
Fachhochschule Wiesbaden, University of Applied Sciences

Fachbereich Informatik

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Informatiker (FH)

Redesign and Functional Extension of the

Robotic Tape Queueing System within the

CASTOR HSM

vorgelegt von Matthias Bräger

am 19. Dezember 2005

Referent: Prof. Dr. Detlef Richter, Fachhochschule Wiesbaden

Korreferent: Dr. Olof Bärring,

CERN (European Organization for Nuclear Research), Genf

Abstract

High Energies Physics is a research area which provides several data-intensive

scenarios at petabyte-scale level. Current simulations predict for the experiences of

the Large Hardrons Collider [LHC], which is expected to be online in 2007, a data

raising of fifteen petabytes per year. We are therefore, challenged to expertise new

ways to catalogue, store, locate and retrieve in a timely manner.

In this thesis we present an extension of CERN’s Advanced STORage Man-

ager [CASTOR], the hierarchical mass storage system developed by CERN. An

introduction to the field is given and alternative mass storage solutions are outlined.

We elaborate a description of CASTOR that helps us to understand the con-

text of the Robotic Tape Queueing System, which has been reimplemented.

An exact analysis of the problems is made and technical extensions explained to a

relevant level. This is required to work out in detail the system design.

The implementation is discussed and significant code examples presented.

We conclude with an evaluation of the redesign and give an outline of poten-

tial future developments.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview . 3

1.3 Thesis Structure . 3

1.4 Prerequisites . 4

2 Technical Basics 5

2.1 Storage Components . 5

2.2 Fabric Management Tools . 7

2.2.1 The Quattor System Administration Toolsuite 8

2.2.2 The wassh Shell-Command . 10

2.2.3 The Large Hardron Collider Era Monitoring System 10

2.3 Grid Interfaces . 13

2.3.1 Grid File Transfer Protocol 13

2.3.2 Storage Resource Management 16

3 Alternative Storage Managers 19

3.1 Disk Cache . 20

3.2 Enstore . 22

3.3 High Performance Storage System . 24

4 CERN Advanced Storage Manager 27

4.1 History and Limitations . 27

4.2 Architecture . 29

4.2.1 Database Generation and Handling 33

I

Contents

4.2.2 The Database Interface . 35

4.3 The Distributed Logging Facility . 38

5 Technical Analysis 39

5.1 Requirements . 39

5.2 The Communication Protocols . 40

5.2.1 The Request Accept Protocol 40

5.2.2 The Tape to Tape Drive Assign Protocol 43

5.3 State Analysis of the Volume and Drive Queue Manager 45

5.4 Design Decisions for a Stateless Application 48

5.5 Tape Drive Dedication . 50

5.6 The Asymmetric Tape Drive Problem 50

6 Preliminary Design 53

6.1 Scenario . 53

6.2 User Interfaces . 54

6.2.1 Administrator and Remote Tape Copy Client Commands . . . 54

6.2.2 Tape Daemon Commands . 57

6.2.3 Remote Tape Copy Daemon Command 58

7 Detailed Design 59

7.1 Information Handling in the Database 59

7.1.1 Storing or Updating of a Tape Drive’s Information 62

7.1.2 Storing of a Tape Request . 63

7.1.3 Tape Drive Dedication . 64

7.1.4 Assignment of Tape Requests to Tape Drives 64

7.2 The Protocol Facade . 65

7.3 Handling of Incoming Messages . 68

7.3.1 Handling of the Remote Tape Copy Client Messages 68

7.3.2 Handling of Tape Daemon Messages 72

7.3.3 Handling of Administration Requests 74

7.4 Thread Pool Management . 75

II

Contents

8 Implementation of the Robotic Tape Queueing System 79

8.1 Development Process . 79

8.2 Using the Distributed Logging Facility 80

8.3 Protocol Determination . 82

8.4 Container Class Handling . 83

8.5 Database Query Handling . 86

9 Summary and Conclusion 89

9.1 Evaluation . 89

9.2 Extensibility and Future Prospects 91

A VDQM Class Diagram 93

B CD Contents 95

C Glossary 97

Bibliography 103

Index 103

III

Contents

IV

List of Figures

1.1 Aerial view of the CERN LHC accelerator [1] 2

2.1 Example of a hierarchical service structure [2] 9

2.2 Quattor’s configuration management infrastructure [2] 9

2.3 Lemon architecture schema [3] . 11

2.4 Third party control of data transfer with GridFTP 14

2.5 SRM as a uniform storage interface [4] 17

3.1 Overview of the dCache component architecture 21

3.2 Enstore component overview . 22

3.3 Abstracted HPSS deployment . 25

4.1 Statistical overview about CASTOR evolution 28

4.2 CASTOR2 architecture overview (based on the CASTOR presenta-

tion in 2005 [5]) . 29

4.3 Snapshot of the Umbrello UML Modeller 34

4.4 Retrieving data out of the database 35

5.1 Communication protocol for incoming requests 42

5.2 Error handling behaviour in the incoming request protocol 43

5.3 Tape to tape drive assignment protocol 45

5.4 The different states for a tape drive in the old VDQM system 46

5.5 Revised tape drive states for the new VDQM implementation 49

5.6 Extended communication protocol for incoming tape requests 51

6.1 Interactions of the new VDQM implementation with other CASTOR2

components . 53

V

List of Figures

6.2 Use case of the administrator and the Remote Tape Copy Client Dae-

mon [RTCPClientD] . 55

6.3 Use case of the tape daemon . 57

6.4 Use case of the Remote Tape Copy Daemon 58

7.1 VDQM database overview . 61

7.2 Sequence diagram of the Protocol Facade 67

7.3 The handling of a new tape request 69

7.4 Handling of the queue position message for a tape request 71

7.5 Removing a tape request . 72

7.6 Handling of a status update message for a tape drive 73

7.7 Removing a tape drive . 75

7.8 Requesting the tape drive list for the showqueues command 76

7.9 Accessing the tape request queue for the showqueues command 76

7.10 Activity diagram of the thread pool handling 78

A.1 The complete VDQM class overview 94

VI

Chapter 1

Introduction

In this Chapter we give our motivation for doing a revision of the mass storage

project at CERN, and an overview about the work presented of this thesis.

It has been developed within six month at CERN, enhanced of a three month

internship at the beginning.

1.1 Motivation

The European Organization of Nuclear Research [CERN] is located on the border

between France and Switzerland, close to Geneva. It is the most important labora-

tory for High Energies Physics [HEP] worldwide. Several accelerator facilities have

been in operation during the last fifty years, such as the Large Electron Positron

Collider [LEP] from 1981 to 2000 which performed electron-positron collisions.

The Large Hardrons Collider [LHC] is currently being built. This is a 26 km long

accelerator facility, located 100 meters under the surface (see Figure 1.1). Its first

run is expected in 2007.

In this framework, four different HEP experiments are presently being con-

structed to make use of the capabilities of the LHC accelerator:

• ALICE - A Large Ion Collider Experiment

• ATLAS - A Toroidal LHC ApparatuS

• LHCb - LHC study of Charge Parity [CP] violation in B-meson decays

1

Chapter 1. Introduction

Figure 1.1: Aerial view of the CERN LHC accelerator [1]

• CMS - Compact Muon Solenoid

A detailed description of these experiments is out of the scope of this thesis and

would involve multiple PhD thesis!

With the start of the HEP experiments in 2007, CERN will produce a total

amount of fifteen petabytes of data per year. This represents a big challenge not

only for the hardware and storage infrastructure, but also for the involved software

components.

The CERN Advanced STOrage manager [CASTOR] is used to store this infor-

mation to tape. CASTOR has been in production since 2001, but, due to the fast

2

Chapter 1. Introduction

increasing amount of data it has reached its technical limits. Hence, a revision of

the architecture is necessary to meet the challenge of the future tasks.

1.2 Thesis Overview

The intention of this work is to extend the robotic tape queueing system of CERN’s

mass storage application CASTOR2. Therefore, a reimplementation of the Volume

and Drive Queue Manager [VDQM] component is necessary.

The key goals of the thesis are:

• Analysis of CASTOR’s current robotic tape queueing system (VDQM)

• Information gathering about limitations and new requirements

• Design and implementation of an extended, backward compatible system

1.3 Thesis Structure

Chapter 2 describes the storage components, currently used and tested in the

CERN Computer Centre. It provides an introduction to the fabric management

tools which are used for maintaining the hardware. We present furthermore, two

standard Grid Interface Protocols that are supported by CASTOR.

Chapter 3 presents alternative storage managers to CASTOR and explains

the reasons why they are not used.

Chapter 4 gives an introduction to the CASTOR system. The collaboration

of its main components is explained by describing the steps to store/retrieve

files to/from the robotic tape library. Additionally, architectural details of the

reimplemented core system are outlined.

Chapter 5 acquires a detailed technical analysis of the current robotic tape

queueing system. The requirements of the reimplementation are presented and

solutions for the major problems are evaluated.

3

Chapter 1. Introduction

Chapter 6 gives an overview about the use cases of each client component,

supported by the reimplementation.

Chapter 7 describes in detail the design of the new architecture.

Chapter 8 summarise the implementation process and explains some code de-

tails.

Chapter 9 contains the conclusions of this work, and descriptions of practical

extensions and future prospects.

1.4 Prerequisites

To understand in detail the work of this thesis, the readers should be familiar with

basic network protocols, such as the Transmission Control Protocol [TCP] and the

User Datagram Protocol [UDP]. This is particularly needed to understand the intro-

duction to the Grid technologies and the communication protocols of the presented

mass storage systems.

Since the application is written in an object oriented manner the readers should

have expertise in modern software development paradigm, such as Software Design

Patterns. Especially in the description of the detailed design, the technical terms

are used without extensive explanation.

Additionally, this document contains a Chapter describing some bigger code ex-

amples. Therefore, it will be taken for granted that the reader has basic programming

knowledge in C/C++.

To aid the reader, we highlight class names and function names, which are men-

tioned in the text in italics as shown. All acronyms used are explained at their first

use and can be found in the Glossary. Further references are provided by reference

number and can be found at the end of the thesis.

The contents of this document can be freely used and distributed providing the

author and the source is referenced.

4

Chapter 2

Technical Basics

CASTOR is a modular system with multiple software components running on vari-

ous machines. Due to an increasingly amount of soft- and hardware, the administra-

tion becomes a difficult issue. Tools are necessary to deploy, manage, and to monitor

the machines and all accumulating logs and real data at CERN. This Chapter will

give an overview about those which are used in combination with CASTOR.

Beside the software challenge, CERN has to upgrade their robotic tape libraries

to face the expected data from the Large Hardron Collider [LHC] experiments in

2007. This is likely to amount to tens of petabytes.

Thus, the first Section will give an overview about the actual used storage hard-

ware and the robotic tape libraries evaluation for 2007.

2.1 Storage Components

The first commercially successful tape drive appeared in 1952 and was the Indus-

trial Business Machine [IBM] 726 Tape Unit for the IBM 701 Defense Calculator.

The data were recorded at a density of 100 bytes per linear inch (byte/in) of half-

inch-wide magnetic tape. The IBM 701 cost over $1 million, used magnetic core

memory, was priced at $1 per bit, and required refrigeration. Since then a lot of new

fabrications have been made [6].

In 2004, Toshiba introduced the first sub-1-inch tape drive with a 0.85-inch

diameter, 3,600 rotations per minute [rpm] in both 3 GB and 4 GB capacities.

The 400 GB Linear Tape Open 3 [LTO3] Ultrium tape drive IBM has been replaced

5

Chapter 2. Technical Basics

by the recent announcement of a 500 GB tape drive by Seagate. IBM displayed the

first native 1 TB tape cartridge containing 1,216 tracks and 775 meters of media [6].

Model Capacity, native

(uncompressed)

Average file access

time (first file)

Data transfer rate,

native (uncom-

pressed)

T9840A 20 Gb 8 sec 10 Mb/sec

T9840B 20 Gb 8 sec 19 Mb/sec

T9840C 40 Gb 8 sec 30 Mb/sec

T9940A 60 Gb 41 sec 10 Mb/sec

T9940B 200 Gb 41 sec 30 Mb/sec

LTO Gen 1 100 Gb 86-96 sec 15-16 Mb/sec

LTO Gen 2 200 Gb 64-75 sec 32-35 Mb/sec

LTO Gen 3 400 Gb 72 sec 80 Mb/sec

SDLT 320 160 Gb 82 sec 16 Mb/sec

SDLT 600 300 Gb 79 sec 36 Mb/sec

3592 J1A 300 Gb data not available 40 Mb/sec

T1120 (new) 500 Gb data not available 100 Mb/sec

Table 2.1: Overview about the most common tape drive models [7, 8, 9]

Table 2.1 gives an overview about the characteristics of todays most common

tapes drives. The tape drives are separated with a horizontal line from models with

a different tape cartridge type. Newer tape drives are able to read tape models

of older tape drives if they belong to the same cartridge family, but they can not

necessarily write to them.

At the moment CERN has four Powderhorn 9310 robotic tape libraries from

StorageTek [STK] , placed for safety reasons in two different buildings. Each library

has 22 9940B tape drives and space for up to 6,000 tapes. This gives a maximum

total storage capacity of 600-1,200 terabytes.

