architecture, targeting Intel® MIC Architecture

Syntax

-fimf-domain-exclusion=classList[:funcList]

Arguments

classList A comma separated list of:

 One or more of the five floating point value class names you can exclude from the

function domain without affecting the correctness of your program

 One of the short-hand tokens.

The class names are:

 extremes

 nans

 infinities

 denormals

 zeros

The short-hand tokens are:

 none: None of the above are excluded from the domain.

 all: All of the above are excluded from the domain.

 common: Same as extremes,nans,infinities,denormals.

The order of the class tokens is unimportant, and you can specify each token more than once.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 19

funcList A comma separated list of function names.

If you don’t specify this argument, the domain restrictions apply to all math library functions.

Default

None

Description

This indicates the domain on which a function is evaluated, and specifies that your program will

function correctly if the functions specified in funcList do not produce standard conforming

results on the number classes.

3.3.2 New –vec-report7 Compiler Option (13.1.0)

The –vec-report7 option provides additional details about vectorization of loops, including

statistics and metrics about loads, stores, type conversions and more. This information can be

useful in understanding how much improvement might be expected from vectorization of a given

loop.

The information displayed from this option can also be processed by a new vectorization

analysis tool available from VecAnalysis Python* Script for Annotating Intel® C++ & Fortran

Compilers Vectorization Reports

3.4 Other Changes and Notes

3.4.1 Establishing the Compiler Environment

The compilervars.sh script is used to establish the compiler environment.

The command takes the form:

source <install-dir>/bin/compilervars.sh argument

Where argument is either ia32 or intel64 as appropriate for the architecture you are

building for. Establishing the compiler environment also establishes the environment for the

Intel® Debugger, Intel® Performance Libraries and, if present, Intel® C++ Compiler.

3.5 Known Issues

3.5.1 Coarray Issues

For a list of known issues with Fortran 2008 Coarray support, see Coarray Known Issues.

3.6 Coarrays

No special procedure is necessary to run a program that uses coarrays in a shared-memory

configuration; you simply run the executable file. The underlying parallelization implementation

is Intel® MPI. Installation of the compiler automatically installs the necessary Intel® MPI run-

time libraries to run on shared memory. The Intel® Cluster Toolkit product (optional) installs the

http://software.intel.com/en-us/articles/vecanalysis-python-script-for-annotating-intelr-compiler-vectorization-report
http://software.intel.com/en-us/articles/vecanalysis-python-script-for-annotating-intelr-compiler-vectorization-report

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 20

necessary Intel® MPI run-time libraries to run on distributed memory. Use of coarray

applications with any other MPI implementation, or with OpenMP*, is not supported.

By default, the number of images created is equal to the number of execution units on the

current system. You can override that by specifying the option -coarray-num-images <n>

on the ifort command that compiles the main program. You can also specify the number of

images in an environment variable FOR_COARRAY_NUM_IMAGES.

3.6.1 How to Debug a Coarray Application

The following instructions describe how to debug a Coarray application.

1. Add a stall loop to your application before the area of code you wish to debug, e.g.:

LOGICAL VOLATILE :: WAIT_FOR_DEBUGGER

LOGICAL, VOLATILE :: TICK

 :

DO WHILE(WAIT_FOR_DEBUGGER)

 TICK = .NOT. TICK

 END DO

! Code you want to debug is here

!

The use of VOLATILE is required to ensure that the loop will not be removed by the

compiler. If the problem is only found on one image, you can wrap the loop in
IF (THIS_IMAGE() .EQ. 4) THEN

or the like.
2. Compile and link with debug enabled (-g).

3. Create at least N+1 terminal windows on the machine where the application will be

running, where N is the number of images your application will have.

4. In a terminal window, start the application.

linuxprompt> ./my_app

5. In each of the other terminal windows, set your default directory to be the same as the

location of the application executable. Use the ps command in one of the windows to

find out which processes are running your application:

linuxprompt> ps –ef | grep 'whoami' | grep my_app

There will be several processes. The oldest is the one you started in step 4 – it has run

the MPI launcher and is now waiting for the others to terminate. Do not debug it.

The others will look like this:

<your-user-name> 25653 25650 98 15:06 ? 00:00:49 my_app

<your-user-name> 25654 25651 97 15:06 ? 00:00:48 my_app

<your-user-name> 25655 25649 98 15:06 ? 00:00:49 my_app

The first number is the PID of the process (e.g., 25653 in the first line).

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 21

 Call the PIDs of these N processes running "my_app" P1, P2, P3 and so on.

6. In each window other than the first, start your debugger and set it to stop processes

when attached:

linuxprompt> idb –idb

(idb) set $stoponattach = 1

or

linuxprompt> gdb

7. Attach to one of the processes (e.g. to P1 in window 1, to P2 in window 2, etc.)

(idb) attach <P1> my_app

or

(gdb) attach <P1>

8. Get execution out of the stall loop:

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

or

(gdb) set WAIT_FOR_DEBUGGER = .false.

9. You can now debug.

If you are using idb, you can use the multiprocess capability of idb to have only one debugger

window instead of N. First, attach to each process and get out of the loop (steps 7 and 8).

(idb) attach <P1> my_app

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

(idb) attach <P2> my_app

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

(idb) attach <P3> my_app

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

Use the "process" command to switch debugging focus from one process to another:

(idb) process <Pn>

Processes not focused on will remain in the state they were left in: with breakpoints and

watchpoints set but not running.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 22

3.6.2 Compiler Option to Improve Coarray Performance (13.0.1)

Work is ongoing to improve performance of coarray applications. Some of this work is present in

the 13.0.1 (Composer XE 2013 Update 1) compiler but is disabled by default. You can enable

the optimizations implemented so far by adding the compile option:

-switch coarray_opts

when you compile your application. At present, this improves the performance of copying

coarray values from another image. Not all applications may see a significant improvement

when using this option. We encourage you to try this option and to let us know if it introduces

errors into your application.

