// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "internal_macros.h" #ifdef BENCHMARK_OS_WINDOWS #include #undef StrCat // Don't let StrCat in string_util.h be renamed to lstrcatA #include #include #include #else #include #if !defined(BENCHMARK_OS_FUCHSIA) && !defined(BENCHMARK_OS_QURT) #include #endif #include #include // this header must be included before 'sys/sysctl.h' to avoid compilation error on FreeBSD #include #if defined BENCHMARK_OS_FREEBSD || defined BENCHMARK_OS_MACOSX || \ defined BENCHMARK_OS_NETBSD || defined BENCHMARK_OS_OPENBSD || \ defined BENCHMARK_OS_DRAGONFLY #define BENCHMARK_HAS_SYSCTL #include #endif #endif #if defined(BENCHMARK_OS_SOLARIS) #include #include #endif #if defined(BENCHMARK_OS_QNX) #include #endif #if defined(BENCHMARK_OS_QURT) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "check.h" #include "cycleclock.h" #include "internal_macros.h" #include "log.h" #include "sleep.h" #include "string_util.h" namespace benchmark { namespace { void PrintImp(std::ostream& out) { out << std::endl; } template void PrintImp(std::ostream& out, First&& f, Rest&&... rest) { out << std::forward(f); PrintImp(out, std::forward(rest)...); } template BENCHMARK_NORETURN void PrintErrorAndDie(Args&&... args) { PrintImp(std::cerr, std::forward(args)...); std::exit(EXIT_FAILURE); } #ifdef BENCHMARK_HAS_SYSCTL /// ValueUnion - A type used to correctly alias the byte-for-byte output of /// `sysctl` with the result type it's to be interpreted as. struct ValueUnion { union DataT { int32_t int32_value; int64_t int64_value; // For correct aliasing of union members from bytes. char bytes[8]; }; using DataPtr = std::unique_ptr; // The size of the data union member + its trailing array size. std::size_t size; DataPtr buff; public: ValueUnion() : size(0), buff(nullptr, &std::free) {} explicit ValueUnion(std::size_t buff_size) : size(sizeof(DataT) + buff_size), buff(::new (std::malloc(size)) DataT(), &std::free) {} ValueUnion(ValueUnion&& other) = default; explicit operator bool() const { return bool(buff); } char* data() const { return buff->bytes; } std::string GetAsString() const { return std::string(data()); } int64_t GetAsInteger() const { if (size == sizeof(buff->int32_value)) return buff->int32_value; else if (size == sizeof(buff->int64_value)) return buff->int64_value; BENCHMARK_UNREACHABLE(); } template std::array GetAsArray() { const int arr_size = sizeof(T) * N; BM_CHECK_LE(arr_size, size); std::array arr; std::memcpy(arr.data(), data(), arr_size); return arr; } }; ValueUnion GetSysctlImp(std::string const& name) { #if defined BENCHMARK_OS_OPENBSD int mib[2]; mib[0] = CTL_HW; if ((name == "hw.ncpu") || (name == "hw.cpuspeed")) { ValueUnion buff(sizeof(int)); if (name == "hw.ncpu") { mib[1] = HW_NCPU; } else { mib[1] = HW_CPUSPEED; } if (sysctl(mib, 2, buff.data(), &buff.Size, nullptr, 0) == -1) { return ValueUnion(); } return buff; } return ValueUnion(); #else std::size_t cur_buff_size = 0; if (sysctlbyname(name.c_str(), nullptr, &cur_buff_size, nullptr, 0) == -1) return ValueUnion(); ValueUnion buff(cur_buff_size); if (sysctlbyname(name.c_str(), buff.data(), &buff.size, nullptr, 0) == 0) return buff; return ValueUnion(); #endif } BENCHMARK_MAYBE_UNUSED bool GetSysctl(std::string