

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 1

Intel® C++ Composer XE 2013 for
Linux* Installation Guide
and Release Notes

Document number: 321412-004US

26 July 2012

Table of Contents
1 Introduction ... 4

1.1 Change History .. 4

1.1.1 Changes since Intel® C++ Composer XE 2011 .. 4

1.2 Product Contents ... 5

1.3 System Requirements .. 5

1.3.1 IA-64 Architecture (Intel® Itanium®) Development Not Supported 7

1.4 Documentation ... 7

1.5 Samples ... 7

1.6 Japanese Language Support ... 8

1.7 Technical Support .. 8

2 Installation ... 8

2.1 Intel® Software Manager ... 9

2.2 Installation of Intel® Many Integrated Core (Intel® MIC) Platform Software Stack

(MPSS) ... 9

2.3 Cluster Installation ... 9

2.4 Silent Install ... 9

2.5 Using a License Server ...10

2.6 Eclipse* Integration Installation ...10

2.7 Known Installation Issues..10

2.8 Installation Folders ..10

2.9 Removal/Uninstall ...12

3 Intel® Many Integrated Core (Intel® MIC) Architecture ..12

3.1 About Intel® Composer XE 2013 for Linux* including Intel® MIC Architecture13

3.2 Compatibility ...13

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 2

3.3 Getting Started ..13

3.4 Product Documentation ..13

3.5 Debuggers ..13

3.6 Intel® Math Kernel Library (Intel® MKL)..14

3.7 Notes ..14

3.7.1 Intel C++ Compiler ...14

3.7.2 Debugging and Intel® Debugger ..19

4 Intel® C++ Compiler ..21

4.1 Compatibility ...21

4.2 New and Changed Features ...21

4.2.1 Static Analysis Feature (formerly “Static Security Analysis” or “Source Checker”)

Requires Intel® Inspector XE ...22

4.3 New and Changed Compiler Options ..23

4.3.1 New and Changed in Composer XE 2013 ..23

4.3.2 -ipp-link option ...24

4.4 Other Changes ...24

4.4.1 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013 24

4.4.2 Binary compatibility change with __regcall functions and elemental functions (i.e.

__declspec(vector)) ...24

4.4.3 New libirng library for vectorizing random number generator functions added to

Composer XE 2013 ..25

4.4.4 Establishing the Compiler Environment..25

4.4.5 Instruction Set Default Changed to Require Intel® Streaming SIMD Extensions 2

(Intel® SSE2) ...25

4.4.6 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013 25

4.4.7 Intel® Cilk™ Plus “scalar” Clause removed ...26

4.4.8 Intel® Cilk™ Plus Array Notations Semantics Change in 2011 update 6..............26

4.5 Known Issues ...26

4.5.1 Intel® Cilk™ Plus Known Issues ..26

4.5.2 Guided Auto-Parallel Known Issues ...27

4.5.3 Static Analysis Known Issues ..27

5 Intel® Debugger (IDB) ...27

5.1 Support Deprecated for Intel® Debugger ..28

5.2 Setting up the Java* Runtime Environment ...28

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 3

5.3 Starting the Debugger ...28

5.4 Additional Documentation ...28

5.5 Debugger Features ...28

5.5.1 Main Features of IDB ...28

5.5.2 Inspector XE 2011 Update 6 Supports “break into debug” with IDB29

5.6 Known Issues and Changes ...29

5.6.1 Default .gdbinit script on Pardus* systems may cause the Debugger crash29

5.6.2 No thread info available on Pardus* systems ...29

5.6.3 Thread Data Sharing Filters may not work correctly ...29

5.6.4 Core File Debugging ..29

5.6.5 Debugger crash if $HOME not set on calling shell ...29

5.6.6 Command line parameter –idb and -dbx not supported ..29

5.6.7 Watchpoints now using processor debug registers (hardware based) in Composer

XE 2011 Update 6 ..29

5.6.8 Position Independent Executable (PIE) Debugging not Supported30

5.6.9 Command line parameter –parallel not supported ..30

5.6.10 Signals Dialog Not Working ...30

5.6.11 Resizing GUI..30

5.6.12 $cdir, $cwd Directories ...31

5.6.13 info stack Usage ..31

5.6.14 $stepg0 Default Value Changed ...31

5.6.15 SIGTRAP error on some Linux* Systems ...31

5.6.16 idb GUI cannot be used to debug MPI processes ..31

5.6.17 Thread Syncpoint Creation in GUI ...31

5.6.18 Data Breakpoint Dialog ..32

5.6.19 Stack Alignment for IA-32 Architecture...32

5.6.20 GNOME Environment Issues ...32

5.6.21 Accessing Online-Help ...32

6 Eclipse Integration ...32

6.1 Supplied Integrations ..32

6.1.1 Integration notes ..32

6.2 How to Install the Intel C++ Eclipse Product Extension in Your Eclipse Platform33

6.2.1 Integrating the Intel® Debugger into Eclipse ..33

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 4

6.3 How to Obtain and Install Eclipse, CDT and a JRE ...34

6.3.1 Installing JRE, Eclipse and CDT ..34

6.4 Launching Eclipse for Development with the Intel C++ Compiler34

6.5 Installing on Fedora* Systems ..35

6.6 Selecting Compiler Versions ...35

7 Intel® Integrated Performance Primitives ...35

7.1 Intel® IPP static threaded Libraries are Available as a Separate Download35

7.2 Intel® IPP Cryptography Libraries are Available as a Separate Download36

7.3 Intel® IPP Code Samples ...36

8 Intel® Math Kernel Library ...36

8.1 Notices ..36

8.2 Changes in This Version ...36

8.2.1 Changes in Initial Release ...36

8.3 Attributions ..38

9 Intel® Threading Building Blocks ...38

10 Disclaimer and Legal Information ...39

1 Introduction
This document describes how to install the product, provides a summary of new and changed

features and includes notes about features and problems not described in the product

documentation.

1.1 Change History

This section highlights important from the previous product version and changes in product

updates. For information on what is new in each component, please read the individual

component release notes.

1.1.1 Changes since Intel® C++ Composer XE 2011

 Development of applications that offload work to or natively run on an Intel® Many

Integrated Core (Intel® MIC) architecture coprocessor is now supported. For details,

see the section on Intel® Many Integrated Core Architecture.

 Intel® C++ Compiler updated to version 13.0.

 Intel® Debugger updated to version 13.0

o Intel® Debugger support deprecated

 Intel® Math Kernel Library updated to version 11.0

o Removed support for Intel® Pentium® III processor. See the Knowledge Base

article on Deprecations for further information.

http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/
http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 5

 Intel® Integrated Performance Primitives updated to version 7.1

o Intel® IPP static threaded libraries now available in separate package

 Intel® Threading Building Blocks updated to version 4.1

 Fedora 17*, SUSE* LINUX Enterprise Server 11 SP2, Ubuntu 11.10* and Ubuntu 12.04*

now supported

 Support for the following versions of Linux distributions has been dropped:

o Red Hat Enterprise Linux 4*

o SUSE* LINUX Enterprise Server 11 SP1

o Fedora 15*

o Ubuntu 11.04*

o Ubuntu 10.04*

o Asianux*

 The Intel® Software Manager has been added to help you manage product updates and

license activation

 New C++11 features

 Improved support for future Intel processors

 Out-of-bounds memory checking

 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013

 Static Analysis Improvements

1.2 Product Contents

Intel® C++ Composer XE 2013 for Linux* includes the following components:

 Intel® C++ Compiler XE 13.0.0 for building applications that run on IA-32, Intel® 64, and

Intel® Many Integrated Core (Intel® MIC) architecture systems running the Linux*

operating system

 Intel® Debugger 13.0.0

 Intel® Integrated Performance Primitives 7.1

 Intel® Math Kernel Library 11.0

 Intel® Threading Building Blocks 4.1

 Integration into the Eclipse* development environment

 On-disk documentation

1.3 System Requirements

For an explanation of architecture names, see http://intel.ly/q9JVjE

 A PC based on an IA-32 or Intel® 64 architecture processor supporting the Intel®

Streaming SIMD Extensions 2 (Intel® SSE2) instructions (Intel® Pentium® 4 processor

or later, or compatible non-Intel processor)

o Development of 64-bit applications or applications targeting Intel® MIC

architecture is supported on a 64-bit version of the OS only. Development of 32-

bit applications is supported on either 32-bit or 64-bit versions of the OS

http://intel.ly/q9JVjE

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 6

o Development for a 32-bit on a 64-bit host may require optional library

components (ia32-libs, lib32gcc1, lib32stdc++6, libc6-dev-i386, gcc-multilib) to be

installed from your Linux distribution.

 For Intel® MIC architecture development/testing:

o Intel® Xeon Phi™ processor

o Intel® MIC Platform Software Stack (MPSS)

 For the best experience, a multi-core or multi-processor system is recommended

 1GB of RAM (2GB recommended)

 2.5GB free disk space for all features

 One of the following Linux distributions (this is the list of distributions tested by Intel;

other distributions may or may not work and are not recommended - please refer to

Technical Support if you have questions):

o Fedora* 17

o Red Hat Enterprise Linux* 5, 6

o SUSE LINUX Enterprise Server* 10, 11 SP2

o Ubuntu* 11.10, 12.04

o Debian* 6.0

o Intel® Cluster Ready

o Pardus* 2011.2 (x64 only)

 Linux Developer tools component installed, including gcc, g++ and related tools

 Library libunwind.so is required in order to use the –traceback option. Some Linux

distributions may require that it be obtained and installed separately.