In a future major version, these optimizations will be enabled by default and the option shown

above will be removed.

3.6.3 Coarray Known Issues

The following features are known not to work completely in this version:

 Accessing another image’s value of an ALLOCATABLE or POINTER component of a

derived-type coarray. Some forms of this work, some do not.

3.7 Fortran 2003 and Fortran 2008 Feature Summary

The Intel Fortran Compiler supports many features that are new in Fortran 2003. Additional

Fortran 2003 features will appear in future versions. Fortran 2003 features supported by the

current compiler include:

 The Fortran character set has been extended to contain the 8-bit ASCII characters ~ \ []

` ^ { } | # @

 Names of length up to 63 characters

 Statements of up to 256 lines

 Square brackets [] are permitted to delimit array constructors instead of (/ /)

 Structure constructors with component names and default initialization

 Array constructors with type and character length specifications

 A named PARAMETER constant may be part of a complex constant

 Enumerators

 Allocatable components of derived types

 Allocatable scalar variables

 Deferred-length character entities

 PUBLIC types with PRIVATE components and PRIVATE types with PUBLIC

components

 ERRMSG keyword for ALLOCATE and DEALLOCATE

 SOURCE= keyword for ALLOCATE

 Type extension

 CLASS declaration

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 23

 Polymorphic entities

 Inheritance association

 Deferred bindings and abstract types

 Type-bound procedures

 TYPE CONTAINS declaration

 ABSTRACT attribute

 DEFERRED attribute

 NON_OVERRIDABLE attribute

 GENERIC keyword for type-bound procedures

 FINAL subroutines

 ASYNCHRONOUS attribute and statement

 BIND(C) attribute and statement

 PROTECTED attribute and statement

 VALUE attribute and statement

 VOLATILE attribute and statement

 INTENT attribute for pointer objects

 Reallocation of allocatable variables on the left hand side of an assignment statement

when the right hand side differs in shape or length (requires

option -assume realloc_lhs if not deferred-length character)

 Bounds specification and bounds remapping on a pointer assignment

 ASSOCIATE construct

 SELECT TYPE construct

 In all I/O statements, the following numeric values can be of any kind: UNIT=, IOSTAT=

 NAMELIST I/O is permitted on an internal file

 Restrictions on entities in a NAMELIST group are relaxed

 Changes to how IEEE Infinity and NaN are represented in formatted input and output

 FLUSH statement

 WAIT statement

 ACCESS='STREAM' keyword for OPEN

 ASYNCHRONOUS keyword for OPEN and data transfer statements

 ID keyword for INQUIRE and data transfer statements

 POS keyword for data transfer statements

 PENDING keyword for INQUIRE

 The following OPEN numeric values can be of any kind: RECL=

 The following READ and WRITE numeric values can be of any kind: REC=, SIZE=

 The following INQUIRE numeric values can be of any kind: NEXTREC=, NUMBER=,

RECL=, SIZE=

 Recursive I/O is allowed in the case where the new I/O being started is internal I/O that

does not modify any internal file other than its own

 IEEE Infinities and NaNs are displayed by formatted output as specified by Fortran 2003

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 24

 BLANK, DECIMAL, DELIM, ENCODING, IOMSG, PAD, ROUND, SIGN, SIZE I/O

keywords

 DC, DP, RD, RC, RN, RP, RU, RZ format edit descriptors

 In an I/O format, the comma after a P edit descriptor is optional when followed by a

repeat specifier

 Rename of user-defined operators in USE

 INTRINSIC and NON_INTRINSIC keywords in USE

 IMPORT statement

 Allocatable dummy arguments

 Allocatable function results

 PROCEDURE declaration

 The keyword MODULE may be omitted from MODULE PROCEDURE in a generic

interface block when referring to an external procedure

 Procedure pointers

 ABSTRACT INTERFACE

 PASS and NOPASS attributes

 The COUNT_RATE argument to the SYSTEM_CLOCK intrinsic may be a REAL of any

kind

 Execution of a STOP statement displays a warning if an IEEE floating point exception is

signaling

 MAXLOC or MINLOC of a zero-sized array returns zero if the

option -assume noold_maxminloc is specified.

 Type inquiry intrinsic functions

 COMMAND_ARGUMENT_COUNT intrinsic

 EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsic functions

 GET_COMMAND intrinsic

 GET_COMMAND_ARGUMENT intrinsic

 GET_ENVIRONMENT_VARIABLE intrinsic

 IS_IOSTAT_END intrinsic

 IS_IOSTAT_EOR intrinsic

 MAX/MIN/MAXVAL/MINVAL/MAXLOC/MINLOC intrinsics allow CHARACTER

arguments

 MOVE_ALLOC intrinsic

 NEW_LINE intrinsic

 SELECTED_CHAR_KIND intrinsic

 The following intrinsics take an optional KIND= argument: ACHAR, COUNT, IACHAR,

ICHAR, INDEX, LBOUND, LEN, LEN_TRIM, MAXLOC, MINLOC, SCAN, SHAPE, SIZE,

UBOUND, VERIFY

 ISO_C_BINDING intrinsic module

 IEEE_EXCEPTIONS, IEEE_ARITHMETIC and IEEE_FEATURES intrinsic modules

 ISO_FORTRAN_ENV intrinsic module

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 25

The following is a partial list of Fortran 2003 features that are unimplemented or are known not

to work in this release.

 User-defined derived type I/O

 Parameterized derived types

 Transformational intrinsics, such as MERGE and SPREAD, in initialization expressions

The Intel® Fortran Compiler also supports some features from the Fortran 2008 standard.

