/** * MIT License * * Copyright (c) 2017 Tessil * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef TSL_HOPSCOTCH_MAP_H #define TSL_HOPSCOTCH_MAP_H #include #include #include #include #include #include #include #include #include "common/hopscotch_hash.hh" namespace tsl { /** * Implementation of a hash map using the hopscotch hashing algorithm. * * The Key and the value T must be either nothrow move-constructible, copy-constuctible or both. * * The size of the neighborhood (NeighborhoodSize) must be > 0 and <= 62 if StoreHash is false. * When StoreHash is true, 32-bits of the hash will be stored alongside the neighborhood limiting * the NeighborhoodSize to <= 30. There is no memory usage difference between * 'NeighborhoodSize 62; StoreHash false' and 'NeighborhoodSize 30; StoreHash true'. * * Storing the hash may improve performance on insert during the rehash process if the hash takes time * to compute. It may also improve read performance if the KeyEqual function takes time (or incurs a cache-miss). * If used with simple Hash and KeyEqual it may slow things down. * * StoreHash can only be set if the GrowthPolicy is set to tsl::power_of_two_growth_policy. * * GrowthPolicy defines how the map grows and consequently how a hash value is mapped to a bucket. * By default the map uses tsl::power_of_two_growth_policy. This policy keeps the number of buckets * to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo. * You may define your own growth policy, check tsl::power_of_two_growth_policy for the interface. * * If the destructors of Key or T throw an exception, behaviour of the class is undefined. * * Iterators invalidation: * - clear, operator=, reserve, rehash: always invalidate the iterators. * - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators * if a displacement is needed to resolve a collision (which mean that most of the time, * insert will invalidate the iterators). Or if there is a rehash. * - erase: iterator on the erased element is the only one which become invalid. */ template, class KeyEqual = std::equal_to, class Allocator = std::allocator>, unsigned int NeighborhoodSize = 62, bool StoreHash = false, class GrowthPolicy = tsl::power_of_two_growth_policy> class hopscotch_map { private: template using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent; class KeySelect { public: using key_type = Key; const key_type& operator()(const std::pair& key_value) const { return key_value.first; } key_type& operator()(std::pair& key_value) { return key_value.first; } }; class ValueSelect { public: using value_type = T; const value_type& operator()(const std::pair& key_value) const { return key_value.second; } value_type& operator()(std::pair& key_value) { return key_value.second; } }; using overflow_container_type = std::list, Allocator>; using ht = detail_hopscotch_hash::hopscotch_hash, KeySelect, ValueSelect, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, GrowthPolicy, overflow_container_type>; public: using key_type = typename ht::key_type; using mapped_type = T; using value_type = typename ht::value_type; using size_type = typename ht::size_type; using difference_type = typename ht::difference_type; using hasher = typename ht::hasher; using key_equal = typename ht::key_equal; using allocator_type = typename ht::allocator_type; using reference = typename ht::reference; using const_reference = typename ht::const_reference; using pointer = typename ht::pointer; using const_pointer = typename ht::const_pointer; using iterator = typename ht::iterator; using const_iterator = typename ht::const_iterator; /* * Constructors */ hopscotch_map() : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) { } explicit hopscotch_map(size_type bucket_count, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()) : m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) { } hopscotch_map(size_type bucket_count, const Allocator& alloc) : hopscotch_map(bucket_count, Hash(), KeyEqual(), alloc) { } hopscotch_map(size_type bucket_count, const Hash& hash, const Allocator& alloc) : hopscotch_map(bucket_count, hash, KeyEqual(), alloc) { } explicit hopscotch_map(const Allocator& alloc) : hopscotch_map( ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) { } template hopscotch_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()) : hopscotch_map(bucket_count, hash, equal, alloc) { insert(first, last); } template hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Allocator& alloc) : hopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) { } template hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Hash& hash, const Allocator& alloc) : hopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc) { } hopscotch_map(std::initializer_list init, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) { } hopscotch_map(std::initializer_list init, size_type bucket_count, const Allocator& alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc) { } hopscotch_map(std::initializer_list init, size_type bucket_count, const Hash& hash, const Allocator& alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc) { } hopscotch_map& operator=(std::initializer_list ilist) { m_ht.clear(); m_ht.reserve(ilist.size()); m_ht.insert(ilist.begin(), ilist.end()); return *this; } allocator_type get_allocator() const { return m_ht.get_allocator(); } /* * Iterators */ iterator begin() noexcept { return m_ht.begin(); } const_iterator begin() const noexcept { return m_ht.begin(); } const_iterator cbegin() const noexcept { return m_ht.cbegin(); } iterator end() noexcept { return m_ht.end(); } const_iterator end() const noexcept { return m_ht.end(); } const_iterator cend() const noexcept { return m_ht.cend(); } /* * Capacity */ bool empty() const noexcept { return m_ht.empty(); } size_type size() const noexcept { return m_ht.size(); } size_type max_size() const noexcept { return m_ht.max_size(); } /* * Modifiers */ void clear() noexcept { m_ht.clear(); } std::pair insert(const value_type& value) { return m_ht.insert(value); } template < class P, typename std::enable_if < std::is_constructible < value_type, P&& >::value >::type* = nullptr > std::pair insert(P && value) { return m_ht.insert(std::forward

(value)); } std::pair insert(value_type&& value) { return m_ht.insert(std::move(value)); } iterator insert(const_iterator hint, const value_type& value) { return m_ht.insert(hint, value); } template < class P, typename std::enable_if < std::is_constructible < value_type, P&& >::value >::type* = nullptr > iterator insert(const_iterator hint, P && value) { return m_ht.insert(hint, std::forward