Additional requirements to use the Graphical User Interface of the Intel® Debugger

 Java* Runtime Environment (JRE) 6.0 (also called 1.6†) – 5.0 recommended

o A 32-bit JRE must be used on an IA-32 architecture system and a 64-bit JRE

must be used on an Intel® 64 architecture system

Additional requirements to use the integration into the Eclipse* development

environment

 Eclipse Platform version 3.7 with:

o Eclipse C/C++ Development Tools (CDT) 8.0 or later

o Java* Runtime Environment (JRE) 6.0 (also called 1.6†) or later

† There is a known issue with JRE 6.0 through update 10 that causes a crash on Intel® 64

architecture. It is recommended to use the latest update for your JRE. See

http://www.eclipse.org/eclipse/development/readme_eclipse_3.7.html section 3.1.3 for details.

Notes

 The Intel compilers are tested with a number of different Linux distributions, with different

versions of gcc. Some Linux distributions may contain header files different from those

we have tested, which may cause problems. The version of glibc you use must be

http://www.eclipse.org/eclipse/development/readme_eclipse_3.7.html%20section%203.1.3

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 7

consistent with the version of gcc in use. For best results, use only the gcc versions as

supplied with distributions listed above.

 The default for the Intel® compilers is to build IA-32 architecture applications that require

a processor supporting the Intel® SSE2 instructions - for example, the Intel® Pentium®

4 processor. A compiler option is available to generate code that will run on any IA-32

architecture processor. However, if your application uses Intel® Integrated Performance

Primitives or Intel® Threading Building Blocks, executing the application will require a

processor supporting the Intel® SSE2 instructions.

 Compiling very large source files (several thousands of lines) using advanced

optimizations such as -O3, -ipo and -openmp, may require substantially larger amounts

of RAM.

 The above lists of processor model names are not exhaustive - other processor models

correctly supporting the same instruction set as those listed are expected to work.

Please refer to Technical Support if you have questions regarding a specific processor

model

 Some optimization options have restrictions regarding the processor type on which the

application is run. Please see the documentation of these options for more information.

1.3.1 IA-64 Architecture (Intel® Itanium®) Development Not Supported

This product version does not support development on or for IA-64 architecture (Intel®

Itanium®) systems. The version 11.1 compiler remains available for development of IA-64

architecture applications.

1.4 Documentation

Product documentation can be found in the Documentation folder as shown under Installation

Folders.

1.5 Samples

Samples for each product component can be found in the Samples folder as shown under

Installation Folders.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 8

1.6 Japanese Language Support

Intel compilers provide support for Japanese language users. Error messages, visual

development environment dialogs and some documentation are provided in Japanese in

addition to English. By default, the language of error messages and dialogs matches that of

your operating system language selection. Japanese-language documentation can be found in

the ja_JP subdirectory for documentation and samples.

Japanese language support will be available in an update on or after the release of Intel® C++

Composer XE 2013.

If you wish to use Japanese-language support on an English-language operating system, or

English-language support on a Japanese-language operating system, you will find instructions

at http://intel.ly/qhINDv

1.7 Technical Support

If you did not register your compiler during installation, please do so at the Intel® Software

Development Products Registration Center. Registration entitles you to free technical support,

product updates and upgrades for the duration of the support term.

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips

and tricks, and other support information, please visit

http://www.intel.com/software/products/support/

Note: If your distributor provides technical support for this product, please contact them for

support rather than Intel.

2 Installation
The installation of the product requires a valid license file or serial number. If you are evaluating

the product, you can also choose the “Evaluate this product (no serial number required)” option

during installation.

If you received your product on DVD, mount the DVD, change the directory (cd) to the top-

level directory of the mounted DVD and begin the installation using the command:

./install.sh

If you received the product as a downloadable file, first unpack it into a writeable directory of

your choice using the command:

tar –xzvf name-of-downloaded-file

Then change the directory (cd) to the directory containing the unpacked files and begin the

installation using the command:

./install.sh

http://intel.ly/qhINDv
https://registrationcenter.intel.com/
https://registrationcenter.intel.com/
http://www.intel.com/software/products/support/

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 9

Follow the prompts to complete installation.

Note that there are several different downloadable files available, each providing different

combinations of components. Please read the download web page carefully to determine which

file is appropriate for you.

You do not need to uninstall previous versions or updates before installing a newer version –

the new version will coexist with the older versions.

2.1 Intel® Software Manager

The installation now provides an Intel® Software Manager to provide a simplified delivery

mechanism for product updates and provide current license status and news on all installed

Intel® software products.

You can also volunteer to provide Intel anonymous usage information about these products to

help guide future product design. This option, the Intel® Software Improvement Program, is not

enabled by default – you can opt-in during installation or at a later time, and may opt-out at any

time. For more information please see http://intel.ly/SoftwareImprovementProgram.

2.2 Installation of Intel® Many Integrated Core (Intel® MIC) Platform

Software Stack (MPSS)

The Intel® MIC Platform Software Stack (MPSS) may be installed before or after installing the

Intel® Composer XE 2013 for Linux* including Intel® MIC Architecture product.

Refer to the Intel® MIC Platform Software Stack (MPSS) documentation for the necessary steps

to install the user space and kernel drivers.

2.3 Cluster Installation

To install a product on multiple nodes of a cluster on Linux*, the following steps should be

taken:

1) Run the installation on a system where Intel® Cluster Studio is installed. Also, passwordless
ssh must be configured between machines in a cluster.
2) On step "4 Options" there will be a "Cluster installation" option. The default

value is "Current node".

3) To install on a cluster, the user must select this option and then provide a machines.LINUX

file with IP-addresses, hostnames, FQDNs, and other information for the cluster nodes (one
node per line). The first line is expected to describe the current (master) node.
4) Once the machines.LINUX file is provided, additional options will appear: Number of

parallel installations, Check for shared installation directory.

5) When all options are configured and installation has begun, the installation will check
connectivity with all nodes (a prerequisite) and only then will it install the product on these
nodes.

2.4 Silent Install

For information on automated or “silent” install capability, please see http://intel.ly/ngVHY8.

http://intel.ly/SoftwareImprovementProgram
http://intel.ly/ngVHY8

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 10

2.5 Using a License Server

If you have purchased a "floating" license, see http://intel.ly/pjGfwC for information on how to

install using a license file or license server. This article also provides a source for the Intel®

License Server that can be installed on any of a wide variety of systems.

2.6 Eclipse* Integration Installation

Please refer to the section below on Eclipse Integration

2.7 Known Installation Issues

 If you have enabled the Security-Enhanced Linux (SELinux*) feature of your Linux

distribution, you must change the SELINUX mode to permissive before installing the

Intel C++ Compiler. Please see the documentation for your Linux distribution for details.

After installation is complete, you may reset the SELINUX mode to its previous value.

 On some versions of Linux, auto-mounted devices do not have the "exec" permission

and therefore running the installation script directly from the DVD will result in an error

such as:

bash: ./install.sh: /bin/bash: bad interpreter: Permission denied

If you see this error, remount the DVD with exec permission, for example:

mount /media/<dvd_label> -o remount,exec

and then try the installation again.

 The product is fully supported on Ubuntu*, Debian*, and Pardus* Linux distributions for

IA-32 and Intel® 64 architecture systems as noted above under System Requirements.

Due to a restriction in the licensing software, however, it is not possible to use the Trial

License feature when evaluating IA-32 components on an Intel® 64 architecture system

under Ubuntu, Debian or Pardus. This affects using a Trial License only. Use of serial

numbers, license files, floating licenses or other license manager operations, and off-line

activation (with serial numbers) is not affected. If you need to evaluate IA-32

components of the product on an Intel® 64 architecture Ubuntu, Debian, or Pardus

system, please visit the Intel® Software Evaluation Center (http://intel.ly/nJS8y8) to

obtain an evaluation serial number.

2.8 Installation Folders

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir>

in the remainder of this document. You are able to specify a different location, and can also

perform a “non-root” install in the location of your choice.

The directory organization has changed since the Intel® Compilers 11.1 release.

While the top-level installation directory has also changed between the original C++ Composer

XE 2011 release and Composer XE 2013, the composerxe symbolic link can still be used to

reference the latest product installation.

http://intel.ly/pjGfwC
http://intel.ly/nJS8y8

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 11

Under <install-dir> are the following directories:

 bin – contains symbolic links to executables for the latest installed version

 lib – symbolic link to the lib directory for the latest installed version

 include – symbolic link to the include directory for the latest installed version

 man – symbolic link to the directory containing man pages for the latest installed version

 ipp – symbolic link to the directory for the latest installed version of Intel® Integrated

Performance Primitives

 mkl – symbolic link to the directory for the latest installed version of Intel® Math Kernel

Library

 tbb – symbolic link to the directory for the latest installed version of Intel® Threading

Building Blocks

 composerxe – symbolic link to the composer_xe_2013 directory

 composer_xe_2013 – directory containing symbolic links to subdirectories for the latest

installed Intel® Composer XE 2013 compiler release

 composer_xe_2013.<n>.<pkg> - physical directory containing files for a specific

compiler version. <n> is the update number, and <pkg> is a package build identifier.