Due to the Large Hardron Collider [LHC] experiment starting in 2007, CERN

will have to store over 15 petabytes of data per year and will need to support an

average throughput transfer rate of four gigabytes per second. Apart from existing

storage resources, - being insufficient, the currently installed Powerderhorn tape

6

Chapter 2. Technical Basics

libraries can only provide a total throughput of one gigabytes per second, and this

only if we disregard the idle time during tape exchange. To fullfill these needs in the

near future, CERN evaluates currently the newest robotic tape library generation

of IBM and STK.

StorageTek’s system is the modular library system StreamLine SL8500. The

basic library storage module [LSM] has space for 1,448 tape cartridges and 64 tape

drives. It is possible to connect up to 32 LSMs to a single system and to reach a

maximal configuration of 300,000 customer-usable slots and 2,048 drives [7]. Each

LSM is directly connected to a library control unit [LCU], which controls the robotics

motion and interfaces to the drives through the LCU-to-drive path [10]. The LSM

components can be interconnected with a Pass-Thru Port [PTP] system. The PTP

is used by the robotic arm to pass tape volumes from one LSM to another connected

LSM. An advantage of this is that tape drives can be used more efficiently. If each

experiment had instead its own library, some could be very busy and others idle.

IBM provides the TotalStorage 3584 Tape Library solution, with a maximum

capacity of 6,260 tape cartridges and up to 192 tape drives. Compared to the STK

system the dimension of this library is much smaller. On the other hand, IBM just

presented the world fastest tape drive, the IBM TS 1120 with an average transfer

rate of 100 MB/sec and a capacity of 500 GB on the IBM tape cartridge 3592.

The final decision about the robotic tape library setup at CERN will be made

in the autumn of 2006.

2.2 Fabric Management Tools

In the last years of the European DataGrid [EDG] project, developers and service

managers have been working to understand and solve operational and scalability

issues of Grid technology.

The project was funded by the European Union to build the next generation com-

puting infrastructure, provide intensive computation and analysis of shared large-

scale databases.

In this period three sub projects were developed to administer and maintain

huge clusters, which were summarised under the name ”Extremely Large Fabric

management system” [ELFms] [11] . This comprises:

7

Chapter 2. Technical Basics

• System Administration Toolsuite [Quattor] [12]

• LHC Era Monitoring [Lemon] [13]

• LHC-Era Automated Fabric [Leaf]

This report factors out the Leaf project, which is the hardware and state manage-

ment system for the Large Hadron Collider Experiment [LHC]. For an understanding

of CASTOR, this topic is not necessary.

2.2.1 The Quattor System Administration Toolsuite

Quattor is a system administration toolsuite for automated installation, configura-

tion and management of clusters and farms running with Linux and Solaris operating

systems [12].

Quattors development was started by EDG in 2001 and handed over to CERN

(IT department) after two years in the scope of ELFms. It is now used to manage

over 2600 Linux nodes, out of approximately 3400 nodes in the CERN Computer

Centre. The managed nodes can be, for instance, tape servers, database servers or

web servers.

The Quattor information model distinguishes between the actual state and the

desired state. The desired state of the machines is registered in a fabric-wide Con-

figuration Database [CDB] , using a special designed configuration language called

PAN. The state information in CDB are hierarchically structured in building blocks

called templates, which are validated and kept under version control in CVS . The

hierarchy structure allows to build service structures as shown for instance in Figure

2.1.

There are different ways to create a template and store it into CDB. The most

common way is to use existing scripts, which send the PAN file via the Service-

Oriented architectural pattern [SOAP] interface to CDB. Another way, in the future,

is to use a graphical user interface, which is not yet fully implemented.

This architecture makes it possible to detect conflicts of concurrent modifications

of the same configuration information and to go back to a previous version of a

template.

8

Chapter 2. Technical Basics

Figure 2.1: Example of a hierarchical service structure [2]

A special PAN compiler translates the configurations in CDB into XML-files,

which are propagated to, and cached on, the affected nodes in the cluster.

Figure 2.2 gives an overview about this main architecture. As this shows, CDB

provides an SQL interface, which enables it to run standard SQL queries on configu-

ration information. This is used by Lemon to obtain information about the services

of the fabric nodes.

Figure 2.2: Quattor’s configuration management infrastructure [2]

Each node has a Configuration Cache Manager [CCM] , which is responsible for

9

Chapter 2. Technical Basics

downloading the information from CDB and storing it in the local cache. The main

advantage of this architecture is the avoidance of demand peaks on CDB side.

A locally running Software Package Management Agent [SPMA] handles match-

ing the desired state of the node. With the aid of a system packager, like RPM

or PKG , the SPMA installs or removes software packages, as in the information

provided by the CCM over its PERL interface.

Another subsystem is needed to configure or reconfigure local system and Grid

services. This subsystem is called Node Configuration Manager [NCM] , which like

SPMA uses the local CCM cache.

2.2.2 The wassh Shell-Command

Wassh is used internally at CERN to run remote shell commands in parallel on sets

of hosts via ssh. The degree of parallelism can be specified by the user. The output

of each remote host is returned in random order and printed out to the standard

output as if the shell command had run on each node sequentially. A desired side

effect of the parallel execution is a high performance increase.

The syntax of wassh looks as follows:

wassh [<options>] [<targets>] <shell-command>

Usually it is just used like in this example:

wassh root@lxbatch <shell-command>

This command would run as root user a specified shell-command on all machines of

the lxbatch cluster.

2.2.3 The Large Hardron Collider Era Monitoring System

”Lemon (LHC EDG monitoring) is a client/server based monitoring system.” [14]

It serves to provide monitoring information about the farms in Computer Centres

as well as on a normal user PC. Moreover, Lemon can also be used to provide a

framework for recovery actions and alarms. At CERN it is mostly used for general

10

Chapter 2. Technical Basics

monitoring issues and for system administrators and programmers in debugging

problems.

The clients are represented by monitoring agents on each single monitored node,

which retrieves monitoring information and provides them over a push/pull protocol

with sensors to the Lemon Server. The local cached information is forwarded to a

central Measurement Repository.

For a better understanding of the whole Lemon structure and the following com-

ponent specifications, please see the schema in Figure 2.3.

Figure 2.3: Lemon architecture schema [3]

Sensor

Sensors are applications, which collect individual metrics from hard- and software

components and convert them into human readable values. They are used for in-

stance to monitor remote entities like switches or power supplies. The measurements

are based on the requests of the Monitoring Sensor Agent [MSA]. Sensors are easy to

implement and to include into an existing system, so the users can always invent new

ones. On average there are about 70 metrics measured on approximately 2600 nodes

in the CERN Computer Centre. In total they collect about one gigabyte of data per

11

Chapter 2. Technical Basics

day. Several sensors exist for database monitoring, performance measurements and

soft- and hardware monitoring.

Monitoring Sensor Agent [MSA]

The Monitoring Sensor Agent [MSA] is a daemon which runs on each client machine

and spawns the sensors to measure metrics in defined time intervals. The data are

sent back from the sensors through a pipe and then forwarded asynchronously via

an UDP or TCP connection to the Monitoring Repository on the Lemon server.

Monitoring Repository [MR]

The MR receives all collected samples from the MSAs and stores the full monitoring

history in an Oracle database or alternatively into a flat file, having validated the

data set. Data is never deleted but data of only historical interest is archived on the

Tivoli Storage Manager [TSM] and CASTOR.

The data can be accessed using the SOAP interface, or directly from the repos-

itory backend via SQL.

MR allows to plug-in correlations accessing collected metrics and external infor-

mation. Examples for correlation engines can be found for instance for Quattor CDB

or LSF (Large Scale Facility) . Another feature of MR is the launch of configured

recovery actions.

Lemon RRD Framework [LRF]

To transform the collected data from the client nodes to a format which can easily be

used for virtualizations, another framework called Lemon RRD framework is needed

[LRF]. LRF is based on the RRDtool project and preprocesses the data into RRD

files which it gets over the SOAP interface of the MR.

RRD is the acronym for Round Robin Database [15]. It is a system to store and

display time-series data, like those collected by Lemon. RRD stores the data in a

very compact way that will not expand over time. Furthermore RRDtool provides

an API to create graphs of the data samples. These graphs are then passed over the

web interface for virtualization by a web browser.

12

Chapter 2. Technical Basics

The framework of LRF is generic enough to accept data from other sources

than MR. It is capable of group the metrics of machines together and to provide

summaries of each group.

Another way to access the monitoring data from MR is to use the Lemon

command line interface [LCLI] . LCLI will connect to MR and retrieve the desired

data set, which can be specified using several options.

2.3 Grid Interfaces

Scientific and engineering Grid applications require both the transfer of large

amounts of data (terabytes) between geographically distributed storage locations

and remote access to large data sets. There are already a number of storage solu-

tions in use, but very often these were just designed to satisfy the individual needs

of the users. Unfortunately, most of these don’t use standardised communication

protocols or don’t publish them.

CASTOR2 supports two universal Grid data transfer and access protocols. This

Section will outline their main features.

2.3.1 Grid File Transfer Protocol

”The Grid File Transfer Protocol [GridFTP] is a high-performance, secure, robust

data transfer protocol optimised for high-bandwidth, wide-area networks.” [16]

The protocol is defined by Global Grid Forum Recommendation GFD-R-P.020

[17], RFC 959, RFC 2228, RFC 2389, and a draft before the IETF FTP working

group. GridFTP extends the standard File Transfer Protocol [FTP] protocol, which

is most commonly used data transfer protocol on the Internet. An advantage of

using FTP as basis is that it is a widely implemented and well-defined architecture.

On top of this GridFTP provides additional features, from which the most im-

portant ones are explained below:

13

Chapter 2. Technical Basics

Grid Security Infrastructure [GSI] and Kerberos Support

One of the biggest aims of GridFTP was to support the Grid Security infrastructure

[GSI] and Kerberos authentication. This is very important because robust authenti-

cation, integrity and confidentiality are critical issues when transferring or accessing

files. The goal was reached by implementing the GSSAPI authentication mecha-

nism, defined the ”FTP Security Extension” [RFC 2228]. GSSAPI is an acronym

and stands for Generic Security Services Application Programming Interface.

Third-Party Control of Data Transfers

As shown in Figure 2.4 GridFTP permits the user to start, control and monitor a

data transfer between two remote servers. This feature is useful, if the user wants

to mangage large data sets for distributed communities. Furthermore it allows the

use of dedicated transfer nodes without doing a log in, which simplifies the users’s

workflow.

Figure 2.4: Third party control of data transfer with GridFTP

14

Chapter 2. Technical Basics

Therefore the third-party authenticates on a local machine (Host A) and launches

the GridFTP Client application. GSSAPI operations manages the authentication of

the third-party on the source (Host B) and destination (Host C) servers for the data

transfer.

Parallel Data Transfer

To achieve better performance results on wide-area links, GridFTP uses multiple

TCP streams in parallel. This is even possible between the same source and

destination machine or the same file. GridFTP supports the parallel data transfer

through FTP command and data channel extensions.

At CERN, GridFTP is used to transfer data to/from the mass storage system

CASTOR from outside of the CERN network. In the local network, these function-

alities are provided by a specific client (see Chapter 4). To upload or retrieve files

from outside of CERN several steps have to be performed, which is described in

detail on the CERN IT Department homepage [18]:

1. The user has to have a valid personal certificate issued by a LCG recognised

certificate authority. LCG is the LHC Computing Grid project, which is run

from CERN.

2. For automatic mapping of user’s distinguished name [DN] to the Unix group

account on CERN’s provided GridFTP service, the user has to register the

certificate on one of the LCG virtual organisations, which originate from the

CERN experiments and projects, like ALICE, ATLAS or CMS.

3. Once all necessary software has been installed and the required configurations

are done, the user must generate a Grid proxy certificate by typing this com-

mand into his shell:

> grid-proxy-init

This is intended for short-term use, when the user is submitting many jobs and

cannot be troubled to repeat his password for every job. The default expiration

for the proxy certificate is twelve hours.

15

Chapter 2. Technical Basics

4. To upload files to CASTOR, the following commands have to be used, as

shown in the following example:

> globus-url-copy file:///tmp/testfile \

gsiftp://castorgrid.cern.ch/castor/cern.ch/grid/\

experiment/datafiles/testfile

To retrieve files from CASTOR, the user has to type these commands:

> globus-url-copy \

gsiftp://castorgrid.cern.ch/castor/cern.ch/grid/\

experiment/datafiles/testfile \

file:///tmp/testfile

2.3.2 Storage Resource Management

The Storage Resource Management [SRM] is a middleware component for managing

shared storage resources on the Grid. Its function is to provide dynamic space allo-

cation and file management [4]. The advantage of SRM is the uniformed access to

heterogeneous storage elements as shown in Figure 2.5. The use of SRMs simplifies

file managing by abstracting the access to the storage, so that the user doesn’t has

to know where and how his data are exactly stored. This allows also designer to

concentrate on function rather than on compatibility with all systems involved.