Additional features will be supported in future releases. Fortran 2008 features supported by the

current version include:

 Maximum array rank has been raised to 31 dimensions (Fortran 2008 specifies 15)

 Coarrays

 CODIMENSION attribute

 SYNC ALL statement

 SYNC IMAGES statement

 SYNC MEMORY statement

 CRITICAL and END CRITICAL statements

 LOCK and UNLOCK statements

 ERROR STOP statement

 ALLOCATE and DEALLOCATE may specify coarrays

 Intrinsic procedures ATOMIC_DEFINE, ATOMIC_REF, IMAGE_INDEX, LCOBOUND,

NUM_IMAGES, THIS_IMAGE, UCOBOUND

 CONTIGUOUS attribute

 MOLD keyword in ALLOCATE

 DO CONCURRENT

 NEWUNIT keyword in OPEN

 G0 and G0.d format edit descriptor

 Unlimited format item repeat count specifier

 A CONTAINS section may be empty

 Intrinsic procedures BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_YN, BGE, BGT,

BLE, BLT, DSHIFTL, DSHIFTR, ERF, ERFC, ERFC_SCALED, GAMMA, HYPOT, IALL,

IANY, IPARITY, IS_CONTIGUOUS, LEADZ, LOG_GAMMA, MASKL, MASKR,

MERGE_BITS, NORM2, PARITY, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR,

STORAGE_SIZE, TRAILZ,

 Additions to intrinsic module ISO_FORTRAN_ENV: ATOMIC_INT_KIND,

ATOMIC_LOGICAL_KIND, CHARACTER_KINDS, INTEGER_KINDS, INT8, INT16,

INT32, INT64, LOCK_TYPE, LOGICAL_KINDS, REAL_KINDS, REAL32, REAL64,

REAL128, STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE, STAT_UNLOCKED

 An OPTIONAL dummy argument that does not have the ALLOCATABLE or POINTER

attribute, and which corresponds to an actual argument that: has the ALLOCATABLE

attribute and is not allocated, or has the POINTER attribute and is disassociated, or is a

reference to the NULL() intrinsic function, is considered not present

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 26

 A dummy argument that is a procedure pointer may be associated with an actual

argument that is a valid target for the dummy pointer, or is a reference to the intrinsic

function NULL. If the actual argument is not a pointer, the dummy argument shall have

the INTENT(IN) attribute.

4 Intel® Debugger (IDB)
The following notes refer to the Graphical User Interface (GUI) available for the Intel® Debugger

(IDB) when running on IA-32 and Intel® 64 architecture systems. In this version, the idb

command invokes the GUI – to get the command-line interface, use idbc.

4.1 Support Deprecated for Intel® Debugger

In a future major release of the product, the Intel® Debugger may be removed. This would

remove the ability to use:

 The idbc command line debugger

 The idb GUI based debugger

4.2 Setting up the Java* Runtime Environment

The Intel® IDB Debugger graphical environment is a Java application and requires a Java

Runtime Environment (JRE) to execute. The debugger will run with a version 6.0 (also called

1.6).

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

 export PATH=<path_to_JRE_bin_dir>:$PATH

4.3 Starting the Debugger

To start the debugger, first make sure that the compiler environment has been established as

described at Establishing the Compiler Environment. Then use the command:

idb

or

idbc

as desired.

Once the GUI is started and you see the console window, you're ready to start the debugging

session.

Note: Make sure, the executable you want to debug is built with debug info and is an executable

file. Change permissions if required, e.g. chmod +x <application_bin_file>

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 27

4.4 Additional Documentation

Online help titled Intel® Debugger Online Help is accessible from the debugger graphical user

interface as Help > Help Contents.

Context-sensitive help is also available in most debugger dialogs, indicated by a “?” button.

4.5 Debugger Features

4.6 Known Issues and Changes

4.6.1 Coarray elements cannot be viewed.

The IDB Debugger cannot view coarray elements. Please refer to 'How to Debug a Coarray

Application' where a workaround is described.

4.6.2 Signals Dialog not working Signals Dialog not working

The Signals dialog accessible via the GUI dialog Debug / Signal Handling or the shortcut Ctrl+S

is not working correctly. Please refer to the Intel® Debugger (IDB) Manual for use of the signals

command line commands instead.

4.6.3 Resizing GUI

If the debugger GUI window is reduced in size, some windows may fully disappear. Enlarge the

window and the hidden windows will appear again.

4.6.4 $cdir, $cwd Directories

$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but

$cdir is not itself supported as a symbol.

$cwd is the current working directory. Neither the semantics nor the symbol are supported.

The difference between $cwd and '.' is that $cwd tracks the current working directory as it

changes during a debug session. '.' is immediately expanded to the current directory at the time

an entry to the source path is added.

4.6.5 info stack Usage

The gdb mode debugger command info stack does not currently support negative frame

counts the way gdb does, for the following command:

 info stack [num]

A positive value of num prints the innermost num frames, a zero value prints all frames, and a

negative value prints the innermost –num frames in reverse order.

4.6.6 $stepg0 Default Value Changed

The debugger variable $stepg0 changed default to a value of 0. With the value "0" the

debugger will step over code without debug information if you do a "step" command. Set the

debugger variable to 1 to be compatible with previous debugger versions as follows:

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 28

(idb) set $stepg0 = 1

4.6.7 SIGTRAP error on some Linux* Systems

On some Linux distributions (e.g. Red Hat Enterprise Linux Server release 5.1 (Tikanga)) a

SIGTRAP error may occur when the debugger stops at a breakpoint and you continue

debugging. As a workaround you may define the SIGTRAP signal as follows on command line:

(idb) handle SIGTRAP nopass noprint nostop

SIGTRAP is used by the debugger.

SIGTRAP No No No Trace/breakpoint trap

(idb)

Caveat: With this workaround all SIGTRAP signals to the debuggee are

blocked.

4.6.8 idb GUI cannot be used to debug MPI processes

The idb GUI cannot be used to debug MPI processes. The command line interface (idbc) can

be used for this purpose.