Each composer_xe_2013 directory contains the following directories that reference the latest

installed Intel® Composer XE 2013 compiler:

 bin – directory containing scripts to establish the compiler environment and symbolic

links to compiler executables for the host platform

 pkg_bin – symbolic link to the compiler bin directory

 include – symbolic link to the compiler include directory

 lib – symbolic link to the compiler lib directory

 ipp – symbolic link to the ipp directory

 mkl – symbolic link to the mkl directory

 tbb – symbolic link to the tbb directory

 debugger – symbolic link to the debugger directory

 eclipse_support – symbolic link to the eclipse_support directory

 man – symbolic link to the man directory

 Documentation – symbolic link to the Documentation directory

 Samples – symbolic link to the Samples directory

Each composer_xe_2013.<n>.<pkg> directory contains the following directories that

reference a specific update of the Intel® Composer XE 2013 compiler:

 bin – all executables

 pkg_bin – symbolic link to bin directory

 compiler – shared libraries and header files

 debugger – debugger files

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 12

 Documentation – documentation files

 man – man pages

 eclipse_support – files to support Eclipse integration

 ipp – Intel® Integrated Performance Primitives libraries and header files

 mkl – Intel® Math Kernel Library libraries and header files

 tbb – Intel® Threading Building Blocks libraries and header files

 Samples – Product samples and tutorial files

 .scripts – scripts for installation

If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a

given version and update.

This directory layout allows you to choose whether you want the latest compiler, no matter

which version, the latest update of the Intel® Composer XE 2013 compiler, or a specific update.

Most users will reference <install-dir>/bin for the compilervars.sh [.csh] script,

which will always get the latest compiler installed. This layout should remain stable for future

releases.

2.9 Removal/Uninstall

Removing (uninstalling) the product should be done by the same user who installed it (root or a

non-root user). If sudo was used to install, it must be used to uninstall as well. It is not possible

to remove the compiler while leaving any of the performance library or Eclipse* integration

components installed.

1. Open a terminal window and set default (cd) to any folder outside <install-dir>

2. Type the command: <install-dir>/bin/uninstall.sh

3. Follow the prompts

4. Repeat steps 2 and 3 to remove additional platforms or versions

If you have the same-numbered version of Intel® Fortran Compiler installed, it may also be

removed.

If you have added the Intel C++ Eclipse integration to an instance of Eclipse in your

environment, you will need to update your Eclipse configuration by removing the Intel integration

extension site from your Eclipse configuration. To do this, Go to Help > About Eclipse and click

on "Installation Details". Select "Intel(R) C++ Compiler XE 13.0 for Linux* OS " under "Installed

Software" and click on "Uninstall..." Click "Finish". When asked to restart Eclipse, select "Yes".

3 Intel® Many Integrated Core (Intel® MIC) Architecture
This section summarizes changes, new features and late-breaking news about the Intel

Composer XE 2013 for Linux* including Intel® MIC Architecture.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 13

3.1 About Intel® Composer XE 2013 for Linux* including Intel® MIC

Architecture

The Intel® Composer XE 2013 for Linux* including Intel® MIC Architecture extends the feature

set of the Intel® C++ Composer XE 2013 and the Intel® Fortran Composer XE 2013 products

by enabling predefined sections of code to execute on an Intel® Xeon Phi™ coprocessor.

These sections of code run on the coprocessor if it is available. Otherwise, they run on the host

CPU.

This document uses the terms coprocessor and target to refer to the target of an offload

operation.

The current components of Intel® Composer XE 2013 that support Intel® MIC architecture are

the:

 Intel® C++ and Fortran Compilers

 Intel® Debugger (Intel® IDB)

 Intel® Math Kernel Library (Intel® MKL)

 Intel® Threading Building Blocks (Intel® TBB)

 Eclipse* IDE Integration

3.2 Compatibility

This release supports the Intel® Xeon Phi™ coprocessor. Refer to the Technical Support

section for additional information.

3.3 Getting Started

There is only one compiler that generates code both for Intel® 64 architecture and for Intel®

MIC architecture. Refer to the section on Establishing the Compiler Environment to get started,

using intel64 as the architecture you setup for. Refer to the Notes section below for further

changes.

3.4 Product Documentation

Documentation concerning the Intel® MIC architecture for Composer XE 2013 is currently

undergoing change. For the latest documentation updates, please go to our web site at

http://intel.ly/MxPFYx.

3.5 Debuggers

For graphical debugging, use the Eclipse* integration pointing to the idb_mpm debugger startup

script (under bin/intel64_mic). You can attach to code running on Intel® MIC architecture

or you can debug code offloaded from the CPU.

Use of the debuggers on a remote system through SSH requires setting the DISPLAY

environment variable to your local X display to minimize lag caused by SSH display forwarding.

The package also contains command line versions of these debuggers. They are called idbc

(for the Intel® 64 architecture host) and idbc_mic (for the Intel® MIC architecture target).

http://intel.ly/MxPFYx

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 14

Please note that the auto-attach feature is not supported in the command line versions of the

debuggers.

3.6 Intel® Math Kernel Library (Intel® MKL)

For details on Intel MIC support, see the section on Intel MKL.

3.7 Notes

3.7.1 Intel C++ Compiler

3.7.1.1 Missing symbols not detected at link time

In the offload compilation model, the binaries targeting the Intel® MIC architecture are

generated as dynamic libraries (.so). Dynamic libraries do not need all referenced variables or

routines to be resolved during linking as these can be resolved during load time. This behavior

could mask some missing variable or routine in the application resulting in a failure during load

time. In order to identify and resolve all missing symbols at link time, use the following command

line option to list the unresolved variables.

-offload-option,mic,compiler,"-z defs"

3.7.1.2 Tuning Memory Allocation Performance

This content updates/overrides similar content in the C++ Composer XE 2013 User’s Guide.

For user-allocated data on the coprocessor, using large (2 MB) page allocations via mmap(),

instead of malloc or _mm_malloc, may improve application performance.

Not all applications benefit from using a larger page size. In general, the performance impact

from a larger page-size depends greatly on the data access pattern. If the application accesses

multiple data-structures that are allocated in different pages, having only limit TLB entries for 2

MB pages on the coprocessor can cause performance degradation.

The default page size is 4KB for malloc and _mm_malloc. To enable your application to use

2MB pages, use the sample method provided below:

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 15

3.7.1.3 –opt-prefetch-distance compiler option

Syntax:

-opt-prefetch-distance=n1[,n2]

Allowed values for n1,n2 are >=0 (non-negative integer values). n2 is optional. If n2 is specified,

n1 should be >= n2.

Sample usages:

-opt-prefetch-distance=64,32

-opt-prefetch-distance=16,2

-opt-prefetch-distance=24

Description:

#include <string.h>

#include <sys/mman.h>

#include <stdio.h>

#include <errno.h>

#define TWO_MB (2*1024*1024ULL)

#define MAP_HUGETLB 0x40000 /* create a huge page mapping */

/* allocate memory using huge page support */

#define MALLOC_2M(size) \

 mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS

| MAP_SHARED | \

 MAP_HUGETLB| MAP_POPULATE, -1, 0)

/* free allocated memory */

#define FREE_2M(addr, size) munmap(addr, (size + TWO_MB & ~(TWO_MB-1)))

/**

* allocate_huge_pages - Allocate memory using 2MB page support

* @size - Size of the memory to allocate

*/

static inline void* allocate_huge_pages(size_t size)

{

 size_t sz = size + TWO_MB & ~(TWO_MB-1);

 void* mem = MALLOC_2M(sz);

 if (mem == MAP_FAILED)

 printf("mmap allocation failed\n");

 return mem;

}

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 16

This option is used for performance tuning. This option allows the user to specify the prefetch-

distance. The unit is the number of (possibly-vectorized) iterations that should be used for

compiler-generated prefetches inside loops. The value of n1 will be used as the distance for the

vprefetch1 instruction (prefetch from memory to L2 cache) and value of n2 (if specified) will be

used as the distance for the vprefetch0 instruction (prefetch from L2 cache to L1 cache). If the

option is not used, the prefetch distances will be determined based on compiler heuristics. Note

that the -opt-prefetch option is turned ON by default for Intel® MIC architecture.

This option is ignored if –opt-prefetch=0 is specified.

3.7.1.4 *MIC* tag added to compile-time diagnostics

The compiler diagnostics infrastructure is modified to add an additional offload *MIC* tag to the

output message to allow differentiation from the Target (Intel® MIC Architecture) and the host

CPU compilations. The additional tag appears only in the Target compilation diagnostics issued

when compiling with offload extensions for Intel® MIC architecture.

In the examples below the sample source programs trigger identical diagnostics during both the

host CPU and Target MIC compilations; however, some programs will generate different

diagnostics during these two compilations. The new tag permits easier association with either

the CPU or Target compilation.