const& name, std::string* out) { out->clear(); auto buff = GetSysctlImp(name); if (!buff) return false; out->assign(buff.data()); return true; } template ::value>::type> bool GetSysctl(std::string const& name, Tp* out) { *out = 0; auto buff = GetSysctlImp(name); if (!buff) return false; *out = static_cast(buff.GetAsInteger()); return true; } template bool GetSysctl(std::string const& name, std::array* out) { auto buff = GetSysctlImp(name); if (!buff) return false; *out = buff.GetAsArray(); return true; } #endif template bool ReadFromFile(std::string const& fname, ArgT* arg) { *arg = ArgT(); std::ifstream f(fname.c_str()); if (!f.is_open()) return false; f >> *arg; return f.good(); } CPUInfo::Scaling CpuScaling(int num_cpus) { // We don't have a valid CPU count, so don't even bother. if (num_cpus <= 0) return CPUInfo::Scaling::UNKNOWN; #if defined(BENCHMARK_OS_QNX) return CPUInfo::Scaling::UNKNOWN; #elif !defined(BENCHMARK_OS_WINDOWS) // On Linux, the CPUfreq subsystem exposes CPU information as files on the // local file system. If reading the exported files fails, then we may not be // running on Linux, so we silently ignore all the read errors. std::string res; for (int cpu = 0; cpu < num_cpus; ++cpu) { std::string governor_file = StrCat("/sys/devices/system/cpu/cpu", cpu, "/cpufreq/scaling_governor"); if (ReadFromFile(governor_file, &res) && res != "performance") return CPUInfo::Scaling::ENABLED; } return CPUInfo::Scaling::DISABLED; #else return CPUInfo::Scaling::UNKNOWN; #endif } int CountSetBitsInCPUMap(std::string val) { auto CountBits = [](std::string part) { using CPUMask = std::bitset; part = "0x" + part; CPUMask mask(benchmark::stoul(part, nullptr, 16)); return static_cast(mask.count()); }; std::size_t pos; int total = 0; while ((pos = val.find(',')) != std::string::npos) { total += CountBits(val.substr(0, pos)); val = val.substr(pos + 1); } if (!val.empty()) { total += CountBits(val); } return total; } BENCHMARK_MAYBE_UNUSED std::vector GetCacheSizesFromKVFS() { std::vector res; std::string dir = "/sys/devices/system/cpu/cpu0/cache/"; int idx = 0; while (true) { CPUInfo::CacheInfo info; std::string fpath = StrCat(dir, "index", idx++, "/"); std::ifstream f(StrCat(fpath, "size").c_str()); if (!f.is_open()) break; std::string suffix; f >> info.size; if (f.fail()) PrintErrorAndDie("Failed while reading file '", fpath, "size'"); if (f.good()) { f >> suffix; if (f.bad()) PrintErrorAndDie( "Invalid cache size format: failed to read size suffix"); else if (f && suffix != "K") PrintErrorAndDie("Invalid cache size format: Expected bytes ", suffix); else if (suffix == "K") info.size *= 1024; } if (!ReadFromFile(StrCat(fpath, "type"), &info.type)) PrintErrorAndDie("Failed to read from file ", fpath, "type"); if (!ReadFromFile(StrCat(fpath, "level"), &info.level)) PrintErrorAndDie("Failed to read from file ", fpath, "level"); std::string map_str; if (!ReadFromFile(StrCat(fpath, "shared_cpu_map"), &map_str)) PrintErrorAndDie("Failed to read from file ", fpath, "shared_cpu_map"); info.num_sharing = CountSetBitsInCPUMap(map_str); res.push_back(info); } return res; } #ifdef BENCHMARK_OS_MACOSX std::vector GetCacheSizesMacOSX() { std::vector res; std::array cache_counts{{0, 0, 0, 0}}; GetSysctl("hw.cacheconfig", &cache_counts); struct { std::string