4.6.9 Thread Syncpoint Creation in GUI

While for plain code and data breakpoints the field “Location” is mandatory, thread syncpoints

require both “Location” and “Thread Filter” to be specified. The latter specifies the threads to

synchronize. Please note that for the other breakpoint types this field restricts the breakpoints

created to the threads listed.

4.6.10 Stack Alignment for IA-32 Architecture

Due to changes in the default stack alignment for the IA-32 architecture, the usage of inferior

calls (i.e. evaluation of expressions that cause execution of debuggee code) might fail. This can

cause as well crashes of the debuggee and therefore a restart of the debug session. If you need

to use this feature, make sure to compile your code with 4 byte stack alignment by proper usage

of the –falign-stack=<mode> option.

4.6.11 GNOME Environment Issues

With GNOME 2.28, debugger menu icons may not being displayed by default. To get the menu

icons back, you need to go to the “System->Preferences->Appearance, Interface” tab and

enable, "Show icons in menus". If there is not “Interface” tab available, you can change this with

the corresponding GConf keys in console as follows:

 gconftool-2 --type boolean --set /desktop/gnome/interface/buttons_have_icons true

 gconftool-2 --type boolean --set /desktop/gnome/interface/menus_have_icons true

4.6.12 Accessing Online-Help

On systems where the Online-Help is not accessible from the IDB Debugger GUI Help menu,

you can access the web-based debugger documentation from Intel® Software Technical

Documentation.

http://software.intel.com/en-us/intel-software-technical-documentation
http://software.intel.com/en-us/intel-software-technical-documentation

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 29

4.6.13 Debugger crashes if $HOME not set on calling shell

The debugger will end with a “Segmentation fault” if no $HOME environment variable is set on

the shell the debugger is started from.

4.6.14 Command line parameter –parallel not supported

The debugger command line parameter –parallel is not supported on the shell command prompt

nor on the Console Window of the Debugger GUI.

4.6.15 Command line parameter –idb and -dbx not supported

The debugger command line parameters –idb and -debx are not supported in conjunction with

the debugger GUI.

4.6.16 Core File Debugging

To be able to debug core files you need to start the debugger (command line debugger idbc or

GUI debugger idb) with commandline options as follows:

idb|idbc <executable> <corefile>

<or>

idb|idbc <executable> –core <corefile>

Once started with a core file, the debugger is not able to debug a live process e.g. attaching or

creating a new process. Also when debugging a live process, a core file cannot be debugged.

5 Intel® Xeon Phi™ Coprocessors
This section summarizes changes, new features and late-breaking news about developing for

Intel® Xeon Phi™ coprocessors using Intel® Composer XE 2013 for Linux*

5.1 Introduction

Intel® Fortran Composer XE 2013 supports development of applications that offload work to an

Intel® MIC architecture coprocessor (Intel® Xeon Phi™ product family). These sections of code

run on the Intel® Xeon Phi™ coprocessor if it is available. Otherwise, they run on the host CPU.

Development of applications that run natively on Intel® Xeon Phi™ coprocessors is also

supported.

This document uses the terms coprocessor and target to refer to the target of an offload

operation.

5.2 Documentation

Documentation concerning the Intel® MIC architecture for Intel® Fortran Composer XE 2013 is

currently undergoing change. For the latest documentation updates, please visit Intel®

Composer XE 2013 Documentation Updates for Intel MIC Architecture.

http://software.intel.com/en-us/articles/intel-compiler-mic-documentation-updates
http://software.intel.com/en-us/articles/intel-compiler-mic-documentation-updates

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 30

5.3 Debugger

You can attach to code running on an Intel® Xeon Phi™ coprocessor or you can debug code

offloaded from the CPU.

Use of the debugger on a remote system through SSH requires setting the DISPLAY

environment variable to your local X display to minimize lag caused by SSH display forwarding.

The package contains command line versions of the Intel® Debuggers. They are called idbc

(for the Intel® 64 architecture host) and idbc_mic (for the Intel® MIC architecture target).

Please note that the auto-attach feature is not supported in the command line versions of the

debuggers.

5.4 Changes and Known Issues

This section corrects or adds to the product documentation.

5.4.1 *MIC* tag added to compile-time diagnostics

The compiler diagnostics infrastructure has been modified to add an additional offload *MIC* tag

to the output message to allow differentiation from the Target (Intel® MIC Architecture) and the

host CPU compilations. The additional tag appears only in the Target compilation diagnostics

issued when offload directives are seen.

The new tag permits easier association with either the CPU or Target compilation.

5.4.2 Direct (native) mode requires transferring libiomp5.so to coprocessor

The Intel® Manycore Platform Software Stack (Intel® MPSS) does not include Intel® compiler

libraries typically found under /lib.

When running applications in direct mode (i.e. on the coprocessor), users must first upload (via

scp) a copy of any shared object libraries the application uses. For example, the OpenMP*

library (<install_dir>/compiler/lib/mic/libiomp5.so) should be copied to the

coprocessor (device names will be of the format micN, where the first coprocessor will be

named mic0, the second mic1, and so on) before running the application.

Failure to make this library available will result in a run-time failure, such as:

/libexec/ld-elf.so.1: Shared object "libiomp5.so" not found, required

by "sample"

Some applications may require uploading additional libraries.