$ icc -c sample.c

sample.c(1): warning #1079: *MIC* return type of function "main" must

be "int"

 void main()

 ^

sample.c(5): warning #120: *MIC* return value type does not match the

function type

 return 0;

 ^

sample.c(1): warning #1079: return type of function "main" must be

"int"

 void main()

 ^

sample.c(5): warning #120: return value type does not match the

function type

 return 0;

3.7.1.5 Runtime Type Information (RTTI) not supported

Runtime Type Information (RTTI) is not supported under the Virtual-Shared memory

programming method; specifically, use of dynamic_cast<> and typeid() is not supported.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 17

3.7.1.6 Direct (native) mode requires transferring runtime libraries like libiomp5.so to

coprocessor

The Intel® MIC Platform Software Stack (MPSS) no longer includes Intel compiler libraries

under /lib, for example the OpenMP* library, libiomp5.so.

When running OpenMP* applications in direct mode (i.e. on the coprocessor card), users must

first upload (via scp) a copy of the Intel® MIC Architecture OpenMP* library

(<install_dir>/compiler/lib/mic/libiomp5.so) to the card (device names will be of

the format micN, where the first card will be named mic0, the second mic1, and so on) before

running their application.

Failure to make this library available will result in a run-time failure like:

/libexec/ld-elf.so.1: Shared object "libiomp5.so" not found, required

by "sample"

This can also apply to other compiler runtimes like libimf.so. The required libraries will depend

on the application and how it’s built.

3.7.1.7 Calling exit() from an offload region

When calling exit() from within an offload region, the application terminates with an error

diagnostic “offload error: process on the device 0 unexpectedly exited

with code 0”

3.7.1.8 Environment Variable for Controlling Offload Behavior

Several additional environment variables are available for controlling offload behavior.

3.7.1.8.1 MIC_ENV_PREFIX

This is the general mechanism to pass environment variable values to each Intel® Xeon Phi™

coprocessor.

The value of MIC_ENV_PREFIX sets the value of the prefix which is used to recognize

environment variable values intended for coprocessors. For example,

setenv MIC_ENV_PREFIX MYCARDS

will use “MYCARDS” as the string that indicates that an environment variable is intended for a

specific coprocessor.

Environment variable values of the form

<mic-prefix>_<var>=<value>

will send <var>=<value> to each coprocessor.

Environment variable values of the form <mic-prefix>_<card-number>_<var>=<value>

will send <var>=<value> to the coprocessor numbered <card-number>.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 18

Environment variable values of the form

<mic-prefix>_ENV=<variable1=value1|variable2=value2>

will send <variable1>=<value1> and <variable2>=<value2> to each coprocessor.

Environment variable values of the form

<mic-prefix>_<card-number>_ENV=<variable1=value1|variable2=value2>

will send <variable1>=<value1> and <variable2>=<value2> to the coprocessor

numbered <card-number>.

Examples:

setenv MIC_ENV_PREFIX PHI // Defines the prefix to be used

setenv PHI_ABCD abcd // Sets ABCD=abcd on all coprocessors

setenv PHI_2_EFGH efgh // Sets EFGH=efgh on coprocessor 2

setenv PHI_VAR X=x|Y=y // Sets X=x and Y=y on all coprocessors

setenv PHI_4_VAR P=p|Q=q // Sets P=p and Q=q on coprocessor 4

3.7.1.8.2 MIC_USE_2MB_BUFFERS

Sets the threshold for creating buffers with large pages. A buffer is created with the large pages

hint if its size exceeds the threshold value.

Example:

// any variable allocated on a coprocessor that is equal to

// or greater than 100KB in size will be allocated in large pages.

setenv MIC_USE_2MB_BUFFERS 100k

3.7.1.8.3 MIC_STACKSIZE

Sets the size of the offload process stack for all Intel® Xeon Phi™ coprocessors used in the

application. This is the overall stack size. Use MIC_OMP_STACKSIZE to modify the size of

each OpenMP* thread.

Example:

setenv MIC_STACKSIZE 100M // Sets MIC stack to 100 MB

3.7.1.8.4 OFFLOAD_DEVICES

The environment variable OFFLOAD_DEVICES restricts the process to use only the

coprocessors specified as the value of the variable. <value> is a comma separated list of

physical device numbers in the range 0 to (number_of_devices_in_the_system-1).

Devices available for offloading are numbered logically. That is _Offload_number_of_devices()

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 19

returns the number of allowed devices and device indexes specified in the target specifier of an

offload directive are in the range 0 to (number_of_allowed_devices-1).

Example

setenv OFFLOAD_DEVICES “1,2”

3.7.2 Debugging and Intel® Debugger

3.7.2.1 Using IDB with MPSS Alpha 2 (2.1.3126-x)

When using the Intel® Debugger for Intel® Many Integrated Core architecture

with firmware version MPSS Alpha 2 (2.1.3126-x) the following limitations

apply:

 The Eclipse* CDT integration of the Intel® Debugger does not support "Attach to

process" for native applications running on the coprocessor

 When debugging native coprocessor applications on the command line, the remote

debug agent idbserver_mic is uploaded and started using scp/ssh. This implies that

the user id used to start idbc_mic must also exist on the coprocessor card. Unless

passwordless authentication has been configured for this user id, scp and ssh will

require a password being typed.

 When debugging native coprocessor applications on the command line, the shared

library libmyodbl-service.so, that used to be uploaded to the coprocessor

automatically needs to be uploaded manually now.

The way to achieve this is to create an overlay, so the file is uploaded at boot time.

Follow the instructions on how to use overlays in the MPSS readme.txt (currently

available from the “Intel® SDP MAKC1 Family” product in Intel® Premier Support).

The steps needed to implement this specific overlay look like this:

a. Create /etc/sysconfig/mic/conf.d/myo.conf containing the following:

MYO download files

Overlay /

/opt/intel/mic/myo/config/myo.filelist

b. Create /opt/intel/mic/myo/config/myo.filelist containing

dir /lib64 755 0 0

file /lib64/libmyodbl-service.so

opt/intel/mic/myo/lib/libmyodbl-service.so 755 0 0

 When debugging heterogeneous applications on the command line, the offload process

is started as root. Using idbc_mic with a different user id than root will cause the

offload process to not be visible by the remote debug server idbserver_mic. The

workaround is to launch the command line debugger idbc_mic as root. Alternatively

the options -mpm-launch=1 -mpm-cardid=<card-id> can be added to the default

launch options: idbc_mic -mpm-launch=1 -mpm-cardid=<card-id> -tco -

rconnect=tcpip:<cardip>:<port>

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 20

 When debugging heterogeneous applications from Eclipse*, you may get the error

“offload error: cannot start process on the device 0 (error code 1)” when creating the

offload process. To work around this, restart the debugging session until you get a

session that creates the offload process successfully.

3.7.2.2 The IDB Debugger may fail to setup the command line argument for the

debuggee under Eclipse*

The debugger may not set the command line argument for the debuggee correctly under

Eclipse when loading an application using the `file’ command in GDB mode. The debugee may

abort with the message:

*** abort -internal failure : get_command_argumentfailed

In this case, add the executable to the command line argument of IDB.

3.7.2.3 Eclipse* fails to display local variables

Local variables cannot be seen under the Eclipse environment while debugging an application.

Workaround: Enter the local variable into the Expression Window of Eclipse to get its value.

3.7.2.4 Safely ending offload debug sessions

To avoid issues like orphan processes or stale debugger windows when ending offload

applications, manually end the debugging session before the application is reaching its exit

code. The following procedure is recommended for terminating a debug session.

 Manually stop a debug session before the application reaches the exit-code.

 When stopped, press the red stop button in the toolbar in the MIC-side debugger first.

This will end the offloaded part of the application.

 Next, do the same in the CPU-side debugger.

 The link between the two debuggers will be kept alive. The MIC-side debugger will stay

connected to the debug agent and the application will remain loaded in the CPU-side

debugger, including all breakpoints that have been set.

 At this point, both debugger windows can safely be closed.

3.7.2.5 MIC-side debugger asserts on setting source dirs

Setting source directories in the ABR debugger might lead to an assertion.

Resolution:

The assertion should not affect debugger operation. To avoid the assertion anyway, don’t use

source directory settings. The debugger will prompt you to browse for files it cannot locate

automatically.

3.7.2.6 Accessing _Cilk_shared variables in the debugger

Writing to a shared variable in an offloaded section from within the CPU-side debugger before

the CPU-side debugee has accessed that variable may result in loss of the written value/might

display a wrong value or cause the application to crash.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 21

Consider the following code snippet:

_Cilk_shared bool is_active;

_Cilk_shared my_target_func() {

//Accessing “is_active” from the debugger *could* lead to unexpected

//results e.g. a lost write or outdated data is read.

is_active = true;

//Accessing "is_active" (read or write) from the debugger at this

//point is considered safe e.g. correct value is displayed.

}

4 Intel® C++ Compiler
This section summarizes changes, new features and late-breaking news about the Intel C++

Compiler.

4.1 Compatibility

In version 11.0, the IA-32 architecture default for code generation changed to assume that

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions are supported by the processor

on which the application is run. See below for more information.