name; std::string type; int level; int num_sharing; } cases[] = {{"hw.l1dcachesize", "Data", 1, cache_counts[1]}, {"hw.l1icachesize", "Instruction", 1, cache_counts[1]}, {"hw.l2cachesize", "Unified", 2, cache_counts[2]}, {"hw.l3cachesize", "Unified", 3, cache_counts[3]}}; for (auto& c : cases) { int val; if (!GetSysctl(c.name, &val)) continue; CPUInfo::CacheInfo info; info.type = c.type; info.level = c.level; info.size = val; info.num_sharing = c.num_sharing; res.push_back(std::move(info)); } return res; } #elif defined(BENCHMARK_OS_WINDOWS) std::vector GetCacheSizesWindows() { std::vector res; DWORD buffer_size = 0; using PInfo = SYSTEM_LOGICAL_PROCESSOR_INFORMATION; using CInfo = CACHE_DESCRIPTOR; using UPtr = std::unique_ptr; GetLogicalProcessorInformation(nullptr, &buffer_size); UPtr buff((PInfo*)malloc(buffer_size), &std::free); if (!GetLogicalProcessorInformation(buff.get(), &buffer_size)) PrintErrorAndDie("Failed during call to GetLogicalProcessorInformation: ", GetLastError()); PInfo* it = buff.get(); PInfo* end = buff.get() + (buffer_size / sizeof(PInfo)); for (; it != end; ++it) { if (it->Relationship != RelationCache) continue; using BitSet = std::bitset; BitSet b(it->ProcessorMask); // To prevent duplicates, only consider caches where CPU 0 is specified if (!b.test(0)) continue; const CInfo& cache = it->Cache; CPUInfo::CacheInfo C; C.num_sharing = static_cast(b.count()); C.level = cache.Level; C.size = cache.Size; C.type = "Unknown"; switch (cache.Type) { case CacheUnified: C.type = "Unified"; break; case CacheInstruction: C.type = "Instruction"; break; case CacheData: C.type = "Data"; break; case CacheTrace: C.type = "Trace"; break; } res.push_back(C); } return res; } #elif BENCHMARK_OS_QNX std::vector GetCacheSizesQNX() { std::vector res; struct cacheattr_entry* cache = SYSPAGE_ENTRY(cacheattr); uint32_t const elsize = SYSPAGE_ELEMENT_SIZE(cacheattr); int num = SYSPAGE_ENTRY_SIZE(cacheattr) / elsize; for (int i = 0; i < num; ++i) { CPUInfo::CacheInfo info; switch (cache->flags) { case CACHE_FLAG_INSTR: info.type = "Instruction"; info.level = 1; break; case CACHE_FLAG_DATA: info.type = "Data"; info.level = 1; break; case CACHE_FLAG_UNIFIED: info.type = "Unified"; info.level = 2; break; case CACHE_FLAG_SHARED: info.type = "Shared"; info.level = 3; break; default: continue; break; } info.size = cache->line_size * cache->num_lines; info.num_sharing = 0; res.push_back(std::move(info)); cache = SYSPAGE_ARRAY_ADJ_OFFSET(cacheattr, cache, elsize); } return res; } #endif std::vector GetCacheSizes() { #ifdef BENCHMARK_OS_MACOSX return GetCacheSizesMacOSX(); #elif defined(BENCHMARK_OS_WINDOWS) return GetCacheSizesWindows(); #elif defined(BENCHMARK_OS_QNX) return GetCacheSizesQNX(); #elif defined(BENCHMARK_OS_QURT) return std::vector(); #else return GetCacheSizesFromKVFS(); #endif } std::string GetSystemName() { #if defined(BENCHMARK_OS_WINDOWS) std::string str; static constexpr int COUNT = MAX_COMPUTERNAME_LENGTH + 1; TCHAR hostname[COUNT] = {'\0'}; DWORD DWCOUNT = COUNT; if (!GetComputerName(hostname, &DWCOUNT)) return std::string(""); #ifndef UNICODE str = std::string(hostname, DWCOUNT); #else std::vector converted; // Find the length first. int len = ::MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, hostname, DWCOUNT, converted.begin(), 