(value)); } iterator insert(const_iterator hint, value_type&& value) { return m_ht.insert(hint, std::move(value)); } template void insert(InputIt first, InputIt last) { m_ht.insert(first, last); } void insert(std::initializer_list ilist) { m_ht.insert(ilist.begin(), ilist.end()); } template std::pair insert_or_assign(const key_type& k, M&& obj) { return m_ht.insert_or_assign(k, std::forward(obj)); } template std::pair insert_or_assign(key_type&& k, M&& obj) { return m_ht.insert_or_assign(std::move(k), std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) { return m_ht.insert_or_assign(hint, k, std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) { return m_ht.insert_or_assign(hint, std::move(k), std::forward(obj)); } /** * Due to the way elements are stored, emplace will need to move or copy the key-value once. * The method is equivalent to insert(value_type(std::forward(args)...)); * * Mainly here for compatibility with the std::unordered_map interface. */ template std::pair emplace(Args&& ... args) { return m_ht.emplace(std::forward(args)...); } /** * Due to the way elements are stored, emplace_hint will need to move or copy the key-value once. * The method is equivalent to insert(hint, value_type(std::forward(args)...)); * * Mainly here for compatibility with the std::unordered_map interface. */ template iterator emplace_hint(const_iterator hint, Args&& ... args) { return m_ht.emplace_hint(hint, std::forward(args)...); } template std::pair try_emplace(const key_type& k, Args&& ... args) { return m_ht.try_emplace(k, std::forward(args)...); } template std::pair try_emplace(key_type&& k, Args&& ... args) { return m_ht.try_emplace(std::move(k), std::forward(args)...); } template iterator try_emplace(const_iterator hint, const key_type& k, Args&& ... args) { return m_ht.try_emplace(hint, k, std::forward(args)...); } template iterator try_emplace(const_iterator hint, key_type&& k, Args&& ... args) { return m_ht.try_emplace(hint, std::move(k), std::forward(args)...); } iterator erase(iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); } size_type erase(const key_type& key) { return m_ht.erase(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash. */ size_type erase(const key_type& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> size_type erase(const K& key) { return m_ht.erase(key); } /** * @copydoc erase(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash. */ template::value>::type* = nullptr> size_type erase(const K& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } void swap(hopscotch_map& other) { other.m_ht.swap(m_ht); } /* * Lookup */ T& at(const Key& key) { return m_ht.at(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } const T& at(const Key& key) const { return m_ht.at(key); } /** * @copydoc at(const Key& key, std::size_t precalculated_hash) */ const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> T & at(const K& key) { return m_ht.at(key); } /** * @copydoc at(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> T & at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } /** * @copydoc at(const K& key) */ template::value>::type* = nullptr> const T & at(const K& key) const { return m_ht.at(key); } /** * @copydoc at(const K& key, std::size_t precalculated_hash) */ template::value>::type* = nullptr> const T & at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } T& operator[](const Key& key) { return m_ht[key]; } T& operator[](Key&& key) { return m_ht[std::move(key)]; } size_type count(const Key& key) const { return m_ht.count(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> size_type count(const K& key) const { return m_ht.count(key); } /** * @copydoc count(const K& key) const * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } iterator find(const Key& key) { return m_ht.find(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } const_iterator find(const Key& key) const { return m_ht.find(key); } /** * @copydoc find(const Key& key, std::size_t precalculated_hash) */ const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> iterator find(const K& key) { return m_ht.find(key); } /** * @copydoc find(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } /** * @copydoc find(const K& key) */ template::value>::type* = nullptr> const_iterator find(const K& key) const { return m_ht.find(key); } /** * @copydoc find(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } std::pair equal_range(const Key& key) { return m_ht.equal_range(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ std::pair equal_range(const Key& key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } std::pair equal_range(const Key& key) const { return m_ht.equal_range(key); } /** * @copydoc equal_range(const Key& key, std::size_t precalculated_hash) */ std::pair equal_range(const Key& key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> std::pair equal_range(const K& key) { return m_ht.equal_range(key); } /** * @copydoc equal_range(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> std::pair equal_range(const K& key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } /** * @copydoc equal_range(const K& key) */ template::value>::type* = nullptr> std::pair equal_range(const K& key) const { return m_ht.equal_range(key); } /** * @copydoc equal_range(const K& key, std::size_t precalculated_hash) */ template::value>::type* = nullptr> std::pair equal_range(const K& key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /* * Bucket interface */ size_type bucket_count() const { return m_ht.bucket_count(); } size_type max_bucket_count() const { return m_ht.max_bucket_count(); } /* * Hash policy */ float load_factor() const { return m_ht.load_factor(); } float max_load_factor() const { return m_ht.max_load_factor(); } void max_load_factor(float ml) { m_ht.max_load_factor(ml); } void rehash(size_type count) { m_ht.rehash(count); } void reserve(size_type count) { m_ht.reserve(count); } /* * Observers */ hasher hash_function() const { return m_ht.hash_function(); } key_equal key_eq() const { return m_ht.key_eq(); } /* * Other */ /** * Convert a const_iterator to an iterator. */ iterator mutable_iterator(const_iterator pos) { return m_ht.mutable_iterator(pos); } size_type overflow_size() const noexcept { return m_ht.overflow_size(); } friend bool operator==(const hopscotch_map& lhs, const hopscotch_map& rhs) { if (lhs.size() != rhs.size()) { return false; } for (const auto& element_lhs : lhs) { const auto it_element_rhs = rhs.find(element_lhs.first); if (it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) { return false; } } return true; } friend bool operator!=(const hopscotch_map& lhs, const hopscotch_map& rhs) { return !operator==(lhs, rhs); } friend void swap(hopscotch_map& lhs, hopscotch_map& rhs) { lhs.swap(rhs); } private: ht m_ht; }; } // end namespace tsl #endif