4.2 New and Changed Features

C++ Composer XE 2013 now contains Intel® C++ Compiler XE 13.0. The following features are

new or significantly enhanced in this version. For more information on these features, please

refer to the documentation.

 Support for Intel® MIC architecture, both via offload (pragmas/keywords) and native

(with –mmic) compilation

o Language Extensions for Offload

o Offload Extensions for Data Marshaling (Non-shared memory) method

o Offload Extensions for Virtual-Shared memory method

 Improved support for 3rd Generation Intel® Core™ processor family (-xCORE-AVX-I and

–axCORE-AVX-I) and future Intel processors supporting Intel® Advanced Vector

Extensions 2 (Intel® AVX2) (-xCORE-AVX2 and –axCORE-AVX2)

 Features from C++11 (-std=c++0x)

o Additional type traits

o Uniform initialization

o Generalized constant expressions (partial support)

o noexcept

o Range based for loops

o Conversions of lambdas to function pointers

o Implicit move constructors and move assignment operators

o Support for C++11 features in gcc 4.6 and 4.7 headers

 Out-of-bounds memory checking (-check-pointers)

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 22

 More options for controlling the analysis for Static Analysis (-diag-enable sc-

{full|concise|precise})

4.2.1 Static Analysis Feature (formerly “Static Security Analysis” or “Source Checker”)

Requires Intel® Inspector XE

The “Source Checker” feature, from compiler version 11.1, has been enhanced and renamed

“Static Analysis”. The compiler options to enable Static Analysis remain the same as in

compiler version 11.1 (for example, -diag-enable sc), but the results are now written to a

file that is interpreted by Intel® Inspector XE rather than being included in compiler diagnostics

output.

4.2.1.1 The command line utility “inspxe-runsc.exe” changed since 2011 update 2

This utility is distributed with Intel® Composer XE 2011 and has been changed since 2011

update 2. This change only affects users who use Composer XE 2011 to perform Static

Analysis. Those that do not use Static Analysis and those that perform Static Analysis without

using this utility are unaffected. Static Analysis is only available to users of Intel® Parallel

Studio XE, Intel® C++ Studio XE, or Intel® Fortran Studio XE versions 2011 or 2013, so users

who do not have those products are unaffected.

Inspxe-runsc executes a build specification, a description of how an application is built.

Usually build specification files are generated by observing a build as it executes and recoding

the compilations and links that are performed. Inspxe-runsc repeats these actions using the

Intel compiler in Static Analysis mode. Static Analysis results are generated at the link step so a

build specification that describes a build with more than one link step will generate more than

one Static Analysis result when inspxe-runsc is invoked.

The versions of inspxe-runsc included in Composer XE 2011 and Composer XE 2011 Update 1

generate all the Static Analysis results in a single directory. In the multiple link case this

violated the rule that all the Static Analysis results for one and only one project must be created

in the same directory. The updated version of inspxe-runsc respects this rule by generating

results for each link step in a separate directory. The name of that directory is formed from the

name of the file being linked. Thus if a build specification describes a project that builds two

executables, file1.exe and file2.exe, then earlier versions of inspxe-runsc would create two

results, one for file1 and one for file2, say r000sc and r001sc, in the same directory. The new

version of inspxe-runsc will also create two results, but the one for file1 will be created in “My

Inspector XE results – file1\r000sc” and the one for file2 will be created in “My Inspector XE

results – file2\r000sc”. The directories containing the results are both created in the same

parent directory.

Inspxe-runsc has a command line switch, -result-dir (-r), that specifies where results are to be

created. The meaning of this switch has changed. Previous this would name the directory

where the result itself, say r000sc, would be created. Now it names the parent directory where

the “My Inspector XE Results - name” directory or directories will be created. So the directory

named in the –r switch is effectively two levels up from the results themselves.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 23

The change to inspxe-runsc effectively moves the result directory, and user action is required to

adapt to this change. Those using scripts that invoke inspxe-runsc with the –r switch must

update their scripts to reflect the new interpretation of the –r switch argument described earlier.

Users must move their old result files into the new directory so that Static Analysis results

produced by earlier versions of inspxe-runsc share the same directory as results produced by

the new version of inspxe-runsc. Users that had been using inspxe-runsc with a build

specification with only one link step should move their old results into a directory of the form “My

Inspector XE results – name”. If this is not done, then all the problems in the newly created

result will appear to be “New”. Users that had been using inspxe-runsc with a build specification

with multiple link steps have been having various issues with Static Analysis that will be

resolved by using the new utility. Such users are best advised to copy the most recent into their

old results into each of the new “My Inspector XE results – name” directories. This offers the

best chance that some old problem state information will be correctly applied to new results

when they are created in the future.

4.3 New and Changed Compiler Options

For details on these and all compiler options, see the Compiler Options section of the on-disk

documentation.

4.3.1 New and Changed in Composer XE 2013

 -vec-report6

 -f[no-]defer-pop

 -f[no-]optimize-sibling-calls

 -mmic

 -fextend-arguments=[32|64]

 -guide-profile=<file|dir>[,[file|dir],…]

 -openmp-link <library>

 -opt-prefetch-distance=N[,N]

 -debug [no]pubnames

 -debug [no]profiling

 -grecord-gcc-switches

 -fno-merge-constants

 -check-pointers=<arg>

 -check-pointers-dangling=<arg>

 -std=c++11 (same as –std=c++0x)

 -[no-]check-pointers-undimensioned

 -no-]check-uninit functionality expanded to –check=<keyword>[,<keyword>…]. Use –

check:[no]uninit for original functionality.

 -w3

 -W[no-]unused-parameter

 -W[no-]invalid-pch

 -noerror-limit removed

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 24

 -diag-enable sc-{full|concise|precise}

 -diag-enable sc-single-file

 -diag-enable sc-enums

 -watch=<keyword>

 -nowatch

 -offload-attribute-target=<name>

 -offload-option,<target>,<tool>, “option list”

 -no-offload

 -fimf-domain-exclusion=classlist[:funclist]

 -ipp-link={static|dynamic|static_thread}

 -fms-dialect=11

 -static-libstdc++

 -[no-]pie

 For a list of deprecated compiler options, see the Compiler Options section of the

documentation.

4.3.2 -ipp-link option

This option is used with -ipp to indicate which variant of the Intel® Integrated Performance

Primitives libraries should be used. There are three options, static to link against the static

single-threaded libraries, dynamic to link against the dynamic libraries, or static-thread to link

against the static multithreaded libraries. Note that the static multithreaded libraries are only

available in a separate package.

4.4 Other Changes

4.4.1 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013

Here's the new warning levels as listed in “icc –help”:

-w<n> control diagnostics

 n = 0 enable errors only (same as -w)

 n = 1 enable warnings and errors (DEFAULT)

 n = 2 enable verbose warnings, warnings and errors

 n = 3 enable remarks, verbose warnings, warnings and errors

Previously, remarks were listed under –w2. This has been changed so that remarks are now enabled

under the new warning level –w3.

4.4.2 Binary compatibility change with __regcall functions and elemental functions (i.e.

__declspec(vector))

Intel® C++ Composer XE 2013 introduces an incompatibility with previous compiler versions in

the way the __regcall calling convention is handled. Starting from this version, the RBX register

is considered to be a callee-save register for __regcall routines, whereas in previous versions it

was true only for IA32 targets. This could cause run-time fails if binaries built with different

versions of the compilers are used together, so the compiler changes the name decoration

scheme for __regcall routines using a new __regcall2__ prefix for mangling __regcall routines

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 25

(previously the prefix was __regcall__). Binaries built with different versions of the compiler will

therefore not link together successfully.

If you have functions declared with the __regcall interface or with the __declspec(vector)

elemental function interface, code with these functions built with C++ Composer XE 2013 will

not link with code with these functions built with earlier compilers. If you use these declarations,

make sure to rebuild all necessary code with C++ Composer XE 2013.

4.4.3 New libirng library for vectorizing random number generator functions added to

Composer XE 2013

The compiler can now automatically vectorize the drand48 family of random number generator

functions provided by the C standard library. A new library, libirng.a and libirng.so, has been

added to implement this support.

4.4.4 Establishing the Compiler Environment

The compilervars.sh script is used to establish the compiler environment.

compilervars.csh is also provided.

The command takes the form:

source <install-dir>/bin/compilervars.sh argument

Where argument is either ia32 or intel64 as appropriate for the architecture you are

building for. Establishing the compiler environment also establishes the environment for the

Intel® Debugger, Intel® Performance Libraries and, if present, Intel® Fortran Compiler.

4.4.5 Instruction Set Default Changed to Require Intel® Streaming SIMD Extensions 2

(Intel® SSE2)

When compiling for the IA-32 architecture, -msse2 (formerly -xW) is the default. Programs built

with –msse2 in effect require that they be run on a processor that supports the Intel® Streaming

SIMD Extensions 2 (Intel® SSE2), such as the Intel® Pentium® 4 processor and some non-Intel

processors. No run-time check is made to ensure compatibility – if the program is run on an

unsupported processor, an invalid instruction fault may occur. Note that this may change

floating point results since the Intel® SSE instructions will be used instead of the x87

instructions and therefore computations will be done in the declared precision rather than

sometimes a higher precision.

All Intel® 64 architecture processors support Intel® SSE2.