5.4.3 Stepping “A” Hardware Requires –opt-streaming-stores never

If your Intel® Xeon Phi™ coprocessor is hardware stepping “A”, you must use

the -opt-streaming-stores never option when compiling your application as otherwise

the compiler may generate instructions not supported by the hardware. Stepping “B” and later

hardware support the new instructions.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 31

5.4.4 Runtime errors or crashes when running an application built with the initial Intel®

Composer XE 2013 product release with the offload libraries from a later update

There is a breaking binary compatibility change in the offload libraries for Intel® Composer XE

2013 Update 1 that will cause runtime errors or crashes if you use the Update 1 (or later)

libraries with a binary built with the previous Intel Composer XE 2013 compiler. Examples of the

errors you may observe in this situation are:

Error 1:

***Warning: offload to device #0 : failed

Error 2:

Segmentation fault (core dumped)

Error 3:

terminate called after throwing an instance of 'COIRESULT'

terminate called recursively

Error 4:

CARD--ERROR:1 myoiPageFaultHandler: (nil) Out of Range!

CARD--ERROR:1 _myoiPageFaultHandler: (nil) switch to default signal

handle

CARD--ERROR:1 Segment Fault!

HOST--ERROR:myoiScifGetRecvId: Call recv() Header Failed ! errno = 104

^CHOST--ERROR:myoiScifSend: Call send() Failed! errno = 104

HOST--ERROR:myoiSend: Fail to send message!

HOST--ERROR:myoiBcastToOthers: Fail to send message to 1!

HOST--ERROR:myoiBcast: Fail to send message to others!

To resolve these issues, you should rebuild your application fully with the latest available update

of Intel® Fortran Composer XE 2013.

5.4.5 Non-Contiguous Array Sections May Not Be Passed to an Offload Region

As of compiler version 13.1 (Intel® Fortran Composer XE 2013 Update 2), the run-time library

enforces a restriction that non-contiguous array sections may not be passed into an offload

region. For example:

integer, pointer :: p(:)

integer, target :: t(20)

p => t(1:20:2)

…

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 32

!dir$ omp offload target(mic)

!$omp parallel do shared(p)

…

In this example, p is a non-contiguous array slice and is passed into the offload region. This will

now result in the run-time error:

offload error: offload data transfer supports only a single contiguous

memory range per variable

Make sure that all variables passed into an offload region are contiguous.

5.4.6 Environment Variable for Controlling Offload Behavior

Several additional environment variables are available for controlling offload behavior.

5.4.6.1 MIC_USE_2MB_BUFFERS

Sets the threshold for creating buffers with large pages. A buffer is created with the large pages

hint if its size exceeds the threshold value.

Example:

// any variable allocated on a coprocessor that is equal to

// or greater than 100KB in size will be allocated in large pages.

setenv MIC_USE_2MB_BUFFERS 100k

5.4.6.2 MIC_STACKSIZE

Sets the size of the offload process stack for all Intel® Xeon Phi™ coprocessors used in the

application. This is the overall stack size. Use MIC_OMP_STACKSIZE to modify the size of each

OpenMP* thread.

Example:

setenv MIC_STACKSIZE 100M // Sets MIC stack to 100 MB

5.4.6.3 MIC_ENV_PREFIX

This is the general mechanism to pass environment variable values to each Intel® Xeon Phi™

coprocessor.

The value of MIC_ENV_PREFIX sets the value of the prefix which is used to recognize

environment variable values intended for coprocessors. For example,

setenv MIC_ENV_PREFIX MYCARDS

will use “MYCARDS” as the string that indicates that an environment variable is intended for a

specific coprocessor.

Environment variable values of the form

<mic-prefix>_<var>=<value>

 will send <var>=<value> to each coprocessor.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 33

Environment variable values of the form <mic-prefix>_<card-number>_<var>=<value>

will send <var>=<value> to the coprocessor numbered <card-number>.

Environment variable values of the form

<mic-prefix>_ENV=<variable1=value1|variable2=value2>

will send <variable1>=<value1> and <variable2>=<value2> to each coprocessor.

Environment variable values of the form

<mic-prefix>_<card-number>_ENV=<variable1=value1|variable2=value2>

will send <variable1>=<value1> and <variable2>=<value2> to the coprocessor

numbered <card-number>.

Examples:

setenv MIC_ENV_PREFIX PHI // Defines the prefix to be used

setenv PHI_ABCD abcd // Sets ABCD=abcd on all coprocessors

setenv PHI_2_EFGH efgh // Sets EFGH=efgh on coprocessor 2

setenv PHI_VAR X=x|Y=y // Sets X=x and Y=y on all coprocessors

setenv PHI_4_VAR P=p|Q=q // Sets P=p and Q=q on coprocessor 4

5.4.7 OFFLOAD_DEVICES

The environment variable OFFLOAD_DEVICES restricts the process to use only the

coprocessors specified as the value of the variable. <value> is a comma separated list of

physical device numbers in the range 0 to (number_of_devices_in_the_system-1).

Devices available for offloading are numbered logically. That is _Offload_number_of_devices()

returns the number of allowed devices and device indexes specified in the target specifier of an

offload directive are in the range 0 to (number_of_allowed_devices-1).

Example

setenv OFFLOAD_DEVICES “1,2”

5.4.8 Debugging and Intel® Debugger

5.4.8.1 Using IDB with Intel® Many Integrated Core Architecture

When using the Intel® Debugger for Intel® Many Integrated Core architecture the following

limitations apply:

 When debugging native coprocessor applications on the command line, the remote

debug agent idbserver_mic is uploaded and started using scp/ssh. This implies that

the user id used to start idbc_mic must also exist on the coprocessor. Unless

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 34

passwordless authentication has been configured for this user id, scp and ssh will

require a password being typed.

 When debugging heterogeneous applications on the command line, the offload process

is started as root. Using idbc_mic with a different user id than root will cause the

offload process to not be visible by the remote debug server idbserver_mic. The

workaround is to launch the command line debugger idbc_mic as root. Alternatively

the options -mpm-launch=1 -mpm-cardid=<card-id> can be added to the default

launch options: idbc_mic -mpm-launch=1 -mpm-cardid=<card-id> -tco -

rconnect=tcpip:<cardip>:<port>

5.4.8.2 Safely ending offload debug sessions

To avoid issues such as orphan processes or stale debugger windows when ending offload

applications, manually end the debugging session before the application is reaching its exit

code. The following procedure is recommended for terminating a debug session.