Additional features of SRM are protocol negotiation and dynamic transfer URL

generation. This allows support for multiple transfer protocols. At the moment CAS-

TOR has implemented the GridFTP protocol, so that there is not really a choice

when using it together with SRM.

The abstract functionalities of SRM are specified in actual two existing protocol

specifications:

• SRM v1.1 provides

– data access and transfer

– implicit space reservation

• SRM v2.1 adds to the first version of the protocol

16

Chapter 2. Technical Basics

Figure 2.5: SRM as a uniform storage interface [4]

– explicit space reservation

– namespace discovery and manipulation

– access permission manipulation

SRM v1.1 was implemented and finalised in 2001 by LBNL1, JLAB2, FNAL3

and CERN. It mostly consists of the definition of the data transfer functionality.

The knowledge gained during implementation of the first version has allowed to

define the more complete interface SRM v2.1. CASTOR supports at the moment

only the first protocol version, because an implementation of the v2.1 protocol would

necessitate bigger changes in the design structure of CASTOR.

Apart from that, the SRM interface allows direct file transfer from one mass

storage system to another. This qualifies storage systems to be either the client

or the server. Replication schedulers use this feature to take advantage of their

knowledge of the system operating parameters, like the current network load or the

availability of the system resources.

1Lawrence Berkeley National Laboratory
2Jefferson Lab, managed and operated by Southeastern Universities Research Association

[SURA] for the U.S. Department of Energy [DOE].
3Fermi National Accelerator Laboratory

17

Chapter 2. Technical Basics

18

Chapter 3

Alternative Storage Managers

CERN has several reasons to implement its own Mass Storage System. One reason

is to be independent from a single proprietary solution and licence costs. Looking

more closely at existing products it is also very difficult to find a good solution,

which fits all the needs of CERN’s storage requirements and its huge amount of

data. Ideally CERN was looking for a solution which can easily be adapted to the

needs of users. Thus, a good solution has to be able to manage following needs:

• Storing a very high amount of data per second (over 1 gigabyte/s)

• Deliver data to other storage systems and Tier one institutions

• Being compatible with recent Grid standards, such as GridFTP and/or SRM

• Providing 99.999 percent of stored availability

• Being able to manage more than 15 petabytes of data per year and a transfer

rate of 4 gigabytes per second

• Giving, at any time, access to all stored data

• Easily to be adapted to customers needs

The next sections will present alternatives to CASTOR and explain why they

cannot realistically be used at CERN.

19

Chapter 3. Alternative Storage Managers

3.1 Disk Cache

The goal of the Disk Cache project (dCache) is to ”provide a system for storing and

retrieving huge amounts of data, distributed among a large number of heterogeneous

server nodes, under a single virtual filesystem tree with a variety of standard access

methods”[19]. The software was jointly developed by the Deutsches Elektronen-

Synchrotron, DESY and the Fermi National Accelerator Laboratory, FNAL .

Two main features which are provided by dCache and are useful in a Grid envi-

ronment are:

1. The reservation and guarantee of storage availability for large data sets.

2. A garbage collection to ensure that failed operations or missbehaving clients

do not permanently freeze the storage resources and to prevent other user from

accessing it.

As shown in Figure 3.1, dCache strictly separates the filename space of its data

repository from the physical data set location. Internally the filename space is man-

aged by a database. The location of a file can be on the hard disk of one or more

dCache nodes or on tertiary storage system. These are contacted, if a requested file

can not be found on the local disk storage.

Disk Cache provides for the users a native access protocol, called dCache Access

Protocol (dCap). dCap is shell based and supports the basic file access functionali-

ties. In addition to this native access, various File Transfer Protocols are supported,

e.g. the Kerberos based Generic Security Services File Transfer Protocol [GssFTP]

and Grid File Transfer Protocol [GridFTP] [20].

As mentioned, the storage of dCache is purely based on hard disks, which allows

a fast access to the stored data. A disadvantage of this solution is that the costs of

hard disk space is higher than tape space. This is a big issue, especially when it is

necessary to store more than 15 petabytes per year.

The Disk Cache system is used at CERN in addition to CASTOR, to store user

data which are frequently accessed. CASTOR is connected to dCache as a tertiary

storage manager via the Storage Resource Manager interface.

20

Chapter 3. Alternative Storage Managers

Figure 3.1: Overview of the dCache component architecture

21

Chapter 3. Alternative Storage Managers

3.2 Enstore

Enstore [21, 22] is a mass storage system developed and used at Fermi National

Accelerator Laboratory (FNAL) to provide distributed access to data on robotic

tape libraries. As a disk caching front end, FNAL uses dCache, Enstore just handles

tape storages.

The project was started to support the FNAL Collider Run II experiment, which

needed an aggregate storage requirement of 250 Mbytes/s with an uninterrupted

throughput for one month. To reach aims to the preceded example, the system has

to be robust enough to sustain failures of hardware elements and has to support the

addition of new equipment to scale its capacity and rates.

The main components of the Enstore software is presented in Figure 3.2. It is

based on a client-server architecture with a generic user interface. All components

communicate over UDP based interprocess communications (IPC), which guaranties

addressability under extreme load conditions.

Figure 3.2: Enstore component overview

Following components are needed for the Enstore system:

• A configuration server, which provides system configuration information to the

rest of the system. The information is stored in easy maintainable files.

22

Chapter 3. Alternative Storage Managers

• A volume clerk is responsible for the volume database management. It handles

the declaration of new volumes, the assignment of volumes, user quota, and

volume bookkeeping.

• The file database is maintained by a file clerk component, which assigns unique

file IDs and keeps all required information about files stored into the robotic

tape libraries.

• Movers transfer user data to tapes and handle read requests.

• Multiple distributed library managers provide queueing, optimisation, and dis-

tribution of user requests to assigned Movers. A Mover can be assigned to more

than one library manager.

• A Media Changer handles the mounts and dismounts of tapes, which are re-

quested by the Movers.

• Every component can send an event to the alarm and log servers to trigger

the generation of an alarm or log message.

• An Accounting Server manages information about the failed and completed

data requests in a database.

• Information about the tape drives is maintained by the drive status server

[Drive Stat Server], which also makes use of a database.

• The actual state of the Enstore components is monitored by an Inquisitor.

• The Perfectly Normal File System, or just PNFS , is an independent piece of

software developed at DESY . It provides a name space that externally appears

as a set of Network File System. The users access files through PNFS names,

which are maintained in a database together with some additional metadata

information about the files.

• Events are used in Enstore as communication instrument to inform compo-

nents about ongoing changes in the system. An Event Relay transmits these

events to its subscribers.

23

Chapter 3. Alternative Storage Managers

Enstore has two grouping methods for data. First of all, it is possible to specify

the amount of tapes reserved for an experiment. To delegate the incoming data

to the right tapes, each request possesses a unique group ID. Additionally, a user

can group files together in a so-called file family and has the feasibility to control

the amount of simultaneous write transfers by a family. Enstore tries to store data

belonging to the same file family on the same tape, which improves a later read

access.

The user command interface, encp, is similar to the UNIX cp copy-command

with some additional features. It allows users to specify processing commands such

as priority, tape dismount time or number of retries.

In conclusion, Enstore is a very modular and robust system which, in combina-

tion with dCache, fits the needs of an experimental environment with a high data

quantity. The reason not to use Enstore is that the amount of accumulated data

at CERN will be four times higher than at FNAL, and the transfer rate will be 16

times higher! Another issue is that Enstore would have to be changed to support

tape drives with a data transfer rate of 100 megabytes per second. At CERN Enstore

would most likely reach its architectural limits.

3.3 High Performance Storage System

”The High Performance Storage System (HPSS) provides scalable hierarchical stor-

age management (HSM), archive, and file system services.”[23] Its implementation

was started in 1992 by a collaboration of five laboratories of the United States

Department of Energy and IBM.

HPSS is designed to manage very high amounts of data on disk and robotic tape

libraries, in the range of petabytes. It emulates a virtually unlimited disk space,

which uses one unified name space. For the users it hides the complex storage struc-

ture and appears as one single storage service. The system keeps recently used data

on disk, while the rest is written to tape. Figure 3.3 illustrates the conceptual archi-

tecture of HPSS, which uses cluster and Storage Area Network (SAN) technology to

aggregate the capacity and performance of many computers, disks, and tape drives.

The information about the data are stored on a database on metadata disks and

are strictly separated from their physical location. To manage information, several

24

Chapter 3. Alternative Storage Managers

Client
Computers

LAN

SAN

Metadata
Services

Backup
Metadata
Services

Disk
Arrays

Tape-Disk
Movers

Robotic Tape
Libraries

Metadata
Disks

Figure 3.3: Abstracted HPSS deployment

robust metadata services are needed, which support atomic transactions, backup and

recovery mechanisms, a scalable set of metadata structures, and scalable update and

access algorithms.

The Tape-Disk Movers implement the main architecture to either transfer data

from a source device or to redirect the input and output to Mover. For instance,

to do a direct SAN transfer. A device can be memory, tape, disk, network or file

system or any other physical or logical storage entity [23]. Apart of that, the Movers

are also responsible to retry failed requests and to optimise the transfer.

For data handling, HPSS provides a variety of user and filesystem interfaces.

Beside protocols like the Virtual File System (VFS), FTP, Samba and Network File

System (NFS), its most powerful Client API is an extended Portable Operating

System Interface (POSIX), called CLAPI. It provides, beside the POSIX semantics,

a set of specific HPSS functions and can be used directly by end user applications

25

Chapter 3. Alternative Storage Managers

or by data storage service applications. One of the advanced functionalities is for

instance the stripping of disks and tapes to create parallel files. Through parallel

access it is then possible to reach data rates much higher than the rate of a single

disk array or tape can achieve.

In summary, HPSS is a robust and very scalable HSM solution, which provide

an unified name space and the possibility to store data to disks or to robotic tape

libraries. HPSS was used in 1998 to 1999 as the main mass storage system at CERN.

To fit the needs of the experiments and users, CERN decided to switch to the self

developed CASTOR HSM system, which is based on the SHIFT project started in

the early 1990s.

26

Chapter 4

CERN Advanced Storage

Manager

The CERN Advanced Storage Manager, CASTOR, is a hierarchical storage man-

agement [HSM] system developed at CERN for files that may be migrated between

front-end disk and back-end tape storage hierarchy. Files in CASTOR are accessed

using RFIO (Remote File Input/Output) protocols either at the command level

or, for C programs, via function calls. The CERN Central Data Recording Service

[CDR] uses CASTOR for the transfer of raw data from experimental areas to the

central storage. CASTOR is continuously enhanced for the LHC experiment and, as

such, has been integrated with Grid technologies.

As shown in Figure 4.1, CASTOR currently manages over 4,2 petabytes of data

in over 40 million (users + production) files.

4.1 History and Limitations

CASTOR is an evolution of the SHIFT project started in the early 1990s, which

allowed multiple tape, disk, and CPU servers to interact over high performance

network protocols. SHIFT was based on RISC workstations and specialised networks.

In January 1999 CERN began to develop the first version of today’s massive

system which has thousands of Linux PC nodes linked by Gigabit Ethernet to hun-

dreds of terabytes of automated tape storage cached by dozens of Terabytes of

caches based on commodity disk components. CASTOR was then first deployed for

27

Chapter 4. CERN Advanced Storage Manager

Figure 4.1: Statistical overview about CASTOR evolution

full production use in 2001.

Due to the large increase in numbers of disk servers and file systems at CERN,

a main revision of the first realease was necessary in 2004. At this time, most of the

components where stateful, without a database in the backround. The Stager com-

ponent was the central data information handling unit of the files in the CASTOR

disk pool. The growth of its catalogue caused an exeedance of the available physical

memory. The temporally solution was to run up to 50 Stager instances in parallel

on different machines.

Also the management flexibility became a problem, in particular its robustness

and the lack of fault tolerance [24]. Other major problems were:

• scalability problems

• performance bottlenecks

• needs of proper resource sharing

28

Chapter 4. CERN Advanced Storage Manager

• sub-optimal use of resources

• historical growth, hard to maintain code

Today, all information about the files in the disk pool are managed in a central

database. It was necessary to reimplement the whole Stager architecture from scratch

and to adapt some of the old components. Since then it is called CASTOR2, and is

much more scalable, robust and flexible than before.

4.2 Architecture

CASTOR2 possesses a modular design with a central database for information han-

dling.

The general interactions will be described based on the diagram in Figure 4.2. As

examples will use a file put- and recall request. The grey rectangles in the diagram

illustrate which components have to be installed on the same host.

Figure 4.2: CASTOR2 architecture overview (based on the CASTOR presentation

in 2005 [5])

29

Chapter 4. CERN Advanced Storage Manager

Putting a File to CASTOR

1. The client calls through a client API the Request Handler [RH], which stores

the file put request into the database. The supported client interfaces of CAS-

TOR are GridFTP (see Section 2.3.1), the Remote File Input/Output Protocol

[RFIO] and CERN’s ROOT framework [25].

2. The Stager daemon looks regularly into the database and creates for each put

request a basic file location entry in the name server and in the stager database

file catalogue. The Stager catalogue handles only the information of the files

in the disk pool.