To specify the older default of generic IA-32, specify –mia32

4.4.6 New Warning Level –w3 and Changes to Warning Levels in Composer XE 2013

Here's the new warning levels as listed in “icc –help”:

-w<n> control diagnostics

 n = 0 enable errors only (same as -w)

 n = 1 enable warnings and errors (DEFAULT)

 n = 2 enable verbose warnings, warnings and errors

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 26

 n = 3 enable remarks, verbose warnings, warnings and errors

Previously, remarks were listed under –w2. This has been changed so that remarks are now enabled

under the new warning level –w3.

4.4.7 Intel® Cilk™ Plus “scalar” Clause removed

The “scalar” clause used optionally with Intel® Cilk™ Plus elemental functions is removed in this

release. Please use the functionally equivalent “uniform” clause instead.

4.4.8 Intel® Cilk™ Plus Array Notations Semantics Change in 2011 update 6

In Intel® C++ Composer XE 2011, an Intel® Cilk™ Plus array section assignment like the

following:

a[:] = b[:] + c[:];

could potentially generate temporary copies of the results, impacting performance.

Starting in Intel® C++ Composer XE 2011 update 6, if an array section on the right hand side of

an assignment (in the example given, b[:] or c[:]) partially overlaps the array section on the left

hand side (in the example given, a[:]) in memory, this assignment will be undefined, and it is up

to the programmer to assure that there is no partial overlap in memory on assignments in order

to get defined behavior.

An exception to this is if the array sections completely overlap, for example:

a[:] = a[:] + 3;

Since array a overlaps itself completely, this summation will work as expected.

4.5 Known Issues

4.5.1 Intel® Cilk™ Plus Known Issues

 Static linkage of the runtime is not supported

Static versions of the Intel® Cilk™ Plus library are not provided by design. Using –

static-intel to link static libraries will generate an expected warning that the

dynamic version of the of Intel® Cilk™ Plus library, libcilkrts.so, is linked.

$ icc -static-intel sample.c

icc: warning #10237: -lcilkrts linked in dynamically, static

library not available

Alternatively, you can build the open source version of Intel Cilk Plus with a static

runtime. See http://cilk.com for information on this implementation of Intel Cilk Plus.

http://cilk.com/

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 27

4.5.2 Guided Auto-Parallel Known Issues

Guided Auto Parallel (GAP) analysis for single file, function name or specific range of source

code does not work when Whole Program Interprocedural Optimization (-ipo) is enabled

4.5.3 Static Analysis Known Issues

4.5.3.1 Excessive false messages on C++ classes with virtual functions

Note that use of the Static Analysis feature also requires the use of Intel® Inspector XE.

Static analysis reports a very large number of incorrect diagnostics when processing any
program that contains a C++ class with virtual functions. In some cases the number of spurious
diagnostics is so large that the result file becomes unusable.

If your application contains this common C++ source construct, add the following command line

switch to suppress the undesired messages: /Qdiag-disable:12020,12040 (Windows) or

–diag-disable 12020,12040 (Linux). This switch must be added at the link step

because that is when static analysis results are created. Adding the switch at the compile
step alone is not sufficient.

If you are using a build specification to perform static analysis, add the –disable-id

12020,12040 switch to the invocation of the inspxe-runsc, for example,
 inspxe-runsc –spec-file mybuildspec.spec -disable-id 12020,12040

If you have already created a static analysis result that was affected by this issue and you are
able to open that result in the Intel® Inspector XE GUI, then you can hide the undesired
messages as follows:

 The messages you will want to suppress are “Arg count mismatch” and “Arg type

mismatch”. For each problem type, do the following:

 Click on the undesired problem type in the Problem filter. This hides all other problem
types.

 Click on any problem in the table of problem sets

 Type control-A to select all the problems

 Right click and select Change State -> Not a problem from the pop-up menu to set the
state of all the undesired problems

 Reset the filter on problem type to All

 Repeat for the other unwanted problem type

 Set the Investigated/Not investigated filter to Not investigated. You may have to scroll
down in the filter pane to see it as it is near the bottom. This hides all the undesired
messages because the “Not a problem” state is considered a “not investigated” state.

5 Intel® Debugger (IDB)
The following notes refer to the Graphical User Interface (GUI) available for the Intel® Debugger

(IDB) when running on IA-32 and Intel® 64 architecture systems. In this version, the idb

command invokes the GUI – to get the command-line interface, use idbc.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 28

5.1 Support Deprecated for Intel® Debugger

In a future major release of the product, the Intel® Debugger may be removed. This would

remove the ability to use:

 The idbc command line debugger

 The idb GUI based debugger

5.2 Setting up the Java* Runtime Environment

The Intel® IDB Debugger graphical environment is a Java application and requires a Java

Runtime Environment (JRE) to execute. The debugger will run with a 6.0 (also called 1.6) JRE.

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

export PATH=<path_to_JRE_bin_dir>:$PATH

5.3 Starting the Debugger

To start the debugger, first make sure that the compiler environment has been established as

described at Establishing the Compiler Environment. Then use the command:

idb

or

idbc

as desired.

Once the GUI is started and you see the console window, you're ready to start the debugging

session.

Note: Make sure that the executable you want to debug is built with debug info and is an

executable file. Change permissions if required, e.g. chmod +x <application_bin_file>

5.4 Additional Documentation

Online help titled Intel® Compilers / Intel® Debugger Online Help is accessible from the

debugger graphical user interface as Help > Help Contents.

Context-sensitive help is also available in several debugger dialogs where a Help button is

displayed.

5.5 Debugger Features

5.5.1 Main Features of IDB

The debugger supports all features of the command line version of the Intel® IDB Debugger.

Debugger functions can be called from within the debugger GUI or the GUI-command line.

Please refer to the Known Limitations when using the graphical environment.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 29

5.5.2 Inspector XE 2011 Update 6 Supports “break into debug” with IDB

Inspector XE 2011 Update 6 now supports “break into debug” mode with the Composer XE

2011 Update 6 and later versions of IDB. Refer to the Inspector XE 2011 Release Notes for

more information.

5.6 Known Issues and Changes

5.6.1 Default .gdbinit script on Pardus* systems may cause the Debugger crash

If you encounter a debugger crash when starting idbc or idb, you may add the option –nx to

bypass the default .gdbinit script.

5.6.2 No thread info available on Pardus* systems

Due to an issue with the default libthread_db.so library on Pardus* systems, the debugger

cannot detect thread info when debugging multithreaded applications.

5.6.3 Thread Data Sharing Filters may not work correctly

Setting Thread Data Sharing Filters may lead to unexpected behavior of the debugger. It may

happen that threads will not continue after a data sharing detection and the debugger may exit

with a SIG SEGV.

If you encounter issues related to Data Sharing Detection with filters enabled, disable all filters

in the ‘Thread Data Sharing Filters’ window context menu.

5.6.4 Core File Debugging

To be able to debug core files you need to start the debugger (command line debugger idbc or

GUI debugger idb) with command-line options as follows:

idb|idbc <executable> <corefile>

<or>

idb|idbc <executable> –core <corefile>

Once started with a core file, the debugger is not able to debug a live process e.g. attaching or

creating a new process. Also, when debugging a live process a core file cannot be debugged.

5.6.5 Debugger crash if $HOME not set on calling shell

The debugger will end with a “Segmentation fault” if no $HOME environment variable is set on

the shell the debugger is started from.

5.6.6 Command line parameter –idb and -dbx not supported

The debugger command line parameters –idb and -dbx are not supported in conjunction with

the debugger GUI.

5.6.7 Watchpoints now using processor debug registers (hardware based) in Composer

XE 2011 Update 6

Switching from the Intel® Composer XE 2011 (IDB 12.0) to Composer XE 2011 Update 6 (IDB

12.1) debugger, watchpoint support is now entirely supported by using the processor debug

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 30

registers. Hence their possible configurations are specified by the underlying processor

architecture. For IA-32 and Intel® 64 architecture systems there are the following limitations (if

possible IDB will raise appropriate error messages to assist the user):

 Possible sizes of the watched memory areas are only 1, 2, 4 or 8 (Intel® 64 architecture

only) bytes.

 The start address of the watched memory area has to be aligned with its size. For

example it is not possible to watch 2 bytes starting with an odd address.

 There is only support for a maximum of 4 active/enabled watchpoints. Unused ones can

be disabled to free resources and to enable/create other ones.

 Only the following access modes are supported:

o Write: trigger on write accesses

o Any: trigger on either write or read accesses

o Changed: trigger on write accesses that actually changed the value

 Watched memory areas must not overlap each other.

 Watchpoints are not scope related but tied to a process. As long as a process exists the

watchpoints are active/enabled. Only if the process is terminated (e.g. rerun) will the

watchpoints will be disabled. They can be enabled again if the user wishes to do so.

 Using the debugger to access the watched memory area (e.g. assign a different value to

a variable) bypasses the hardware detection. Hence watchpoints only trigger if the

debuggee itself accessed the watched memory area.

 If the debuggee is running on a guest OS inside a virtual machine, stepping over an

instruction or code line might continue the process without stopping. Watchpoints are

only guaranteed to work when the debuggee runs on real hardware.