0); // TODO: Report error from GetLastError()? if (len == 0) return std::string(""); converted.reserve(len + 1); len = ::MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, hostname, DWCOUNT, converted.begin(), converted.size()); // TODO: Report error from GetLastError()? if (len == 0) return std::string(""); str = std::string(converted.data()); #endif return str; #elif defined(BENCHMARK_OS_QURT) std::string str = "Hexagon DSP"; qurt_arch_version_t arch_version_struct; if (qurt_sysenv_get_arch_version(&arch_version_struct) == QURT_EOK) { str += " v"; str += std::to_string(arch_version_struct.arch_version); } return str; #else #ifndef HOST_NAME_MAX #ifdef BENCHMARK_HAS_SYSCTL // BSD/Mac Doesnt have HOST_NAME_MAX defined #define HOST_NAME_MAX 64 #elif defined(BENCHMARK_OS_NACL) #define HOST_NAME_MAX 64 #elif defined(BENCHMARK_OS_QNX) #define HOST_NAME_MAX 154 #elif defined(BENCHMARK_OS_RTEMS) #define HOST_NAME_MAX 256 #elif defined(BENCHMARK_OS_SOLARIS) #define HOST_NAME_MAX MAXHOSTNAMELEN #else #pragma message("HOST_NAME_MAX not defined. using 64") #define HOST_NAME_MAX 64 #endif #endif // def HOST_NAME_MAX char hostname[HOST_NAME_MAX]; int retVal = gethostname(hostname, HOST_NAME_MAX); if (retVal != 0) return std::string(""); return std::string(hostname); #endif // Catch-all POSIX block. } int GetNumCPUs() { #ifdef BENCHMARK_HAS_SYSCTL int num_cpu = -1; if (GetSysctl("hw.ncpu", &num_cpu)) return num_cpu; fprintf(stderr, "Err: %s\n", strerror(errno)); std::exit(EXIT_FAILURE); #elif defined(BENCHMARK_OS_WINDOWS) SYSTEM_INFO sysinfo; // Use memset as opposed to = {} to avoid GCC missing initializer false // positives. std::memset(&sysinfo, 0, sizeof(SYSTEM_INFO)); GetSystemInfo(&sysinfo); return sysinfo.dwNumberOfProcessors; // number of logical // processors in the current // group #elif defined(BENCHMARK_OS_SOLARIS) // Returns -1 in case of a failure. long num_cpu = sysconf(_SC_NPROCESSORS_ONLN); if (num_cpu < 0) { fprintf(stderr, "sysconf(_SC_NPROCESSORS_ONLN) failed with error: %s\n", strerror(errno)); } return (int)num_cpu; #elif defined(BENCHMARK_OS_QNX) return static_cast(_syspage_ptr->num_cpu); #elif defined(BENCHMARK_OS_QURT) qurt_sysenv_max_hthreads_t hardware_threads; if (qurt_sysenv_get_max_hw_threads(&hardware_threads) != QURT_EOK) { hardware_threads.max_hthreads = 1; } return hardware_threads.max_hthreads; #else int num_cpus = 0; int max_id = -1; std::ifstream f("/proc/cpuinfo"); if (!f.is_open()) { std::cerr << "failed to open /proc/cpuinfo\n"; return -1; } const std::string Key = "processor"; std::string ln; while (std::getline(f, ln)) { if (ln.empty()) continue; std::size_t split_idx = ln.find(':'); std::string value; #if defined(__s390__) // s390 has another format in /proc/cpuinfo // it needs to be parsed differently if (split_idx != std::string::npos) value = ln.substr(Key.size() + 1, split_idx - Key.size() - 1); #else if (split_idx != std::string::npos) value = ln.substr(split_idx + 1); #endif if (ln.size() >= Key.size() && ln.compare(0, Key.size(), Key) == 0) { num_cpus++; if (!value.empty()) { const int cur_id = benchmark::stoi(value); max_id = std::max(cur_id, max_id); } } } if (f.bad()) { std::cerr << "Failure reading /proc/cpuinfo\n"; return -1; } if (!f.eof()) { std::cerr << "Failed to read to end of /proc/cpuinfo\n"; return -1; } f.close(); if ((max_id + 1) != num_cpus) { fprintf(stderr, "CPU ID assignments in /proc/cpuinfo seem messed up." " This is usually caused by a bad BIOS.