The Stager launches for each put request a scheduler job. This can be either

MAUI [26] or LSF [27]. A scheduler is needed to manage the load balancing

of the disk servers and to choose the most suitable one for the file transfer.

To do this, it retrieves all important infomation about the machines from a

global disk server monitoring component, such as free disk space, CPU usage,

or provided file transfer protocols.

3. Once a disk server has been chosen, the scheduler creates a StagerJob process,

which supervises the whole data transfer, starting from the user disk location

up to the disk of the CASTOR disk pool. After having locked the requested

amount of disk space on its local disk, the StagerJob contacts the Request

Replier [RR] , which is responsible for forwarding the disk mover (GridFTP,

RFIO, ROOT) to the client. The real transfer is then handled from the chosen

file transfer protocol and has basically nothing to do with CASTOR. Once

the transfer has been completed, the StagerJob process marks the job entry

in the database as ”finished” and adds the file location information to the

name server [NameServer]. Even for the user the transfer to CASTOR seems

now to be successful completed and he won’t take notice from the remaining

migration to the robotic tape library.

The procedure to get a file out of CASTOR is quite similar to the put request.

30

Chapter 4. CERN Advanced Storage Manager

Getting a File out of CASTOR

A. The client calls through a client API the Request Handler [RH], which stores

the file get request in the database.

B. The Stager checks whether the requested file exists in CASTOR by contacting

the name server. Then, it looks into the Stager catalogue to know whether it

resides already in the disk pool. If this is the case, the Stager starts a scheduler

job to contact the client and to send him the file. On the other hand, if the file

only exits on tape, it has to create a new entry in its catalogue and to reserve

space for the file in the disk pool. The file entry is marked for the Remote Copy

Client Daemon [RTCPClientD] in the Stager catalogue as ”to be retrieved”.

The RTCPClientD is an individual process, which manages the file transfers

between the disk pool and the robotic tape libraries.

The data transfer between the disk pool and the robotic tape libraries is an

asynchronous process, which is completely uncoupled from the put or get requests

of the clients. The involved CASTOR components are fully derived from the first

CASTOR version or even from SHIFT. Only the Remote Copy Client Daemon has

been adapted to work together with the new Stager and the database.

The Migration to the Disk Pool

4. The users, who put files into CASTOR have always to specify the service class

[SvcClass] that should handle their request. Service classes are well known

objects in the database, which provides the migration policies for a certain

user group.

Independent migration components [MigHunters] query and trigger the

database for migration candidates and start queueing the file information to

streams, when the amount of data waiting for migration in the disk pool is high

enough. The MigHunters create as many streams as the administrator config-

ured for the SvcClass. The migration policies of the MigHunters are specified

in simple Perl scripts. The reason that it does not make sense to immediately

write every single file to tape is, that the mount and dismount procedure of a

tape takes too much time.

31

Chapter 4. CERN Advanced Storage Manager

5. The Remote Tape Copy Client [RTCPClientD] checks whether streams are

waiting for migration. If this is the case, it asks the Volume Manager [VMGR]

which tape can for storing the data. VMGR manages a database, which holds

information about the tapes, such as volume id, free available space, density

and physical library location.

RTCPClientD submits then a write access request with the required tape infor-

mation to the Volume and Drive Queue Mangager [VDQM] . This component

queues the tape request for a later assign to free tape drive. Therefore, it has

to manage the states of all available tape drives. They are updated from the

Tape daemons, which run on every single tape server.

Once the request is eligible to be assigned, its information is sent together

with the free tape drive data to the Remote Tape Copy Daemon [RTCPD] of

the selected tape server. RTCPD is the CASTOR tape mover that handles the

transfer of the files from the CASTOR disk pool to the tape drive. Therefore,

it has to allocate physical memory (by default 128MB) for the data buffering

on the local machine. This is needed, because a tape drive can store data much

faster to tape than a single disk could provide them.

For every incoming tape request it forks a child process, which contacts the

RTCPClientD to receive the whole tape migration request. Now, it can start

copying the files to the buffer. At the same time, RTCPClientD marks them

in the database as selected to avoid their migration from other streams.

6. The child process of RTCPD handles not only the buffering of the files in the

high memory. For the migration it also collaborates with the tape daemon

[TapeDaemon] process on its tape server, which provides the Physical Volume

Repository functionalities like mounting, positioning, unloading tapes or con-

figuring drives. As soon as the requested tape is mounted, RTCPD starts then

transferring the buffered files to the dedicated tape drive.

At the end of a successful migration, RTCPClientD marks the files as ”staged”

in the database, and updates the name server information. An independent

garbage collector component has now the right to clean up the disk space and

to remove the disk location entry in the CASTOR database, if needed.

32

Chapter 4. CERN Advanced Storage Manager

Recalling a File Back to Tape

C. RTCPClientD queries the Stager catalogue for files, that have been marked

as ”to be recalled”. For each file recall request it asks the name server on

which tape the file has been stored. Afterwards, RTCPClientD retrieves the

tape information from the Volume Manager and sends a new tape request to

VDQM.

D. The following steps are now quite similar to the migration process. VDQM

looks into its internal list for a compatible free tape drive for the queued tape

read request. As soon as a fitting tape drive is free, it sends an assign request

to the dedicated RTCPD to start the mount process of the tape. As in the

migration process, the RTCPD recalls all needed information about its job

from the RTCPClientD and manages the whole file transfer to the reserved

space on the disk pool.

At the end of the file recall, the CASTOR catalogue is updated by RTCP-

ClientD, to mark the file as ”staged” in the disk pool.

4.2.1 Database Generation and Handling

The database plays a central role in the CASTOR2 design. Its database schema is

very complex and contains about sixty tables and several procedures and triggers.

Different from traditional applications, CASTOR2 uses the database to store actual

status information of ongoing processes, to have stateless components. Most of the

table entries have only a very short lifecycle and are deleted as soon as their process

is completed.

To deal with the database information in the C/C++ world, each table row can

be represented by a C++ class, also called container class. These classes are pure

data containers and do not implement any deeper logic.

In order to avoid having to implement this infrastructure manually, the CAS-

TOR team created an automatic code generation facility, based on the open source

software ”Umbrello UML Modeller [28]”. Umbrello is a Unified Modelling Language

[UML] designing program for Linux systems, that allows you to create diagrams of

software and other systems in a standard format. It uses the XML Metadata In-

33

Chapter 4. CERN Advanced Storage Manager

terchange [XMI] specification to store the information of the designed objects in a

human readable format.

Figure 4.3: Snapshot of the Umbrello UML Modeller

All database tables for CASTOR are designed in Umbrello (see Figure 4.3). Each

column of a table is specified by a parameter in the UML class. The adapted code

generation programme parses afterwards the XMI file and creates for each UML class

not only the C++ representation and several helper classes for retrieving process,

but also two scripts to deploy and remove the all database tables. It is even able to

resolve many to many relations between tables, by creating an additional join table.

Supported databases are currently Oracle and MySQL.

Advantages of the CASTOR code generator are primarily time consumption and

robustness. Errors in the generator code can be quicker detected and removed, since

they affect nearly all generated classes.

34

Chapter 4. CERN Advanced Storage Manager

4.2.2 The Database Interface

To include in a generic way the auto generated classes, the CASTOR team has

developed a complex technique. Each required service and converter class will only

be created when it is really needed. This ensures a minimum of memory load and a

balanced performance.

Figure 4.4: Retrieving data out of the database

The following text will describe in detail the diagram of Figure 4.4. It illustrates

35

Chapter 4. CERN Advanced Storage Manager

how the information in the database can be recalled by using the Service Manager

facility.

1. To retrieve a container class with requested values out of the database, the

user has to send all needed parameters to the Service Manager instance. The

explicit parameters are:

• the unique ID of the row

• The type of the requested container object.

• the name of the service to be used

• the desired service type (Representation Type), in case the service does

not already exist.

2. The service manager is responsible for the service objects and their factories.

A user can ask for several service categories, such as the streaming service or

like in this case the DB Conversion Service. The service manager handles the

dynamic load of service factories and the instantiation of services, that are not

yet registered in the Service List. The service objects can be selected with the

given service name [Name].

(a) If the service is already loaded and registered, the service manager gets

it from the Service List and calls it with the ID, Object Type and Rep-

resentation Type information.

(b) If the service is not registered, the Service Manager looks into the Service

Factory List for the right factory to create the desired service instance.

For retrieving data out of the database, a Conversion Service Factory

is used to create an instance of a DB Conversion Service. The Service

Manager handles afterwards the registration in the Service List under the

desired service name. Now, the DB Conversion Service can be executed

as explained in (a).

(c) If the needed Service Factory not listed, the Service Manager starts a

final effort by looking in the CASTOR configuration file. The CASTOR

configuration file is the main entry point for all CASTOR related con-

figurations. Among other things, a dynamic library name can be found

36

Chapter 4. CERN Advanced Storage Manager

associated to a service type. The CASTOR configuration file may also

contain aliases, mapping services types to others. By using the Linux

system call dlopen the needed CASTOR library can then be reloaded, to

fill up the Service Factory List and the Conversion Factory List with miss-

ing objects (Please see Section 4.2.1). Afterwards, the Service Manager

retries the failed lookup of (b).

3. Once the DB Conversion Service is called, it looks into its Conversion List to

find the right converter for the requested Object Type. The converters manage

the query to the database for their dedicated table. The converters are auto-

generated by the code generator.

(a) If the converter does not already exist in memory, the DB Conversion

Service has to select the right Conversion Factory for the user request

out of the Conversion Factory List. There, the Conversion Factory should

normally be present for the specific Object Type and DB Type, since

the list is filled with the objects of the dynamically loaded CASTOR

Library. After having generated the right Converter, it is registered in

the Conversion List for a later re-use.

4. The specific table Converter sends a select statement to the database to re-

trieve the information, stored in the row with the specified unique ID. If the

row exist, the Converter puts the values into a designated Container Class.

5. Finally, the user receives a container class with the values, which he can now

use for further processing.

To store information into the database, the user has to use the Service Manager.

In this case he has to forward a filled container class, instead of the Object Type.

The Object Type is not needed, because every container class provides a static

constants, which determines its type. Thus, it is possible for the DB Conversion

Service to select the right Conversion Factory.

37

Chapter 4. CERN Advanced Storage Manager

4.3 The Distributed Logging Facility

Due to modular component design of CASTOR2 problems can be very complex.

Thus, it is mandatory to have a powerful logging facility, which allows advanced

message filtering.

CERN decided to implement an individual logging solution for CASTOR, which

is called Distributed Logging Facility [DLF]. The purpose of DLF is to streamline

and centralise the logging and accounting in CASTOR. The facility consists of a

DLF server with an Oracle or MySQL backend and a client API for writing logging

records. The standard Universal Logging Message [ULM] was selected for the log

record format.

For each CASTOR component it is specified in the configuration file whether

the log message are sent to the DLF server or stored in a local file.

The central message administration allows us to implement an independent web

based user interface, which allows users to filter the messages by CASTOR specific

parameters. It is for instance, possible to select all messages related to one file ID,

or those which concerns a special tape.

A message can be sent with with ten different severity levels. The most used

levels in CASTOR2 are listed below:

• DEBUG: For debug log messages

• USAGE: For tracing routine calls

• SYSTEM: The normal service message

• WARNING: Used for self-monitoring warning messages

• ERROR: Used, for all errors during normal operation

38

Chapter 5

Technical Analysis

This Chapter will explain the expectations of a reimplementation of the CASTOR

Robotic Tape Queueing System (VDQM). Furthermore it will give a detailed tech-

nical analysis of the existing tape queueing system and about the main problems

which have to be solved.

5.1 Requirements

The intention to create a complete redesign of VDQM has several reasons. One is

that the old implementation is very difficult to understand, because of an undirected

growth of C code and the use of macros. Of course, this alone doesn’t justify a reim-

plementation. The main argument is, that the old design has two major problems:

• The old VDQM daemon stores the data in memory, which makes it stateful.

This means a lost of all information at a system crash.

• Due to the increasing amount of tape requests the old system has a high mem-

ory load and can even cause an overload. This could be fixed by restricting the

amount of acceptable requests, but then VDQM would become a bottleneck

for the whole CASTOR system.

On the basis of these facts, a reimplementation of the full robotic tape queueing

system has to achieve the following requirements:

39

Chapter 5. Technical Analysis

• To be backward compatible, which means that communication with the other

daemons and all administrative commands from the VDQM Client API still

work with the new implementation

• To be stateless, so that no information is lost in case of an unexpected crash

• The design should be as robust as possible, which means that all unexpected

external errors, like network problems, are handled and do not crash the sys-

tem. Beside that, the daemon should not hang or slow down if an incoming

request causes problems

• To be able to deal also with a very large number of tape requests.

• To use the existing DLF logging facility

• To solve the problem of the asymmetric tape drives

• To support tape drive dedication to specific users and/or tapes

• To be easily extendable, e.g. for new protocols

The following chapters will explain in detail these requirement and the possibil-

ities to solve them.

5.2 The Communication Protocols

After having described the technical requirements, this Section will acquire a proper

analysis of the communication protocols, used between the clients and VDQM. Be-

cause of missing protocol documentations, an analysis of the existing implementation

was necessary.