5.6.8 Position Independent Executable (PIE) Debugging not Supported

On some systems the compiler is tuned to produce Position Independent Executable (PIE)

code. In those cases the flag –fno-pie has to be used both for compilation and linking, otherwise

the application cannot be debugged.

5.6.9 Command line parameter –parallel not supported

The debugger command line parameter –parallel is not supported on the shell command prompt

nor on the Console Window of the Debugger GUI.

5.6.10 Signals Dialog Not Working

The Signals dialog accessible via the GUI dialog Debug / Signal Handling or the shortcut Ctrl+S

is not working correctly. Please refer to the Intel® Debugger (IDB) Manual for use of the signals

command line commands instead.

5.6.11 Resizing GUI

If the debugger GUI window is reduced in size, some windows may fully disappear. Enlarge the

window and the hidden windows will appear again.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 31

5.6.12 $cdir, $cwd Directories

$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but

$cdir is not itself supported as a symbol.

$cwd is the current working directory. Neither the semantics nor the symbol is supported.

The difference between $cwd and '.' is that $cwd tracks the current working directory as it

changes during a debug session. '.' is immediately expanded to the current directory at the time

an entry to the source path is added.

5.6.13 info stack Usage

The GDB mode debugger command info stack does not currently support negative frame

counts the way GDB does, for the following command:

 info stack [num]

A positive value of num prints the innermost num frames, a zero value prints all frames and a

negative one prints the innermost –num frames in reverse order.

5.6.14 $stepg0 Default Value Changed

The debugger variable $stepg0 changed default to a value of 0. With the value "0" the

debugger will step over code without debug information if you do a "step" command. Set the

debugger variable to 1 to be compatible with previous debugger versions as follows:

(idb) set $stepg0 = 1

5.6.15 SIGTRAP error on some Linux* Systems

On some Linux distributions (e.g. Red Hat Enterprise Linux Server release 5.1 (Tikanga)) a

SIGTRAP error may occur when the debugger stops at a breakpoint and you continue

debugging. As a workaround you may define the SIGTRAP signal as follows on command line:

(idb) handle SIGTRAP nopass noprint nostop

SIGTRAP is used by the debugger.

SIGTRAP No No No Trace/breakpoint trap

(idb)

Caveat: With this workaround all SIGTRAP signals to the debuggee are blocked.

5.6.16 idb GUI cannot be used to debug MPI processes

The idb GUI cannot be used to debug MPI processes. The command line interface (idbc) can

be used for this purpose.

5.6.17 Thread Syncpoint Creation in GUI

While for plain code and data breakpoints the field “Location” is mandatory, thread syncpoints

require both “Location” and “Thread Filter” to be specified. The latter specifies the threads to

synchronize. Please note that for the other breakpoint types this field restricts the breakpoints

created to the threads listed.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 32

5.6.18 Data Breakpoint Dialog

The fields “Within Function” and “Length” are not used. The location to watch provides the

watched length implicitly (the type of the effective expression is used). Also “Read” access is not

working.

5.6.19 Stack Alignment for IA-32 Architecture

Due to changes in the default stack alignment for the IA-32 architecture, the usage of inferior

calls (i.e. evaluation of expressions that cause execution of debuggee code) might fail. This can

cause as well crashes of the debuggee and therefore a restart of the debug session. If you need

to use this feature, make sure to compile your code with 4 byte stack alignment by proper usage

of the –falign-stack=<mode> option.

5.6.20 GNOME Environment Issues

With GNOME 2.28, debugger menu icons may not being displayed by default. To get the menu
icons back, you need to go to the “System->Preferences->Appearance, Interface” tab and
enable, "Show icons in menus". If there is not “Interface” tab available, you can change this with

the corresponding GConf keys in console as follows:
 gconftool-2 --type boolean --set

/desktop/gnome/interface/buttons_have_icons true

 gconftool-2 --type boolean --set

/desktop/gnome/interface/menus_have_icons true

5.6.21 Accessing Online-Help

On systems where the Online-Help is not accessible from the IDB Debugger GUI Help menu,
you can access the web-based debugger documentation from
http://intel.ly/o5DMp9

6 Eclipse Integration
The Intel C++ Compiler installs an Eclipse feature and associated plugins (the Intel C++ Eclipse

Product Extension) which provide support for the Intel C++ compiler when added as an Eclipse

product extension site to an existing instance of the Eclipse* Integrated Development

Environment (IDE). With this feature, you will be able to use the Intel C++ compiler from within

the Eclipse integrated development environment to develop your applications.

6.1 Supplied Integrations

The Intel feature provided in the directory

<install-dir>/eclipse_support/cdt8.0/eclipse

supports and requires Eclipse Platform version 3.7, Eclipse C/C++ Development Tools (CDT)

version 8.0 or later and a functional Java Runtime Environment (JRE) version 6.0 (also called

1.6) update 11 or later.

6.1.1 Integration notes

If you already have the proper versions of Eclipse, CDT and a functional JRE installed and

configured in your environment, then you can add the Intel C++ Eclipse Product Extension to

your Eclipse Platform, as described in the section, below, entitled How to Install the Intel C++

http://intel.ly/o5DMp9

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 33

Eclipse Product Extension in Your Eclipse Platform. Otherwise, you will first need to obtain and

install Eclipse, CDT and a JRE, as described in the section, below, entitled How to Obtain and

Install Eclipse, CDT and a JRE and then install the Intel C++ Eclipse Product Extension.

6.2 How to Install the Intel C++ Eclipse Product Extension in Your Eclipse

Platform

To add the Intel C++ product extension to your existing Eclipse configuration, follow these

steps, from within Eclipse.

Open the "Available Software" page by selecting: Help > Install New Software...

Click on the "Add..." button. Select "Local...". A directory browser will open. Browse to select the

eclipse directory in your Intel C++ compiler installation. For example, if you installed the

compiler as root to the default directory, you would browse to

/opt/intel/composer_xe_2013.<n>.<xxx>/eclipse_support/cdt8.0/eclipse.

Select “OK” to close the directory browser. Then select "OK" to close the “Add Site” dialog.

Select the two boxes for the Intel C++ integration: there will be one box for “Intel® C++ Compiler

Documentation” and a second box for “Intel® C++ Compiler XE 13.0 for Linux* OS”. Note: The

Intel features will not be visible if you have Group items by category set – unset this option to

view the Intel features. If you also installed the Intel® Debugger (idb) with its Eclipse product

extension and would like to use idb from within Eclipse, repeat the above steps for the idb

product extension site.

Click the “Next” button. An “Install” dialog will open which gives you a chance to review and

confirm you want to install the checked items. Click “Next”. You will now be asked to accept the

license agreement. Accept the license agreement and click “Finish”. Select “OK” on the

“Security Warning” dialog that says you are installing software that contains unsigned content.

The installation of the Intel support will proceed.

When asked to restart Eclipse, select “Yes”. When Eclipse restarts, you will be able to create

and work with CDT projects that use the Intel C++ compiler. See the Intel C++ Compiler

documentation for more information. You can find the Intel C++ documentation under Help >

Help Contents > Intel(R) C++ Compiler XE 13.0 User and Reference

Guides.

6.2.1 Integrating the Intel® Debugger into Eclipse

After completing the above steps, including restarting Eclipse, follow these steps to integrate the

Intel® Debugger into Eclipse:

 Create a Debug launch configuration by selecting Run > Debug Configurations…

 In the dialog box that pops up, right click on C/C++ Application and select New.

 You will now see some tabs on the right. At the bottom-right you should see a label

Using GDB (DSF) Create Process Launcher – Select other… Click this

label – a new dialog will appear. Select Standard Create Process Launcher and

click OK.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 34

 Go to the Debugger tab and select the Intel® Debugger (idbc) from the combo box.

Replace idbc with the full path to idbc.

6.3 How to Obtain and Install Eclipse, CDT and a JRE

Eclipse is a Java application and therefore requires a Java Runtime Environment (JRE) to

execute. The choice of a JRE is dependent on your operating environment (machine

architecture, operating system, etc.) and there are many JRE's available to choose from.

A package containing both Eclipse 3.7 and CDT 8.0 is available from:

http://www.eclipse.org/downloads/

Scroll down to find “Eclipse IDE for C/C++ Developers”. Choose either the Linux 32-bit or Linux

64-bit download as desired.

6.3.1 Installing JRE, Eclipse and CDT

Once you have downloaded the appropriate files for Eclipse, CDT, and a JRE, you can install

them as follows:

1. Install your chosen JRE according to the JRE provider's instructions.

2. Create a directory where you would like to install Eclipse and cd to this directory. This

directory will be referred to as <eclipse-install-dir>

3. Copy the Eclipse package binary .tgz file to the <eclipse-install-dir> directory.

4. Expand the .tgz file.

5. Start eclipse

You are now ready to add the Intel C++ product extension to your Eclipse configuration as

described in the section, How to Install the Intel C++ Eclipse Product Extension in Your Eclipse

Platform. If you need help with launching Eclipse for the first time, please read the next section.