 Manually stop a debug session before the application reaches the exit-code.

 When stopped, press the red stop button in the toolbar in the MIC-side debugger first.

This will end the offloaded part of the application.

 Next, do the same in the CPU-side debugger.

 The link between the two debuggers will be kept alive. The MIC-side debugger will stay

connected to the debug agent and the application will remain loaded in the CPU-side

debugger, including all breakpoints that have been set.

 At this point, both debugger windows can safely be closed.

5.4.8.3 MIC-side debugger asserts on setting source dirs

Setting source directories in the ABR debugger might lead to an assertion.

The assertion should not affect debugger operation. To avoid the assertion, don’t use source

directory settings. The debugger will prompt you to browse for files it cannot locate

automatically.

6 Intel® Math Kernel Library
This section summarizes changes, new features and late-breaking news about this version of

the Intel® Math Kernel Library (Intel® MKL).

6.1 What's New in Intel® MKL 11.0 update 5

 Improved SMP LINPACK performance for 3rd and 4th Generation Intel® Core™

microarchitectures

 Improved matrix generation time for Intel® Optimized MP LINPACK Benchmark for

Clusters

 BLAS:

o Optimized {Z,D}GEMM and double-precision real/complex Level 3 BLAS

functions on Intel® Advanced Vector Extensions 2 (Intel® AVX2)

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 35

o Optimized sequential version of DTRMM on the Intel® Many Integrated Core

Architecture (Intel® MIC Architecture)

o Optimized *SYR2K and *HER2K on the Intel® MIC Architecture

o Optimized DAXPY on Intel® AVX2

 LAPACK:

o Improved performance of ?GESVD for small sizes like M,N<10

 DFT:

o Improved documentation for DFTI compute functions data layout

o Improved performance of workloads specific for GENE application on Intel

Xeon® E5-series (Intel® AVX) and 4th generation Intel Core processors (Intel®

AVX2)

o Added scaling capability to large real-to-complex FFTs

 Added examples for Reverse Communication Interface (RCI) in Intel Extended

Eigensolver

 Added live links to Intel MKL code examples:

o The HTML version of the Intel MKL Reference Manual (available from

http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation/)

provides hyperlinks from references to specific code examples so that when you

click on an example, your Web browser displays the code. See, for example, the

links from the documentation on Fourier Transform Functions and Nonlinear

Optimization Problem Solvers

 Known Limitation: MKL CTRMM may not return bitwise-identical results on some

architectures

Running in CNR mode on all systems supporting the SSE4.2 instruction set, MKL

CTRMM may not return bitwise-identical results if the input matrices contain NaN values.

To get bitwise-identical results, please set the environment variable MKL_CBWR to

COMPATIBLE

6.2 What's New in Intel® MKL 11.0 update 4

 Corrections to reported problems – bug fix list

 Included a fix for SVD multithreading issue

6.3 What’s New in Intel® MKL 11.0 Update 3

 Corrections to reported problems – bug fix list

 BLAS:

o Optimized multithreaded [S/D/C/Z]TRSM for native execution on the Intel® Many

Integrated Core Architecture (Intel® MIC Architecture)

o Improved serial and multithreaded performance of DGEMM on 2nd and 3rd

Generation Intel® Core™ microarchitecture

 Linpack:

o Updated the Intel® Optimized MP LINPACK Benchmark for Clusters package to

HPL 2.1

http://intel.ly/S5uw3R
http://software.intel.com/en-us/articles/svd-multithreading-bug-in-mkl
http://intel.ly/S5uw3R

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 36

o Tuned the Intel® Optimized MP LINPACK Benchmark for Clusters package with

a new offload option for optimizations on systems with zero to eight Intel® Xeon

Phi™coprocessors; added new options, functionality and performance

 Sparse BLAS:

o Improved performance of DCOOMM on Intel® Advanced Vector Extensions 2

(Intel® AVX2)

 LAPACK:

o Parallelized ?LASET, ?LACPY, ?LANGE, ?LANSY

o Improved performance of [C/Z]POTRF on Intel® MIC Architecture

o Improved performance of LU (?GETRF), Cholesky (?POTRF), and QR

(?GEQRF) factorization functions for automatic offload on Intel® MIC

Architecture

 Service Functions:

o Introduced control for number of threads to be used by Automatic Offload in

Intel® MIC Architecture

 FFT:

o Improved Complex-to-complex power-of-2 FFT performance on Intel® AVX2

 VSL:

o Improved performance of SFMT19937 Basic Random Number Generator

(BRNG) on Intel® AVX2 and on Intel® MIC Architecture

 Cluster FFT:

o Improved hybrid mode (MPI + OpenMP) Cluster FFT performance

 Data Fitting:

o Improved performance of df?construct1d function for linear and

Hermite/Bessel/Akima cubic types of splines on Intel® MIC Architecture, Intel®

Xeon® X5570 and Intel® Xeon® E5-2690 CPUs series

o Improved performance of df?interpolate and df?searchcells1d functions on Intel®

MIC Architecture

6.4 What’s New in Intel® MKL 11.0 Update 2

 New Intel® MKL Extended Eigensolver:

o Intel® MKL Extended Eigensolver is a high performance package for solving

symmetric standard or a generalized symmetric-definite eigenvalue problems on

matrices in dense, LAPACK banded, and sparse (CSR) formats. It is based on

an innovative fast and stable numerical algorithm named Feast (see Attributions

section below)