5.2.1 The Request Accept Protocol

A major point is to still support the existing communication protocols of the old

RTCPClientD, RTCPD and tape daemon components, as shown in Figure 4.2.

The VDQM code analysis shows, that the communication of VDQM with the

tape daemon and RTCPClientD is based on the same protocol. VDQM listens to

40

Chapter 5. Technical Analysis

a predefined network port and handles each accepted incoming request in its own

thread. A VDQM message consists of two main parts, a header and a body. The

header includes three values:

• a unique so-called ”magic number” to identify the used protocol

• the VDQM message type constants

• the length of the body message

Depending on the incoming message, the body can include the volume request of the

RTCPClientD or tape drive information sent by the Tape daemon. The following

information is sent with the request:

• Tape request (sent by RTCPClientD):

– The client information, such as port number, user id, group id and name

– The requested volume id [vid]

– The tape access mode: write- or read access

– The device group name of the volume

– A field, to specify a specific tape server, if requested by the client.

– A number for the priority of the request

• Tape drive request (sent by the tape daemons):

– The status of the tape drive

– The name of the tape drive

– The name of the tape server where the tape drive is installed

– The device group name of the tape drive

– The job id, in case of a tape assignment

– The transferred megabytes. This is only sent with the release message.

– A pattern matching string, to send usage restrictions for the specified

tape drive. As we will explain in Section 5.5, this string is not anymore

used.

41

Chapter 5. Technical Analysis

The device group name is needed in both cases to realise the assign of tapes to

compatible drives.

VDQM stores the incoming request in two lists in its memory:

• Tape request list

• Tape drive list

The request information is stored in C structs, which are concatenated as a linked

list. To reach a stateless process, these two lists have to be managed in a database.

Figure 5.1 shows the communication steps for incoming request.

Figure 5.1: Communication protocol for incoming requests

After having verified the magic number, VDQM decides how it proceeds with the

message body, given the specified message type in the header. VDQM distinguishes

between 18 different message types, including administrative ones.

Every successfully handled message closes with a simple handshake. Therefore,

VDQM sends to the client a commit message and then a message body that includes

the latest status information of the tape request or tape drive. The client terminates

the connection by sending a commit receipt for the last message.

If VDQM can not interpretate the client’s message, or if an error occurs during

processing, it sends a header back to the client with an error constant in place of

the message type. As shown in Figure 5.2, VDQM then does an internal rollback of

all made changes and closes the connection.

42

Chapter 5. Technical Analysis

Figure 5.2: Error handling behaviour in the incoming request protocol

Only some of the 18 messages are still relevant for the reimplementation. A lot

of them were for administrative remote commands, which for historical reasons are

no longer in use or would not make sense in a reimplementation. For instance it is

not necessary to provide in the new system a shutdown function. A stateless process

can be killed at any time from the shell. Table 5.1 gives an overview of the relevant

message types.

5.2.2 The Tape to Tape Drive Assign Protocol

When VDQM has a free tape drive in its list, it looks for the next suitable tape in

the tape request queue. If it finds a matching couple, it sends all requested assign

information to RTCPD. The assign candidate has to be in the same device group

as the tape drive. This restriction is needed to avoid VDQM attempts to dedicate

an incompatible tape request.

Beside the magic number and the correct message type, RTCPD needs to know

the client information, the tape drive name, the robotic library and the tape request

id. Given this information it is then able to contact the RTCPClientD process for

retrieving all details about the tape request.

Figure 5.3 illustrates the communication protocol. Different from the described

protocol between VDQM and RTCPClientD or the tape daemon, this protocol does

not include a handshake phase. If an error occurs during the tape assignment,

RTCPD sends an additionally error message in its response.

43

Chapter 5. Technical Analysis

VDQM message type User Message description

VDQM DRV REQ tape daemon To send the actual tape drive

status of one of their dedicated

drives

VDQM DRV REQ RTCPD To Send the amount of trans-

ferred data to VDQM

VDQM VOL REQ RTCPClientD To add a new tape request to the

queue

VDQM DEL VOLREQ RTCPClientD,

Administrator

To delete a tape request from the

queue

VDQM PING RTCPClientD,

Administrator

To return the queue position for

a particular tape request or just

to check whether VDQM is still

alive

VDQM GET VOLQUEUE,

VDQM GET DRVQUEUE

Administrator Is used in relation to the admin-

istrator command ”showqueues”,

which returns information about

tape request queue and tape drive

queue

VDQM DEL DRVREQ Administrator To delete a specific tape drive

from the VDQM tape drive list

VDQM CLIENTINFO VDQM VDQM uses this message type to

send information for a tape to a

tape drive assignment to RTCPD

VDQM COMMIT ALL Used in the handshake phase, to

inform the receiver about the suc-

cess of the request

Table 5.1: The relevant messages, used in the VDQM protocol

44

Chapter 5. Technical Analysis

Figure 5.3: Tape to tape drive assignment protocol

5.3 State Analysis of the Volume and Drive

Queue Manager

One of the main requirements of VDQM is the administration of the different states

of the tape drives. In the old VDQM system, the status information is a combination

of bit flags, stored in a single integer variable. Each status has an assigned bit, that

can be set to 0 for off, or to 1 for on. This method makes it very difficult to extract

valid bit combinations, to understand and to debug the existing code.

From the technical analysis of the code arises the knowledge that there are only

a few valid tape drive states and some temporary states, which are used for the

internal algorithm logic. The resulting state diagram for tape drive status lifecycle

is shown in Figure 5.4. The states in round brackets stand for temporary states,

which are not stored or sent to the client. The arrow identifiers specify the received

tape drive status information of the tape daemon.

The following paragraph will explain the standard lifecycle of Figure 5.4, without

going into the details of the VDQM error handling:

1. To assign a tape to a tape drive it is mandatory that only the status flags UP

and FREE are set. If RTCPD sends a positive reply for a tape assignment back

to VDQM the status is changed to UP and BUSY. In addition, the tape drive

is internally connected to the tape Request, to avoid a second assignment of

the same tape request to another tape drive.

45

Chapter 5. Technical Analysis

Initial_State

UP + FREE

VDQM_UNIT_UP

UP + BUSY

VDQM assigns tape request

UP + BUSY + ASSIGN

VDQM_UNIT_ASSIGN

VDQM_UNIT_ASSIGN (only for local requests)

UP + BUSY + ASSIGN

VDQM_VOL_MOUNT

(UP + BUSY + ASSIGN + RELEASE)

VDQM_UNIT_RELEASE

(UP + BUSY + RELEASE)

(UP + BUSY + ASSIGN + RELEASE)

VDQM_UNIT_RELEASE

(UP + BUSY + RELEASE)

request for same tape?

UP + BUSY + RELEASE + UNKNOWN

VDQM_UNIT_UNMOUNT

DOWN

(UP + BUSY + ASSIGN + RELEASE + FORCE_UNMOUNT)

VDQM_UNIT_RELEASE + VDQM_UNIT_FORCE_UNMOUNT

(UP + BUSY + RELEASE + FORCE_UNMOUNT)

UP + BUSY + ASSIGN + RELEASE + FORCE_UNMOUNT + UNKNOWN

VDQM_VOL_UNMOUNT

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

VDQM_UNIT_UP

VDQM_UNIT_DOWN

tape drive deleted

VDQM_DEL_DRVREQ

VDQM_DEL_DRVREQ

Figure 5.4: The different states for a tape drive in the old VDQM system

46

Chapter 5. Technical Analysis

2. From now on, VDQM receives all changes of the tape drive status from the

responsible tape daemon process, which has been informed by RTCPD. Each

data transfer request receives a job ID, which is provided by the tape daemon.

When the job ID is forwarded to VDQM, the tape drive information is updated

and an additional ASSIGN status flag is set. The tape now resides in the tape

drive, but is not yet mounted.

An administrator can also avoid the automatic assignment of VDQM and

manually assign a transfer job to a tape drive. In this case, VDQM goes directly

to this state.

3. The next tape drive message is usually the information, that the tape has been

mounted and is wound to the right position. From that moment RTCPD starts

the data transfer. The tape daemon sends the volume ID of the mounted tape,

which should correspond to the volume ID of the tape request. The volume ID

is a unique ID to identify the tape. VDQM does not change the status flags

for the incoming mount message, but adds the volume ID to the tape drive

information.

4. After RTCPD has finished the data transfer, it orders the tape daemon to

rewind and to release the tape. Secondly, VDQM is informed about the amount

of transferred data. The according status message is then forwarded by the tape

daemon to VDQM, which looks into its tape request queue, whether there

exists, for the same tape, another request. If so, VDQM sends immediately a

new assign request to RTCPD and switches the tape drive status flags to Up

and BUSY. Otherwise it waits for the unmount information with the status

flags UP, BUSY, RELEASE and UNKNOWN.

In case of errors during the transfer, the tape daemon can force at any time an

unmount of the tape. VDQM sets the tape drive immediately into a waiting

status for the unmount message, without checking the tape request queue.

5. As soon as the volume has been put back into the robotic tape library and

the tape drive is idle the tape daemon sends an unmount message to VDQM.

Thereupon, it resets all information about the last request on that tape drive

47

Chapter 5. Technical Analysis

and switches the status back to UP and FREE. The tape drive is now ready

to accept a new tape request.

VDQM is a passive system and tries always to realise the incoming status mes-

sages of the tape daemons, which are of course always right. If an incoming status

is not the expected one for the specific tape drive, VDQM tries to handle it and

would, in the worst case, set the status of the tape drive to UNKNOWN, until the

tape daemon sends the actual and valid tape drive status.

In the reimplementation, the bit combination of the status flags are replaced by

seven clearly defined status constants. Figure 5.5 shows the revised state diagram.

As we can see, the reimplementation abandons the use of intermediate states, which

makes the code much easier to understand. The only status code, which does not

appear in the diagram, is STATUS UNKNOWN. It is used in case the tape drive

status cannot be exactly determined.

5.4 Design Decisions for a Stateless Application

As mentioned in Section 5.2.1, the best way to reach a stateless application is to use

a database to store the request messages. The same strategy was realised with good

results in the new stager implementation. Another point, which has a lot to commend

it is the reuse of the CASTOR code generation facility (see Section 4.2.1). Moreover,

it is then possible to implement later on helpful administrative web services.

In the old VDQM implementation, the dedication of a tape request to a free

tape drive was based on C functions, with no possibility to change the tape request

dequeuing algorithm on the fly. Due to the use of a database it is possible to write

a query statement, which can be changed on a running system.

Every row in the database possess a unique 64 bit identification [id] number. At

the reimplementation has to be attended, that the id has to be downcasted to a 32

bit value to fit the old protocol. Because of the short lifecycle of a tape request, it

will never happen that two 64 bit id numbers have the same 32 bit downcast value.

From this it follows that tape requests can always be exactly determined.

The downcast makes no problem for the tape drives list, because a drive can

always be clearly identified by its name and its tape server. These values are sent

with every tape drive status request, as it was stated in Section 5.2.1.

48

Chapter 5. Technical Analysis

Initial_State

Unit_UP

VDQM_UNIT_UP

UNIT_STARTING

VDQM assigns tape request

UNIT_ASSIGNED

VOL_MOUNTED

VDQM_VOL_MOUNT

VDQM_UNIT_ASSIGN

VDQM_UNIT_ASSIGN

WAIT_FOR_UNMOUNT

VDQM_UNIT_RELEASE

VDQM_UNIT_RELEASE

(only for local requests)

(new job for the same tape?)

VDQM_UNIT_RELEASE

FORCED_UNMOUNT

VDQM_UNIT_RELEASE + VDQM_UNIT_FORCE_UNMOUNT

VDQM_VOL_UNMOUNT

VDQM_VOL_UNMOUNT

UNIT_DOWN

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

tape drive deleted

VDQM_DEL_DRVREQ

VDQM_DEL_DRVREQ

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

VDQM_UNIT_DOWN

Figure 5.5: Revised tape drive states for the new VDQM implementation

49

Chapter 5. Technical Analysis

5.5 Tape Drive Dedication

The old VDQM implementation was already able to reserve a tape drive for specific

tasks. Therefore, the administrator had to specify a pattern matching string with all

the restrictions for a specified tape drive. VDQM then dedicated the drive to clients

matching this dedication expression. The disadvantages of this solution are:

• A special parser has to read the string and to check its correctness.

• By the protocol, the length of the pattern matching string is limited to 1024

character array.

• The requests are difficult to display in an easily readable format for the ad-

ministrators.

The reimplementation solves this problem using an extra table in the database.

This is then parsed by the query that dedicates the tape request to a tape drive. To

enter new rows into the table a new Perl script has been implemented.

5.6 The Asymmetric Tape Drive Problem

In a robotic tape library resides a lot of different tape and tape drive generations.

New tape drives often use new tape versions with higher densities, but with the

same cartridge size as their predecessor models. Older tapes can some times only be

read by the new tape drives, but not be written to. This is called ”the asymmetric

tape drive problem”.

At the moment, VDQM is not able to dedicate an older tape to an asymmetric

tape drive, which could still read the data. The problem has been ignored, due to

its complexity.