\n"); } return num_cpus; #endif BENCHMARK_UNREACHABLE(); } double GetCPUCyclesPerSecond(CPUInfo::Scaling scaling) { // Currently, scaling is only used on linux path here, // suppress diagnostics about it being unused on other paths. (void)scaling; #if defined BENCHMARK_OS_LINUX || defined BENCHMARK_OS_CYGWIN long freq; // If the kernel is exporting the tsc frequency use that. There are issues // where cpuinfo_max_freq cannot be relied on because the BIOS may be // exporintg an invalid p-state (on x86) or p-states may be used to put the // processor in a new mode (turbo mode). Essentially, those frequencies // cannot always be relied upon. The same reasons apply to /proc/cpuinfo as // well. if (ReadFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq) // If CPU scaling is disabled, use the *current* frequency. // Note that we specifically don't want to read cpuinfo_cur_freq, // because it is only readable by root. || (scaling == CPUInfo::Scaling::DISABLED && ReadFromFile("/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq", &freq)) // Otherwise, if CPU scaling may be in effect, we want to use // the *maximum* frequency, not whatever CPU speed some random processor // happens to be using now. || ReadFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", &freq)) { // The value is in kHz (as the file name suggests). For example, on a // 2GHz warpstation, the file contains the value "2000000". return freq * 1000.0; } const double error_value = -1; double bogo_clock = error_value; std::ifstream f("/proc/cpuinfo"); if (!f.is_open()) { std::cerr << "failed to open /proc/cpuinfo\n"; return error_value; } auto StartsWithKey = [](std::string const& Value, std::string const& Key) { if (Key.size() > Value.size()) return false; auto Cmp = [&](char X, char Y) { return std::tolower(X) == std::tolower(Y); }; return std::equal(Key.begin(), Key.end(), Value.begin(), Cmp); }; std::string ln; while (std::getline(f, ln)) { if (ln.empty()) continue; std::size_t split_idx = ln.find(':'); std::string value; if (split_idx != std::string::npos) value = ln.substr(split_idx + 1); // When parsing the "cpu MHz" and "bogomips" (fallback) entries, we only // accept positive values. Some environments (virtual machines) report zero, // which would cause infinite looping in WallTime_Init. if (StartsWithKey(ln, "cpu MHz")) { if (!value.empty()) { double cycles_per_second = benchmark::stod(value) * 1000000.0; if (cycles_per_second > 0) return cycles_per_second; } } else if (StartsWithKey(ln, "bogomips")) { if (!value.empty()) { bogo_clock = benchmark::stod(value) * 1000000.0; if (bogo_clock < 0.0) bogo_clock = error_value; } } } if (f.bad()) { std::cerr << "Failure reading /proc/cpuinfo\n"; return error_value; } if (!f.eof()) { std::cerr << "Failed to read to end of /proc/cpuinfo\n"; return error_value; } f.close(); // If we found the bogomips clock, but nothing better, we'll use it (but // we're not happy about it); otherwise, fallback to the rough estimation // below. if (bogo_clock >= 0.0) return bogo_clock; #elif defined