6.4 Launching Eclipse for Development with the Intel C++ Compiler

If you have not already set your LANG environment variable, you will need to do so. For

example,

setenv LANG en_US

Setup Intel C++ compiler related environment variables by executing the compilervars.csh

(or .sh) script prior to starting Eclipse:

source <install-dir>/bin/iccvars.csh arch_arg (where "arch_arg" is one of "ia32"

or "intel64").

Since Eclipse requires a JRE to execute, you must ensure that an appropriate JRE is available

to Eclipse prior to its invocation. You can set the PATH environment variable to the full path of

the folder of the java file from the JRE installed on your system or reference the full path of the

java executable from the JRE installed on your system in the -vm parameter of the Eclipse

command, e.g.:

http://www.eclipse.org/downloads/

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 35

eclipse -vm /JRE folder/bin/java

Invoke the Eclipse executable directly from the directory where it has been installed. For

example:

<eclipse-install-dir>/eclipse/eclipse

6.5 Installing on Fedora* Systems

If the Intel C++ Compiler for Linux is installed on an IA-32 or Intel® 64 architecture Fedora*

system as a "local" installation, i.e. not installed as root, the installation may fail to properly

execute the Eclipse graphical user interfaces to the compiler or debugger. The failure

mechanism will typically be displayed as a JVM Terminated error. The error condition can

also occur if the software is installed from the root account at the system level, but executed by

less privileged user accounts.

The cause for this failure is that a more granular level of security has been implemented on

Fedora, but this new security capability can adversely affect access to system resources, such

as dynamic libraries. This new SELinux security capability may require adjustment by your

system administrator in order for the compiler installation to work for regular users.

6.6 Selecting Compiler Versions

For Eclipse projects you can select among the installed versions of the Intel C++ Compiler. On

IA-32 architecture systems, the supported Intel compiler versions are 9.1, 10.0, 10.1, 11.0, 11.1,

12.0, 12.1, and 13.0. On Intel® 64 architecture systems, only compiler versions 11.0, 11.1,

12.0, 12.1, and 13.0 are supported.

7 Intel® Integrated Performance Primitives
This section summarizes changes, new features and late-breaking news about this version of

Intel® Integrated Performance Primitives (Intel® IPP). For detailed information about IPP see

the following links:

 New features: see the information below and visit the main Intel IPP product page on

the Intel web site at: http://intel.ly/o6nf0O; and the Intel IPP Release Notes at

http://intel.ly/OmWI4d.

 Documentation, help, and samples: see the documentation links on the IPP product

page at: http://intel.ly/o6nf0O.

7.1 Intel® IPP static threaded Libraries are Available as a Separate

Download

If you require the static threaded version of the Intel® IPP libraries, they are no longer provided

in the default Composer XE package. There should be a separate package available from the

same area where you downloaded the Composer XE package that contains these libraries.

http://intel.ly/o6nf0O
http://intel.ly/OmWI4d
http://intel.ly/o6nf0O

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 36

7.2 Intel® IPP Cryptography Libraries are Available as a Separate

Download

The Intel® IPP cryptography libraries are available as a separate download. For download and

installation instructions, please read http://intel.ly/ndrGnR

7.3 Intel® IPP Code Samples

The Intel® IPP code samples are organized into downloadable packages at

http://intel.ly/pnsHxc

The samples include source code for audio/video codecs, image processing and media player

applications, and for calling functions from C++, C# and Java*. Instructions on how to build the

sample are described in a readme file that comes with the installation package for each sample.

8 Intel® Math Kernel Library
This section summarizes changes, new features and late-breaking news about this version of

the Intel® Math Kernel Library (Intel MKL). All the bug fixes can be found here:

http://intel.ly/OeHQqf

8.1 Notices

Please refer to the Knowledge Base article on Deprecations for more information on the

following notices

 Removed Intel MKL GNU Multiple Precision* (GMP) function interfaces

 Disabled timing function mkl_set_cpu_frequency() to perform useful work — use

mkl_get_max_cpu_frequency(), mkl_get_clocks_frequency(), and

mkl_get_cpu_frequency() as described in the Intel MKL Reference Manual

 Removed MKL_PARDISO constant — used MKL_DOMAIN_PARDISO to specify the

PARDISO domain with the mkl_domain_set_num_threads() function

 Removed special backward compatibility functions for convolution and correlation

functions in Intel MKL 10.2 update 4

 Removed support for Intel® Pentium® III processor. The minimal supported instruction

set will be Intel® Streaming SIMD Extensions 2 (Intel® SSE2).

 Documentation:

o The Intel MKL Reference Manual in HTML format is no longer available with the

product

o Man pages and Eclipse* help integration are no longer provided

8.2 Changes in This Version

8.2.1 Changes in Initial Release

 Intel MKL now has support for Intel® Xeon Phi™ coprocessor based on the Intel® Many

Integrated Core Architecture (Intel® MIC Architecture) on Linux* only. There are three

Intel MKL usage models on Intel Xeon Phi coprocessor: automatic offload, compiler

assisted offload and native execution. Most of Intel MKL has been ported to run natively

http://intel.ly/ndrGnR
http://intel.ly/pnsHxc
http://intel.ly/OeHQqf
http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 37

on these coprocessors. A smaller number of functions have been optimized to

automatically divide their computational work between the host and Intel Xeon Phi

coprocessor, a feature called automatic offload (AO). Read the Intel MKL User’s Guide

for more information. Most standard Intel MKL functions run on Intel Xeon Phi

coprocessor except the Poisson library, Iterative sparse solvers, and Trust region

solvers.

 Conditional Bitwise Reproducibility (CBWR): New functionality in Intel MKL now allows

you to balance performance with reproducible results by allowing greater flexibility in

code branch choice and by ensuring algorithms are deterministic. See the Intel MKL

User’s Guide for more information. Refer to the CBWR Knowledge Base Article for more

information.

 Intel MKL also introduces optimizations using the new Intel® Advanced Vector

Extensions 2 (AVX2) including the new FMA3 instructions. See the Knowledge Base

article on support for Intel® AVX2

 BLAS:

o Optimized [S/D/C/Z]GEMM, [S/D/C/Z]TRMM, [S/D/C/Z]TRSM, [S/D/C/Z]SYRK,

[S/D]GEMV, [S/D]AXPY, [S/D]DOT for native execution and ?TRMM, ?TRSM,

?GEMM functions for automatic offload on the Intel MIC Architecture

o Improved DSYRK/SSYRK performance for 64-bit programs supporting Intel®

Advanced Vector Extensions (Intel® AVX)

 LAPACK:

o Optimized [S/D]GETRF, [S/D]POTRF, [S/D]GEQRF, [S/D]GELQF, [S/D]GEQLF,

and [S/D]GERQF for native execution on Intel MIC Architecture

o Introduced support for LAPACK version 3.4.1

 FFT :

o Optimized single- and double-precision real-to-complex and complex-to-complex

one-, two-, and three-dimensional fast Fourier transforms for native execution on

Intel MIC Architecture

o Added configuration parameter DFTI_THREAD_LIMIT which limits the number of

threads per descriptor

o Added support for 1D real-to-complex transforms with sizes given by 64-bit prime

integers

 VML /VSL:

o Optimized complex SinCos and CIS functions for native execution on Intel MIC

Architecture

o Optimized MT19937, MT2203, MRG32k3a BRNGs, and discrete Uniform and

Geometric RNGs for native execution on Intel MIC Architecture

o Improved performance of viRngGeometric on Intel® Advanced Vector Extensions

(Intel AVX)

o Implemented threading in Data Fitting Integrate1d function

 Transposition: Parallelized in-place transposition of square matrices with leading

dimensions greater than the matrix size for single and double precisions improving its

performance significantly

http://software.intel.com/en-us/articles/conditional-bitwise-reproducibility/
http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/
http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 38

 Implemented local threading control function (mkl_set_num_threads_local) which

increases flexibility in threading control

 The mklvars.* script no longer sets $FPATH in environment and no longer exports

internal variable MKL_TARGET_ARCH (this change will not impact users as the Intel

compiler no longer requires these variables)

 Link Tool: Added Intel MIC Architecture support

 Link Line Advisor:

o Added Help-Me functionality for selecting architecture (IA-32/Intel® 64) and

interface layer (LP64/ILP64)

o Added Intel MIC Architecture support

8.3 Attributions

As referenced in the End User License Agreement, attribution requires, at a minimum,

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and

providing a link/URL to the Intel® MKL homepage (http://www.intel.com/software/products/mkl)

in both the product documentation and website.

The original versions of the BLAS from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/blas/index.html.

The original versions of LAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson,

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All

interfaces are provided for pure procedures.

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S.

Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed

by the University of Basel. It can be obtained at http://www.pardiso-project.org.

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The

Authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela

Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang

Chen, Robert W. Johnson, and Nick Rizzolo.

9 Intel® Threading Building Blocks
For information on changes to Intel® Threading Building Blocks, please read the file CHANGES

in the TBB documentation directory.

Intel® C++ Composer XE 2013 for Linux*
Installation Guide and Release Notes 39

10 Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate

features within each processor family, not across different processor families. Go to:

http://www.intel.com/products/processor%5Fnumber/

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Atom, Core, Itanium, MMX, Pentium,

VTune, Cilk, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2012 Intel Corporation. All Rights Reserved.

http://www.intel.com/products/processor_number/