To solve it with a minimal amount of changes in the old components, the tape

daemons have to send for the registration of their tape drives supplementary the

device model. This is necessary, because all tape models have to be put together

into the same device group as their compatible tape drives. The Remote Tape Copy

Daemons [RTCPD] don’t assign tapes of a different device groups. Such a change

signifies that newer and older drive devices would belong to the same device group.

Then it is not possible to distinguish them via the device group name.

50

Chapter 5. Technical Analysis

Furthermore, VDQM needs information about the tape models, tape densities,

and the library locations in its database. As mentioned in the migration example of

Section 4.2, VMGR administrates all information about the tapes in the libraries.

Hence, an independent small application is able to initialise the VDQM database

with these static tape specifications.

The effort has to be done to make for each tape drive model an access priority

list the of its compatible tape models. Thus, the tape request dedication algorithm

(see also Section 5.2.2) can consequently prioritise new tape models on their proper

devices. This avoids a jam in the request queue for newer tapes.

The asymmetric tapes have to be filled in manually in the priority list because

it is impossible to get these information from other CASTOR2 components.

Figure 5.6 shows the extended communication protocol for an incoming new tape

request. The volume id, which is sent with every tape request enables us to retrieve

the missing tape information, such as volume density and tape model, from the

volume manager. They are needed to associate the new queue entry with the static

information in the database.

RTCPClientD or
Tape daemon

VDQM server

- The new incoming request
 is successfully handled

- Connection to client
 is closed

VDQM_COMMIT message

VDQM body message

VDQM_VOL_REQ message

VDQM_COMMIT

vmgr_querytape() function call

returns additional tape information

VMGR server

Figure 5.6: Extended communication protocol for incoming tape requests

A detailed description of the concrete realisation will be given in Chapter 7.

51

Chapter 5. Technical Analysis

52

Chapter 6

Preliminary Design

This Chapter will present the use cases of the clients, which sends requests to VDQM.

But first of all, the new interactions of VDQM will be described in Section 6.1.

6.1 Scenario

Figure 6.1: Interactions of the new VDQM implementation with other CASTOR2

components

The reimplementation of VDQM uses the database to store all incoming infor-

mation from the clients and to handle the assignment of tape requests to tape drives.

53

Chapter 6. Preliminary Design

A lot of database queries are also needed to manage the asymmetric tape drive prob-

lem. Therefore, it is also required that VDQM recalls additional information from

the Volume Manager. Figure 6.1 shows the new scenario of VDQM with the other

components of CASTOR2. The new relations are marked with red arrows.

The VDQM Client in the diagram represents the administrator commands, which

will be explained in more detailed in the next Section.

6.2 User Interfaces

This Section will define an exact use case description, and provide both functional-

and non-functional requirements. An exact requirement description is necessary for

designing and implementing an adequate application.

6.2.1 Administrator and Remote Tape Copy Client Com-

mands

The administrator of VDQM has the ability to retrieve information from VDQM

through two shell commands, called vdqm admin and showqueues. The use case dia-

gram of Figure 6.2 shows, which commands are still supported for the administrators

and the RTCPClientD by the VDQM reimplementation.

Retrieving the Actual Queue Position of a Tape Request

Both administrator and RTCPClientD send a command to retrieve the actual queue

position of a specified tape request. The administrator can use the VDQM PING

message also to check if the VDQM server is still responding. Hence, it is mandatory

that the command gives a quick reply.

Appending a New Tape Request to the Tape Request Queue

The VDQM VOL REQ message is used to queue new tape requests in VDQM. To

do so, the sent information have to be mapped to the new structure of the database.

54

Chapter 6. Preliminary Design

Figure 6.2: Use case of the administrator and the Remote Tape Copy Client Daemon

[RTCPClientD]

55

Chapter 6. Preliminary Design

Removing a Tape Request from VDQM

Normally the deletion of a tape request is not difficult. Due to the fact that the

protocol is restricted to 32 bit identification numbers, the new VDQM application

has to downcast for the old clients the new 64 bit id representation and, of course,

it has to take care that it is resolved later in a proper way.

Local Dedication of a Tape to a Tape Drive

An administrator has the ability to dedicate a tape request directly to a tape drive.

In this case a free tape drive has directly to be switched from the UNIT FREE

status to UNIT ASSIGNED, as illustrated in Figure 5.2. The passing of the normal

tape request dedication logic is only accepted, if the command is sent locally from

the tape server machine. The implementation of this command is a simple additional

check in the request handling of the tape drive status message. Hence, it will not be

explained further.

Removal of a Tape Drive from VDQM

When VDQM accepts the VDQM DEL DRVREQ message it deletes the tape drive

information in the database. Therefore, the administrator has to send the drive

name and the server name. A basic requirement of CASTOR is that a tape drive

can clearly be specified with this information.

Dedicating Tape Drives to Specific Clients and/or Tapes

As already mentioned in Section 5.5, the dedication of tape drive is no longer solved

inside the VDQM code, but with an additional Perl script, which directly accesses

the database.

Retrieving Information about the Queues

The user can acquire information about the status of the drives and the tape request

with the ”showqueues” shell command of the VDQM Client.

Therefore, the complete tape request queue has to be sent to the client when

VDQM receives a VDQM GET VOLQUEUE request message. A similar event has

56

Chapter 6. Preliminary Design

to be done for the tape drive information when the VDQM GET DRVQUEUE re-

quest message has been received.

6.2.2 Tape Daemon Commands

Figure 6.3 shows the use case of the tape daemon.

Figure 6.3: Use case of the tape daemon

Adding a New Tape Drive

To register a new tape drive to VDQM, the tape daemon has to send a

VDQM DRV REQ status message. The initial status of a drive has to be either

Up or Down.

Updating Rape Drive Information

When the status of a tape drive changes, its responsible tape daemon has to inform

VDQM with a VDQM DRV REQ status message about it. Which internal status

bit message flags have to be sent to do the appropriate status update has been

discussed in Section 5.3.

Retrieving Tape Drive Information

Due to an internal status bit flag, which has to be sent with an VDQM DRV REQ

status message, it is possible to recall the stored information from the specified tape

57

Chapter 6. Preliminary Design

drive. For this reason, but not exclusively, the reimplementation of VDQM has to

have a translator function, which maps the new status codes back to the old ones.

6.2.3 Remote Tape Copy Daemon Command

Figure 6.4: Use case of the Remote Tape Copy Daemon

During the whole life cycle of a tape request the Remote Tape Copy Daemon

[RTCPD] has only in two interactions with VDQM:

1. When VDQM wants to assign a tape to a tape drive

2. When RTCPD sends the information about the amount of transferred data to

VDQM.

VDQM uses this information to update the counter of the total transferred

megabytes in the database for the concerned tape drive. As the tape daemon,

RTCPD uses the VDQM DRV REQ message to forward the data amount. Even

though this message has no effect on the status of the tape drive in VDQM.

58

Chapter 7

Detailed Design

After the basic structure was defined in the previous Chapter, this Chapter will

describe the structure that is to be implemented subsequently. A low-level design

will be outlined, and design decisions that were made will be discussed.

As it is required to support the old protocol, parts of the application were derived

from the existing VDQM. Nevertheless, the new volume and drive queue manager

was designed completely from scratch, but the old code structure was used as guide-

line.

Sequence diagrams are going to be used to illustrate the interactions between

the several classes. Their time flow is always top down.

A complete class diagram of the new architecture is given in Figure A.1, which

can be found in the Appendix to this report. It should serve to give a better under-

standing.

7.1 Information Handling in the Database

The database diagram in Figure 7.1 gives an overview about the tables which are

needed to store the relevant information for VDQM. Due to the code generation

with the Umbrello UML Modeller (see Section 4.2.1), the database is designed with

the syntax of an UML class diagram. The table names correspond to the names of

the classes without their namespaces. In this schema, enumeration classes are only

relevant for the C++ code generation and represent in the database point of view

just the valid numbers of one column. A diamond association, such as among the

59

Chapter 7. Detailed Design

TapeServer- and the TapeDrive table, express that the connected rows have to be

removed together with the row of the table with the diamond.

The column names and column types of a table can be derived from the appropri-

ate variable names and the belonging associations. An association column contains

the unique row identification number [id], which is stored in a 64 bit unsigned inte-

ger variable. The column for the unique id is automatically added to the table and

does not have to be explicitly inserted into the schema. An example for the table

columns and their types is given in Table 7.1.

Table name Column name Column type

id 64 bit unsigned integer

errorMessage string

ErrorHistory timeStamp 64 bit unsigned integer

tape 64 bit unsigned integer

tapeDrive 64 bit unsigned integer

Table 7.1: Example: The columns of the ErrorHistory table

All time values are stored in seconds, which we count up from the first January

1970.

The TapeAccessSpecification- and the DeviceGroupName table only contain

static information, which are filled by an independent small application, called

vdqmDBInit. Therefore, it calls the Volume Manager [VMGR], which administrates

the tape information, the list of device group names and library names. These ad-

ditional information are needed to handle the asymmetric tape drive problem (see

Section 5.6).

At the moment, the ErrorHistory table is not in use. The plan is, to extend the

tape daemon protocol, so that it is possible to send an error message to VDQM, in

case of problems during a tape request handling. This will enable to do analysis of

the failing behaviour of specific tapes and drives.

For a better comprehension of the meaning, the tables will be explained in ref-

erence to the main tasks.

60

Chapter 7. Detailed Design

Figure 7.1: VDQM database overview

61

Chapter 7. Detailed Design

7.1.1 Storing or Updating of a Tape Drive’s Information

When a tape daemon is starting, it connects to VDQM and sends a ”status down”

message for its tape drives. This is done to register the drives and to reset all

temporary information in VDQM.

If a status message for a new tape drive arrives, VDQM adds a new row to the

TapeDrive table. The sent information has been discussed in Section 5.2.1.

An initial row contains the drive name, the status value and the association to its

tape server. If the data entry is missing then a new row is added to the TapeServer

table. The actingMode of a tape server is by default set to active. This status flag

is only important for the tape request dedication algorithm.

Right from the start, each TapeDrive row is also connected to the appropriate

device group name in the static DeviceGroupName table. Thus, it is possible to

ascertain the name of the robotic library of the tape drive.

Finally it has to be checked, if there are already existing entries in the TapeDrive-

Compatibility table for the model of the new tape drive. This table contains the

priority lists of the different drive models for their compatible tape models, that

are specified in the static TapeAccessSpecification table. If the tape drive model

name has not been sent with the request, then VDQM uses instead the supported

cartridge model name. The information can be retrieved from the Volume Manager

with help of the specified device group name. Unfortunately, this case implicates

that asymmetric tape drives cannot be supported, because there is no possibility to

distinguish the different drive models.

Due to the fact that it is impossible to obtain from the other components a list

of compatible tape models for a tape drive, VDQM is only feasible to associate tape

models of the same device group. Additional entries for the asymmetric tape access

have to be inserted manually. The write access to tape is by default privileged to

the read access. This guarantees a better performance during the data backup of

the experiments. The highest priority number is zero.

Figure 5.5 shows the possible tape drive states of the new VDQM design. Table

7.2 outlines for each of these states the changes in the database during a normal

lifecycle. The whole procedure has been showing in Section 5.3.

The table does not mention explicitly, that the modification time fields of the

62

Chapter 7. Detailed Design

involved tables are updated every single time. It is also take for granted that the

status field is set to the actual status of the tape drive.

Tape drive status Table name Changes

UNIT UP,

UNIT DOWN

TapeDrive Reset of the following fields: jobID,

tapeAccessMode, runningTapeReq,

tape

TapeRequest Deletion of the old tape request and

its ClientIdentification entry, if neces-

sary

UNIT STARTING TapeDrive Connection to the assigned tape re-

quest row

TapeRequest Connection to the assigned tape drive

row

UNIT ASSIGNED TapeDrive Storing of the received job id

VOL MOUNTED TapeDrive connection to the tape specification in

the Tape table

WAIT FOR UNMOUNT,

FORCED UNMOUNT

TapeDrive Update of the transferredMB and

totalMB fields. Reset of the follow-

ing fields: jobID, tapeAccessMode,

runningTapeReq, tape

TapeRequest Deletion of the old tape request and

its ClientIdentification entry

STATUS UNKNOWN TapeDrive No changes, except of the status

Table 7.2: The changes in the database for each tape drive status

7.1.2 Storing of a Tape Request

With every new tape request, RTCPClientD sends via the request accept protocol

(see Section 5.2.1) the required information (see Section 5.2.1) to handle the as-

signment of a tape to a compatible tape drive. For this purpose, the basic request

information is stored in new rows in the TapeRequest table and in the ClientIdenti-

fication table. If the client wishes that its tape request is handled by a specific tape

63

Chapter 7. Detailed Design

server the new TapeRequest row is additionally connected to the appropriate row

in the TapeServer table.

The information about the volume identification number [volume id] and the

tape access mode is used to connect to the right entry in the existing Tape table,

which is provided by the stager catalogue. A new entry is created by specifying only

this two values, in case that the table do not comprise these information.