 BLAS:

o Optimized [C/Z]HERK for native execution on the Intel® Many Integrated Core

Architecture (Intel® MIC Architecture)

o Optimized BLAS Level-3 subroutine, ?SYMM (all precisions) for automatic

offload (AO) on Intel® MIC Architecture

 Sparse BLAS:

o Improved performance of 0-based DCSRMM significantly

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 37

 LAPACK:

o Improved performance of parallel versions of ?(OR/UN)G(LQ/QL/QR/RQ)

functions significantly

o Optimized LU (?GETRF), Cholesky (?POTRF), and QR (?GEQRF) factorization

functions for automatic offload on Intel® MIC Architecture

o Improved LU and SMP Linpack performance for 60-cores on Intel® MIC

Architecture

 ScaLAPACK:

o Updated version to 2.0.2. New functions introduced include:

 P?HSEQR: Nonsymmetric Eigenvalue Problem

 P?SYEVR/P?HEEVR: MRRR (Multiple Relatively Robust

Representations) algorithm

 FFT:

o Improved performance of complex-to-complex power-of-2 1D and 2D FFTs on

Intel® MIC Architecture

o Improved performance of real-to-complex power-of-two and odd size 1D FFTs on

Intel® MIC Architecture

o Added example demonstrating use of MKL FFT in Compiler Assisted Offload

usage model for Intel® MIC Architecture with Intel® Fortran compiler

o Decreased DFTI descriptor commit time on Intel® MIC Architecture

o Added FFTW interface wrapper libraries support for Intel® MIC Architecture

 Cluster FFT:

o Implemented transposed order in multidimensional Cluster FFT transforms,

including FFTW2 wrappers

 VSL:

o Supported ICDF (Inverse cumulative distribution function) method in VSL

Lognormal RNG

o Added “const” specifier to declarations of Data Fitting and VSL Summary

Statistics functions

o Improved performance of Wichmann-Hill BRNG on Intel® MIC Architecture

 Data Fitting:

o Improved performance of df[d/s]Interpolate1D, df[d/s]InterpolateEx1D,

df[d/s]SearchCells1D, df[d/s]SearchCellsEx1D routines for default/quasi-uniform

partition, sorted interpolation sites in scalar (number of interpolation sites is 1)

and vector cases for Intel® Xeon® processor X5570 and Intel® Xeon® processor

E5-2600

o Supported DF_DISABLE_CHECK_FLAG parameter in dfiEditVal editor to

improve performance for small number of interpolation sites (fewer than one

dozen) by disabling checking of the correctness of parameters in Data Fitting

routines

 Transposition:

o Parallelized general out-of-place matrix transposition (mkl_?omatcopy2),

improving its performance significantly

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 38

 Service functions:

o Added mkl_peak_mem_usage function which provides information about peak

memory amount used by Intel MKL Memory Allocator

o Added mkl_calloc and mkl_realloc functions extending Intel® MKL Memory

Allocator functionality to standard C library memory allocation API

 Enhanced SMP LINPACK with residual check:

o It returns error code 1 if a failure is detected and prints conclusion if resulting

residuals are ok to pass precision check or not. Please note that residuals might

slightly vary from run-to-run on the same matrix if conditional numerical

reproducibility mode is not turned on. The check ensures that results are reliable.

6.5 What’s New in Intel® MKL 11.0 Update 1

 LAPACK

o Optimized ?(SY/HE)TRD,

?(OR/UN)M(LQ/QL/QR/RQ),?(OR\UN)GQR,?GE(QR/LQ/RQ/QL)F functions for

native performance on Intel® MIC Architecture

o Improved ?GETRF and SMP LINPACK benchmark native performance on Intel®

MIC Architecture

o Optimized ?GETRF, ?GEQRF, ?PORTF functions for automatic offload on Intel®

MIC Architecture

 BLAS

o Optimized [S/D/C/Z]SYMM for native execution on Intel® MIC Architecture

o Improved DGEMM and double-precision Level 3 BLAS performance on AMD*

code name “Bulldozer” CPUs

 Sparse BLAS

o Optimized CSRMV functionality for complex conjugate transpose and Hermitian

cases

 PARDISO

o Imaginary part of the diagonal values for Hermitian matrices are ignored

 Cluster FFT

o Improved hybrid Cluster FFT (MPI + OpenMP*) performance up to 2 times

o A new Cluster FFT algorithm (Segment of Interest FFT) that uses less

communication was implemented for 1D FFTs and it can be enabled by setting

the environment variable "MKL_CFFT_SOI_ENABLE" to "YES" or "1" — see

more info in MKL documentation

 VSL

o Added support of VSL_SS_METHOD_FAST_USER_MEAN method for

computation of descriptive Summary Statistics estimates given user-provided

mean

o Improved performance of VSL_SS_METHOD_FAST method for computations of

descriptive Summary Statistics estimates on Intel® Xeon® processor E5-2690

CPU

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 39

o Improved performance of Summary Statistics algorithms for computation of raw

and central moments, and variance-covariance estimates on Intel® MIC

Architecture

o Improved performance of MT2203 and WH BRNGs on Intel® MIC Architecture

 Transposition

o Improved performance of Out-of-place transposition on 2nd generation Intel®

Core™ microarchitecture (up to 7x)

 Service functions

o Removed seven service functions with obsolete names (see more details here)

6.6 What’s New in Intel® MKL 11.0

 Intel MKL now has support for Intel® Xeon Phi™ coprocessor based on the Intel® Many

Integrated Core Architecture (Intel® MIC Architecture) on Linux* only. There are three

Intel MKL usage models on Intel Xeon Phi coprocessor: automatic offload, compiler

assisted offload and native execution. Most of Intel MKL has been ported to run natively

on these coprocessors. A smaller number of functions have been optimized to

automatically divide their computational work between the host and Intel Xeon Phi

coprocessor, a feature called automatic offload (AO). Read the Intel MKL User’s Guide

for more information. Most standard Intel MKL functions run on Intel Xeon Phi

coprocessor except the Poisson library, Iterative sparse solvers, and Trust region

solvers.