BENCHMARK_HAS_SYSCTL constexpr auto* freqStr = #if defined(BENCHMARK_OS_FREEBSD) || defined(BENCHMARK_OS_NETBSD) "machdep.tsc_freq"; #elif defined BENCHMARK_OS_OPENBSD "hw.cpuspeed"; #elif defined BENCHMARK_OS_DRAGONFLY "hw.tsc_frequency"; #else "hw.cpufrequency"; #endif unsigned long long hz = 0; #if defined BENCHMARK_OS_OPENBSD if (GetSysctl(freqStr, &hz)) return hz * 1000000; #else if (GetSysctl(freqStr, &hz)) return hz; #endif fprintf(stderr, "Unable to determine clock rate from sysctl: %s: %s\n", freqStr, strerror(errno)); fprintf(stderr, "This does not affect benchmark measurements, only the " "metadata output.\n"); #elif defined BENCHMARK_OS_WINDOWS_WIN32 // In NT, read MHz from the registry. If we fail to do so or we're in win9x // then make a crude estimate. DWORD data, data_size = sizeof(data); if (IsWindowsXPOrGreater() && SUCCEEDED( SHGetValueA(HKEY_LOCAL_MACHINE, "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", "~MHz", nullptr, &data, &data_size))) return static_cast((int64_t)data * (int64_t)(1000 * 1000)); // was mhz #elif defined(BENCHMARK_OS_SOLARIS) kstat_ctl_t* kc = kstat_open(); if (!kc) { std::cerr << "failed to open /dev/kstat\n"; return -1; } kstat_t* ksp = kstat_lookup(kc, const_cast("cpu_info"), -1, const_cast("cpu_info0")); if (!ksp) { std::cerr << "failed to lookup in /dev/kstat\n"; return -1; } if (kstat_read(kc, ksp, NULL) < 0) { std::cerr << "failed to read from /dev/kstat\n"; return -1; } kstat_named_t* knp = (kstat_named_t*)kstat_data_lookup( ksp, const_cast("current_clock_Hz")); if (!knp) { std::cerr << "failed to lookup data in /dev/kstat\n"; return -1; } if (knp->data_type != KSTAT_DATA_UINT64) { std::cerr << "current_clock_Hz is of unexpected data type: " << knp->data_type << "\n"; return -1; } double clock_hz = knp->value.ui64; kstat_close(kc); return clock_hz; #elif defined(BENCHMARK_OS_QNX) return static_cast((int64_t)(SYSPAGE_ENTRY(cpuinfo)->speed) * (int64_t)(1000 * 1000)); #elif defined(BENCHMARK_OS_QURT) // QuRT doesn't provide any API to query Hexagon frequency. return 1000000000; #endif // If we've fallen through, attempt to roughly estimate the CPU clock rate. static constexpr int estimate_time_ms = 1000; const auto start_ticks = cycleclock::Now(); SleepForMilliseconds(estimate_time_ms); return static_cast(cycleclock::Now() - start_ticks); } std::vector GetLoadAvg() { #if (defined BENCHMARK_OS_FREEBSD || defined(BENCHMARK_OS_LINUX) || \ defined BENCHMARK_OS_MACOSX || defined BENCHMARK_OS_NETBSD || \ defined BENCHMARK_OS_OPENBSD || defined BENCHMARK_OS_DRAGONFLY) && \ !defined(__ANDROID__) static constexpr int kMaxSamples = 3; std::vector res(kMaxSamples, 0.0); const int nelem = getloadavg(res.data(), kMaxSamples); if (nelem < 1) { res.clear(); } else { res.resize(nelem); } return res; #else return {}; #endif } } // end namespace const CPUInfo& CPUInfo::Get() { static const CPUInfo* info = new CPUInfo(); return *info; } CPUInfo::CPUInfo() : num_cpus(GetNumCPUs()), scaling(CpuScaling(num_cpus)), cycles_per_second(GetCPUCyclesPerSecond(scaling)), caches(GetCacheSizes()), load_avg(GetLoadAvg()) {} const SystemInfo& SystemInfo::Get() { static const SystemInfo* info = new SystemInfo(); return *info; } SystemInfo::SystemInfo() : name(GetSystemName()) {} } // end namespace benchmark