It is also mandatory to connect the new tape request with a static entry of the

TapeAccessSpecification table. This necessitates the retrieval of the tape model and

density from the Volume Manager. The TapeAccessSpecification table includes for

every tape model and its appropriate density a separate entry for the read- and

write access mode. That way, it is possible to associate to the corresponding access

specification of the tape request.

Like the tape drives, every tape request is also connected to the static Device-

GroupName table.

In case of an assign to a tape drive, the tape request is additionally concatenated

with the right row of the TapeDrive table.

7.1.3 Tape Drive Dedication

The TapeDriveDedication table is used to reserve time windows for specific actions

on a tape drive. The dedication of the tape drives are checked with the tape request

to tape drive assign procedure, which will be described in the next Section.

Additional rows can be added with a small command line script. It is mandatory

that the administrator therefore specifies the drive, the time frame and information

about the client, such as user id, group id and client host. If it is required, a tape

and its access mode could be indicated as well.

7.1.4 Assignment of Tape Requests to Tape Drives

A first outline of this problem has been given in Section 5.2.2. As the algorithm is

implemented in a database procedure, it will now be acquire in view of the database

(see Figure 7.1).

To dedicate a tape request to a free tape drive, the following preconditions have

to be fullfilled:

64

Chapter 7. Detailed Design

• The selected row of the TapeDrive table has to have in status, UNIT UP

• The tape server of the selected tape drive has to be in status TAPE-

SERVER ACTIVE

• The row of the TapeRequest table must not be associated with a tape drive

• Both tape drive and tape request have to belong to the same device group.

This can be verified using their association to the DeviceGroupName table.

• The tape model of the requested tape has to appear in the priority list of the

drive model. The priority list is handled in the TapeDriveCompatibility table

and has been discussed in Section 7.1.1.

• The TapeDriveDedication table has to be checked, whether there are at the

moment some usage restrictions for the selected row of the TapeDrive table

(see Section 7.1.3).

On the C++ side, only the information of the first matching couple is sent for an

assign to the Remote Tape Copy Daemon [RTCPD]. For this reason, the query has

just to select the first found free tape drive and the best result of the tape request

filtering. The logic for the dedication is implemented in the TapeDriveDedication-

Handler class.

The matching rows of the TapeRequest table are sorted ascending to their prior-

ity in the TapeDriveCompatibility table, and subsequent descending to their mod-

ification time. The modification time value differs only to the creation time, if a

previous assign trial with RTCPD failed.

Due to the fact that no other database query is manipulating the entries of free

tape drives and waiting tape request, the selected rows in the involved tables do not

have to be locked, which increases the performance and avoids deadlocks.

7.2 The Protocol Facade

After the detailed description of the request handling in the database, this Section

will focus on those components of the new architecture, which are needed to handle

the incoming messages.

65

Chapter 7. Detailed Design

All older protocols, which were developed for the first CASTOR version, initially

send of all their magic numbers. Given the magic number it is possible to determin

the protocol used. In the new VDQM architecture, the ProtocolFacade class deter-

mines the protocol and calls the correct processes for handling. The intention is to

provide a higher-level interface that makes the subsystem easier to use. The class

was named after its structural ”Facade Pattern”, that was defined by the ”Gang of

four [29]”.

The sequence diagram in Figure 7.2 points up the included steps to read out

the old protocol, which is used by the tape daemons and RTCPClientD. In the

future it is planned to reimplement also those components. In this case, they would

use a different protocol, which can easily be included in the ProtocolFacade class.

Then of course, an additional protocol- interpreter and handler would have to be

implemented.

• The VdqmServer class accepts a client socket connection and assigns it to a

thread in its thread pool. The basic C socket is embedded in the VdqmServer-

Socket class, which provides more abstract functions to handle the read and

write requests to the socket.

• The assigned thread calls then the handleProtocolVersion() function of the

ProtocolFacade class, which manages the correct handling of the message in

the buffer of the socket. For the VdqmServer class purposes, the protocol

handling is hidden. The VdqmServerSocket object is forwarded to all classes,

which have to access to the socket.

• The ProtocolFacade class uses the VdqmServerSocket to read out the first four

bytes of the socket, that corresponds to the magic number of the protocol. On

this basis, it selects the right protocol interpreter to unmarshall the remaining

message, and to store the information into the corresponding data objects.

The OldProtocolInterpreter acts as a translator towards the ProtocolFacade

and provides all functions to handle the old protocol.

The OldRequestFacade class handles then the client request. As the Proto-

colFacade class it offers a higher-level interface to hide the complex subjacent

structure, which will be described in detail in the next Section.

66

Chapter 7. Detailed Design

 : VdqmServer

 : ProtocolFacade

 : OldProtocolInterpreter

 : OldRequestFacade

 : VdqmServerSocket

2: handleProtocolVersion()

4: handleOldVdqmRequest()

5: readProtocol()

7: handleRequestType()

6: checkRequestType()

1: accept()

3: readMagicNumber()

10: recvAcknFromOldClient()

8: sendAcknCommit()

9: sendToOldClient()

Figure 7.2: Sequence diagram of the Protocol Facade

67

Chapter 7. Detailed Design

• In case where the request handling was successful, the ProtocolFacade performs

the handshake phase, as described in Section 5.2.1. Different than in the old

implementation, we have to do an explicit ”commit” at the end of the protocol.

This is needed to store all changes in the database which have been done during

the request handling.

Figure 7.2 does not explicitly show the rollback behaviour of the ProtocolFa-

cade, but it uses therefore also helper functions of the OldProtocolInterpreter

class.

7.3 Handling of Incoming Messages

As explained in the last Section, the handling of the accepted request message is

hidden behind the OldRequestFacade class. Due to the VDQM message type, which

is sent with the message header (see Section 5.2.1, 5.3), the OldRequestFacade is

able to choose the right function of the two handler facilities. The handler classes

implements the logic, which realises the handling of the information and associations

in the database, as described in Section 7.1.

All handler classes derives from the same BaseRequestHandler class (see Figure

A.1), which provides functions to add, remove and update rows in the database.

These functions are based on existing provided CASTOR2 API.

Moreover, it handles instantiation of the IVdqmSvc interface, which is used by

the handlers to launch queries on the database. The association with the IVdqmSvc

interface depends on the specification of the VDQM database in the CASTOR con-

figuration file. Unfortunately, at the moment CASTOR supports only the Oracle

database.

7.3.1 Handling of the Remote Tape Copy Client Messages

The TapeRequestHandler class manages the defined use cases for the Remote Tape

Copy Client Daemon [RTCPClientD] , which have been elaborated in Section 6.2.

The sequence diagram in Figure 7.3 illustrates the interactions with the database

interface of the new VDQM architecture, which are necessary to store a new tape

request.

68

Chapter 7. Detailed Design

 : TapeRequestHandler : OldRequestFacade : IVdqmSvc

1: newTapeRequest()
2: selectTape()

3: selectTapeServer()

4: selectTapeAccessSpecification()

5: selectDeviceGroupName()

6: checkTapeRequest()

7: handleRequest()

Figure 7.3: The handling of a new tape request

69

Chapter 7. Detailed Design

Description of the sequence diagram of Figure 7.3:

• If the message type corresponds to a new incoming tape request message

[VDQM NEW VOLREQ], then the OldRequestFacade class calls the newTa-

peRequest() function of the TapeRequestHandler.

• Before the new tape request is stored in the database, several preparations

have to be made to handle all mandatory associations in the database (see

Section 7.1). For this purpose, a TapeRequest container class is filled with all

corresponding object representations of the database table rows. The retrieve

of the database information, as described in Section 4.2.2, is handled from the

concrete instance of the IVdqmSvc interface.

• If the desired tape request representation could successfully be assembled with

the container classes, then the checkTapeRequest() function controls, that the

request does not yet exist in the database. Subsequently, the tape request can

be inserted into the database with the inherited handleRequest() function of

the BaseRequestHandler.

• The protocol requires, that VDQM sends back the assigned tape request id to

RTCPClientD. Since the unique row id in the database is represented by a 64

bit integer value, it is not possible to give the exact id, because the protocol

supports only a 32 bit value. The problem is solved through a simple downcast

of the value, as it was analysed in Section 5.4.

Each tape request is handled separately by a child process of RTCPClientD.

These child processes contacts regularly VDQM with the VDQM PING message

to check whether the connection can still be established, and to receive the queue

position of their tape request. For this purpose, they have to send in the body

message the id of the tape request. The internal handling of this request is illustrated

in the sequence diagram of in Figure 7.4.

Description of Figure 7.4:

• As mentioned before, only the downcasted request id can be sent through

the protocol. To obtain now again the 64 bit value, a database query has to

downcast all row id’s of the TapeRequest table and to compare them with the

70

Chapter 7. Detailed Design

 : TapeRequestHandler : OldRequestFacade : IVdqmSvc

1: getQueuePosition()

2: selectTapeRequest()

3: getQueuePosition()

Figure 7.4: Handling of the queue position message for a tape request

sent value. This query is included in the selectTapeRequest() function of the

concrete IVdqmSvc instance, which returns then a container class with the

information of the determined row.

• The queue position is zero, if the tape request is associated to a tape drive,

which testifies that the request is actually executed. Otherwise, the IVdqmSvc

getQueuePosition() function computes an approximate queue position.

Of course it would be possible to determine the exact number, but it is not

necessarily needed. This algorithm would be strongly connected to the assign

algorithm of a tape to a tape drive. Since it is recommended that the assign

procedure can be changed during the running application, it would be quite

exhausting to change each time the queue position algorithm, too. Hence, the

approximate algorithm adds just those tape request up, which belongs to the

same device group and have at the same time an older modification time.

The asymmetric tape requests are so not considered, but this makes the query

much faster, which is in this case also a requirement.

The removing of a tape request from the database works quite simple, as the

illustration in Figure 7.5 shows:

• The Remote Tape Copy Client has to send with the VDQM DEL VOLREQ

request only the 32 bit id representation of the tape request, which has to be

71

Chapter 7. Detailed Design

deleted. Again, the selectTapeRequest() function is used to retrieve on basis

of this value the right TapeRequest from the database.

• If the tape request is not associated to a tape drive, then the information in the

TapeRequest- and ClientIdentification table can be removed by means of the

inherited deleteRepresentation() function of the BaseRequestHandler class.

 : IVdqmSvc : TapeRequestHandler : OldRequestFacade

1: deleteTapeRequest()

3: deleteTapeRequest()

2: selectTapeRequest()

Figure 7.5: Removing a tape request

7.3.2 Handling of Tape Daemon Messages

The tape daemon contacts VDQM to update the status of its tape drives or to

remove a drive from VDQM. The status message is included in the body message,

which includes of course also all needed information to determin the specific tape

drive. The sequence diagram in Figure 7.6 visualise the several steps, which are

necessary to handle the VDQM DRV REQ message. The newTapeDriveRequest()

function consists of four main steps:

1. The determination of the tapedrive and the retrieve of the information from

the database

2. The verification of the tape drive status consistency

3. The operational discharge of the necessary changes in the database

4. The update of the database

72

Chapter 7. Detailed Design

The database changes for each status have been listed in detail in the Table 7.2 of

Section 7.1.

 : OldRequestFacade : TapeDriveHandler : TapeDriveStatusHandler : TapeDriveConsistencyChecker : IVdqmSvc

1: newTapeDriveRequest()

2: selectTape()

3: getTapeDrive()

4: selectTapeDrive()

6: checkConsistency()

7: handleOldStatus()

8: updateRepresentation()

Figure 7.6: Handling of a status update message for a tape drive

Detailed description of the sequence diagram in Figure 7.6:

• A tape drive is clearly defined through its name and the its belonging tape

server. Due to this information it is easy to find the right row in the TapeDrive

table. Hence, it was not needed to implement a work around for 64 bit unique

id’s, as for the tape request handling.

The selectTapeServer() function handles the creation- and/or selection of the

tape server row. Then, the internal getTapeDrive() function is used to manage

the recall or initialisation of the tape drive. For a better overview, the sequence

diagram shows only the case, that a tape drive already exist the database.

If the message of the tape daemon is for an unknown tape drive, VDQM

creates a new entry in the TapeDrive table and manages the association to the

DeviceGroupName. Furthermore, the TapeDriveCompatibility table has to be

73

Chapter 7. Detailed Design

initialised as described in Section 7.1, if it contains no entries for its tape drive

model.

• The TapeDriveConsistencyChecker class verifies, that VDQM can switch the

tape drive to the status, which has been sent by the tape daemon. For it the

TapeDriveConsistencyChecker has to check, whether the sent status has been

expected as next for the tape drive. Since the tape daemon is always to trust, it

tries anyhow to adapt its drive information, so that the request can be handled

by the TapeDriveStatusHandler class. In the worst case, the tape drive status

is marked as unknown until the tape daemon reverifies it.

• After a successful consistency check, the TapeDrive container object, that has

been created before out of the values in the database, is ready to be forwarded

to the TapeDriveStatusHandler class. This facility manages the manipulation

of the information in the container class, depending on the sent status. The

complexity of this method is hidden behind the handleOldStatus() function

call, which returns at the end the updated TapeDrive container.

• To update the tape drive row and its associations, the newTapeDriveRequest()

function simply forwards the container object to the updateRepresentation()

function of the parent class.