 Conditional Numerical Reproducibility (CNR): New functionality in Intel MKL now allows

you to balance performance with reproducible results by allowing greater flexibility in

code branch choice and by ensuring algorithms are deterministic. See the Intel MKL

User’s Guide for more information. Refer to the Conditional Numerical Reproducibility

Article for more information.

 Intel MKL also introduces optimizations using the new Intel® Advanced Vector

Extensions 2 (AVX2) including the new FMA3 instructions. See the KB Article on support

for Intel® AVX2 for more information.

 BLAS

o Optimized [S/D/C/Z]GEMM, [S/D/C/Z]TRMM, [S/D/C/Z]TRSM, [S/D/C/Z]SYRK,

[S/D]GEMV, [S/D]AXPY, [S/D]DOT for native execution and ?TRMM, ?TRSM,

?GEMM functions for automatic offload on the Intel® MIC Architecture

o Improved DSYRK/SSYRK performance for 64-bit programs supporting Intel®

Advanced Vector Extensions (Intel® AVX)

 Sparse BLAS

o Optimized ?CSRMV, ?CSRMM, and ?CSRSYMV (for unit diagonal case) for

native execution on Intel® MIC Architecture

 LAPACK

o Optimized [S/D]GETRF, [S/D]POTRF, [S/D]GEQRF, [S/D]GELQF, [S/D]GEQLF,

and [S/D]GERQF for native execution on Intel® MIC Architecture

o Introduced support for LAPACK version 3.4.1

 FFT

http://software.intel.com/en-us/articles/some-service-functions-have-become-obsolete-and-will-be-removed-in-subsequent-releases/
http://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110
http://software.intel.com/en-us/articles/conditional-numerical-reproducibility-cnr-in-intel-mkl-110
http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/
http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 40

o Optimized single- and double-precision real-to-complex and complex-to-complex

one-, two-, and three-dimensional fast Fourier transforms for native execution on

Intel® MIC Architecture

o Added configuration parameter DFTI_THREAD_LIMIT which limits the number of

threads per descriptor

o Added support for 1D real-to-complex transforms with sizes given by 64-bit prime

integers

 VML /VSL

o Optimized complex SinCos and CIS functions for native execution on Intel® MIC

Architecture

o Optimized MT19937, MT2203, MRG32k3a BRNGs, and discrete Uniform and

Geometric RNGs for native execution on Intel® MIC Architecture

o Improved performance of viRngGeometric on Intel® Advanced Vector Extensions

(Intel AVX)

o Implemented threading in Data Fitting Integrate1d function

 Transposition: Parallelized in-place transposition of square matrices with leading

dimensions greater than the matrix size for single and double precisions improving its

performance significantly

 Implemented local threading control function (mkl_set_num_threads_local) which

increases flexibility in threading control

 The mklvars.* script no longer sets $FPATH in environment and no longer exports

internal variable MKL_TARGET_ARCH (this change will not impact users as the Intel®

compiler no longer requires these variables)

 Link Tool: Added Intel® MIC Architecture support

 Link Line Advisor:

o Added Help-Me functionality for selecting architecture (IA-32/Intel® 64) and

interface layer (LP64/ILP64)

o Added Intel® MIC Architecture support

6.7 Deprecated and Removed Features

Please refer to the Intel® MKL Deprecations article for more information.

 Intel® MKL no longer supports execution on processors that do not support the Intel®

SSE2 instruction set extensions (Intel® Pentium III and earlier.)

 Removed Intel MKL GNU Multiple Precision* (GMP) function interfaces

 Disabled timing function mkl_set_cpu_frequency() to perform useful work — use

mkl_get_max_cpu_frequency(), mkl_get_clocks_frequency(), and

mkl_get_cpu_frequency() as described in the Intel MKL Reference Manual

 Removed MKL_PARDISO constant — used MKL_DOMAIN_PARDISO to specify the

PARDISO domain with the mkl_domain_set_num_threads() function

 Removed special backward compatibility functions for convolution and correlation

functions in Intel MKL 10.2 update 4

 Documentation:

http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 41

o The Intel MKL Reference Manual in HTML format is no longer available with the

product

o Man pages and Eclipse help integration are no longer provided

6.8 Known Issues

A full list of the known limitations of this release can be found in the Intel® Developer Zone

Content Library for Intel® MKL .

6.9 Attributions

As referenced in the End User License Agreement, attribution requires, at a minimum,

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and

providing a link/URL to the Intel® MKL homepage (www.intel.com/software/products/mkl) in

both the product documentation and website.

The original versions of the BLAS from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/blas/index.html.

The original versions of LAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson,

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All

interfaces are provided for pure procedures.

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are

L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.

Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed

by the University of Basel. It can be obtained at http://www.pardiso-project.org.

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The

Authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela

Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang

Chen, Robert W. Johnson, and Nick Rizzolo.

The Intel® MKL Extended Eigensolver functionality is based on the Feast Eigenvalue Solver 2.0

(http://www.ecs.umass.edu/~polizzi/feast/)

7 Disclaimer and Legal Information

http://software.intel.com/en-us/search/site?f%5b0%5d=im_field_software_product%3A20823&f%5b1%5d=im_field_software_product%3A20825&f%5b2%5d=im_field_article_type%3A20781
http://software.intel.com/en-us/search/site?f%5b0%5d=im_field_software_product%3A20823&f%5b1%5d=im_field_software_product%3A20825&f%5b2%5d=im_field_article_type%3A20781

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 42

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate

features within each processor family, not across different processor families. Go to:

http://www.intel.com/products/processor_number/

for details.

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Intel Atom, Intel Core, Intel Xeon Phi,

Itanium, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and

other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation. All Rights Reserved.

Intel® Fortran Composer XE 2013 for Linux* Installation Guide and Release Notes
 43