7.3.3 Handling of Administration Requests

Removing a tape drive

When the administrator uses the VDQM Client interface to remove a tape drive from

the database, the OldProtocolFacade class has to call the deleteTapeDrive() function

of the TapeDriveHandler. As for the handling of the tape drive status messages, the

selectTapeDrive() function is used to recall the drive information of the database.

Due to the unique row id, the inherited deleteRepresentation() function is able to

remove the information from the TapeDrive table.

The described function calls are illustrated in the sequence diagram of Figure

7.7.

74

Chapter 7. Detailed Design

 : IVdqmSvc : TapeDriveHandler : OldRequestFacade

1: deleteTapeDrive()

2: selectTapeDrive()

3: deleteRepresentation()

Figure 7.7: Removing a tape drive

Handling of the showqueues Command

The showqueues command is handled in two steps, which processes in similar ways.

The sequence diagram of Figure 7.8 illustrates the transferring of the tape drive

queue to the client.

First, the VDQM GET DRVQUEUE message is sent, which is handled from the

TapeDriveHandler class in the sendTapeDriveQueue() function. There, the infor-

mation from the TapeDrive table are recalled from database over the IVdqmSvc

interface. The information are then mapped to the old protocol, which is done se-

quentially for each tape drive by the sendToOldClient() function. At the end, the

client expects an empty tape drive information message with a -1 specified as tape

drive id.

As the sequence diagram in Figure 7.9 shows, exists a corresponding structure

for the tape request queue in the TapeRequestHandler, which will in this context

not further be explained.

7.4 Thread Pool Management

The new architecture possesses about two independent thread pools, to decouple

the handling of incoming request from the assignment of a tape request to a free

tape drive. Two thread pools ensure, that there are always enough resources for

75

Chapter 7. Detailed Design

 : IVdqmSvc : OldProtocolInterpreter : OldRequestFacade : TapeDriveHandler

1: sendTapeDriveQueue()

2: selectTapeDriveQueue()

3..m: sendToOldClient()

m+1: sendToOldClient()

Figure 7.8: Requesting the tape drive list for the showqueues command

 : IVdqmSvc : TapeRequestHandler : OldProtocolInterpreter : OldRequestFacade

1: sendTapeRequestQueue()

2: selectTapeRequestQueue()

3..n: sendToOldClient()

n+1: sendToOldClient()

Figure 7.9: Accessing the tape request queue for the showqueues command

76

Chapter 7. Detailed Design

both tasks. Furthermore, the amount of available threads in a pool can be chosen

separately.

The activity diagram of Figure 7.10 illustrates the thread pool handling of the

new architecture.

1. When the new VDQM server starts, it has first of all to initiate the messages

for the DLF logging facility (Please, see also Section 4.3).

2. A special class, called the TapeRequestDedicationHandler, is handling the as-

signment of queued tape request to free tape drives. Therefore, it queries the

VDQM database tables, as discussed in Section 7.1.4.

The VDQM server calls the TapeRequestDedicationHandler in an extra

thread, which manages its own thread pool. This pool is needed to do the

calls to Remote Tape Copy Daemons independently to the database query

process. The details of the protocol to RTCPD are implemented in the RT-

CopyDConnection class, which is instantiated in each single thread.

The TapeRequestDedicationHandler class is designed with the Singleton pat-

tern, to ensure that only one instance is in use.

3. After having forked the TapeRequestDedicationHandler in an extra thread, the

VDQM server opens a socket to accept incoming requests from RTCPClientD

or the tape daemons. Also there, each accepted connection is handled in an

own thread. This avoids a slow down of the connection accept loop of the

VdqmServer class.

77

Chapter 7. Detailed Design

Start of the VDQM Server

Assignment to thread of thread pool 1

Calling the TapeRequestDedicationHandler

Assignment to thread of thread pool 1

infinite accept loop

End of handler thread

Assignment to thread of thread pool 2

Found a matching couple?

no

yes

infinite query loop

TapeRequestDedicationHandler class

End of connection thread to RTCPD

in the main thread

Query DB, to assign tape request to free tape drive

Initialisation of the DLF log messages

Accepting a socket connection

Handling the incoming request

Inform RTCPD about tape assignment

Creating a listen socket

Figure 7.10: Activity diagram of the thread pool handling

78

Chapter 8

Implementation of the Robotic

Tape Queueing System

After the detailed architectural description elaborated in the previous Chapter, the

adjacent implementation process will now be described, and relevant code examples

will be given. Unfortunately, due to the size of the project, only the most important

parts of the code can be presented.

The description of the development process will assume that the designed

database base structure is already deployed with the code generator of CASTOR2.

8.1 Development Process

The development was started with the basic program structure, that opens a listen

socket and assigns accepted connections to a thread of the main thread pool. This is

used by the Request Handler component to accept incoming client requests. Hence,

also the complex thread pool architecture was already implemented.

The first milestone was to implement the basic structure of the request accept

protocol (see Section 5.2.1). Therefore, the transactions through the socket had to

be realised by means of old CASTOR C functions. They assure a proper marshalling

and unmarshalling of the message between the network byte order and the order of

the used host system. On this basis, the verification of the protocol version and the

determination of the request message type could be realised.

First tests of the so far implemented code could then be achieved by sending

79

Chapter 8. Implementation of the Robotic Tape Queueing System

requests with the aid of a test tool. That was originally been written to test the old

VDQM implementation. Up to this point, the code is ran through by every incoming

request, as described in Section 7.2.

The implementation of the different request types in the handler facade (see

Section 7.3) was started subsequently. This work also included the realisation of the

database facility, to allow immediate testing of each implemented request.

The focus was initially on the tape request handling that was much easier to code

than the tape drive handling. The aim was to be able to store as soon as possible

a request in the database. The use of the existing CASTOR2 architecture to deal

with database tasks needed some expert knowledge. The collected experiences then

helped to develop quicker the other request types.

The last step was to implement the logic to dedicate a tape request to a compat-

ible tape drive. Again the existing thread pool architecture was used to handle the

tape assign protocol (see Section 5.2.2) between the Remote Tape Copy Daemon

and VDQM.

Only now, the reimplemented Volume and Drive Queue Manager could be tested

as one acting unit.

The VDQM server can be started in the forground or as backround process

[daemon]. It is also possible to specify the amount of available threads in each

thread pool. Per default are twenty threads in each pool available.

8.2 Using the Distributed Logging Facility

To use the Distributed Logging Facility [DLF] (see also Section 4.3)together with

the DLF server, all logging messages have there first to be registered. Hence, each

message possess about an explicit number. This design decision was taken, to be

able to query the log database for a specific message number. Listing 8.1 shows how

the initialisation in the VdqmServer class is done.

01 castor::vdqm:: VdqmServer:: VdqmServer():
02 m_foreground(false),
03 m_threadPoolId(-1),
04 m_threadNumber(DEFAULT_THREAD_NUMBER),
05 m_dedicationThreadNumber(DEFAULT_THREAD_NUMBER),
06 m_serverName("VdqmServer") {
07
08 // Initialises the DLF logging. This includes

80

Chapter 8. Implementation of the Robotic Tape Queueing System

09 // registering of the predefined messages
10 castor::dlf::Message messages [] =
11 {{ 0, " - "},
12 { 1, "New Request Arrival"},
13 { 2, "Couldn’t get Conversion Service for Database "},
14 { 3, "Couldn’t get Conversion Service for Streaming"},
15 { 4, "Exception caught : server is stopping "},
16
17 // etc.
18 ...
19
20 {-1, ""}};
21 castor::dlf::dlf_init ("Vdqm", messages);
22 }

Listing 8.1: DLF initialisation

The static function dlf init() needs two parameters to execute the initialisation

(see Line 21). The first parameter determines the name of the DLF facility to use.

In the configuration file of CASTOR, the name has to be mapped against a local

file and/or a host, which runs a DLF server. The standard entry, for instance, to

direct all log message to the DLF server on host lxs5010.cern.ch is:

Vdqm LOGALL x-dlf://lxs5010.cern.ch/

The second parameter of dlf init() is the list of log messages, which is used in the

component. The list has to be defined as shown between Line 10-20.

The example in listing 8.2 shows how to create an error log message:

01 // Initialisation of the parameter list
02 castor::dlf::Param params[] =
03 {castor::dlf::Param("Standard Message",
05 sstrerror(e.code())),
06 castor::dlf::Param("Precise Message",
07 e.getMessage().str())};
08
09 // Creation of an error log message for message number 4
10 castor::dlf:: dlf_writep(cuuid ,
11 DLF_LVL_ERROR , 4, 2, params);

Listing 8.2: Example: DLF error message with two parameters

The log message is created with the static function dlf writep() (see Line 10).

The first parameter specifies a unique id, which is used for all log messages of one

event. This enables to filter out all logs of one request in the DLF web interface.

The second parameter determines the severity of the log message, and the third

parameter the message number. With the last two parameters we can optionally

specify a list of log information.

81

Chapter 8. Implementation of the Robotic Tape Queueing System

The log messages of the following examples in this Chapter will not further be

explained.

8.3 Protocol Determination

The ProtocolFacade class is the place, where the decision for the right protocol han-

dling is taken. At the moment, only the old protocol has to be identified. However, in

the future the clients are going to be reimplemented in C++ and then the protocol

will no longer be based on C structs. At this point it will be necessary to implement

on VDQM side a new protocol interpretation.

The handleProtocolVersion() function, which is listed in Listing 8.3, has then to

be extended, so that the new protocol can be recognised. Therefore it is a prerequi-

site, that the magic number is still sent in the first four bytes of the message.

01 void castor::vdqm:: ProtocolFacade:: handleProtocolVersion()
02 throw (castor:: exception:: Exception) {
03
04 //The magic Number of the message on the socket
05 unsigned int magicNumber;
06
07 // Read the incoming request
08 try {
09 //First check of the Protocol
10 magicNumber = ptr_serverSocket ->readMagicNumber();
11 } catch (castor:: exception:: Exception e) {
12 // "Unable to read Request from socket" message
13 castor::dlf::Param params[] =
14 {castor::dlf::Param("Standard Message",
15 sstrerror(e.code())),
16 castor::dlf::Param("Precise Message",
17 e.getMessage().str ())};
18 castor::dlf:: dlf_writep(*m_cuuid , DLF_LVL_ERROR ,
19 7, 2, params);
20 }
21
22 switch (magicNumber) {
23 case VDQM_MAGIC:
24 // "Request has MagicNumber from old VDQM Protocol "
25 castor::dlf:: dlf_writep(*m_cuuid ,DLF_LVL_SYSTEM ,6);
26
27 try {
28 // Call the function , which handles the
29 // old request accept protocol
30 handleOldVdqmRequest(magicNumber);
31 } catch (castor:: exception:: Exception e) {
32 // Most of the exceptions are
33 // handled inside the function
34

82

Chapter 8. Implementation of the Robotic Tape Queueing System

35 // "Exception caught" message
36 castor::dlf:: Param params[] =
37 {castor::dlf::Param("Message",
38 e.getMessage().str(). c_str()),
39 castor::dlf::Param("errorCode", e.code())};
40 castor::dlf:: dlf_writep(*m_cuuid , DLF_LVL_ERROR ,
41 9, 2, params);
42 }
43 break;
44
45 // Please , insert here cases for new Protocols!
46
47 default:
48 // "Wrong Magic number" message
49 castor::dlf::Param params[] =
50 {castor::dlf::Param("Magic Number", magicNumber),
51 castor::dlf::Param("VDQM_MAGIC", VDQM_MAGIC)};
52 castor::dlf::dlf_writep(*m_cuuid , DLF_LVL_ERROR ,
53 13, 2, params);
54 }
55 }

Listing 8.3: Protocol determination

Explanation of Listing 8.3:

The ProtocolFacade object receives at its instantiation a pointer to a VdqmServer-

Socket object, which includes the accepted socket connection of the new request.

The VdqmServerSocket class provides a function to read out the first four bytes (see

Line 10), which represents the magic number of the used protocol. It is compared

with the static magic number constants (see lines 22-54), to determine how VDQM

has to treat the rest of the message.

8.4 Container Class Handling

This Section will discuss the code example in Listing 8.4, which shows the im-

plementation of the handleRequest() function from the BaseRequestHandler class.

As explained in Section 7.3.1 and 7.3.2, all handler classes are derived from the

BaseRequestHandler class, which provides functions to handle the storing, updating

and deleting of information in the database. The handleRequest() function is used

to store a new request into a table of the database, depending on the forwarded con-

tainer class. The other helper functions of that class are designed in an equivalent

way.

01 void
02 castor::vdqm:: handler:: BaseRequestHandler:: handleRequest

83

Chapter 8. Implementation of the Robotic Tape Queueing System

03 (castor::IObject* request)
04 throw (castor:: exception:: Exception) {
05
06 castor::vdqm:: TapeRequest *tapeRequest = 0;
07 castor::vdqm:: TapeDrive *tapeDrive = 0;
08
09 // Stores it into the data base
10 castor:: BaseAddress baseAddr ;
11 baseAddr.setCnvSvcName("DbCnvSvc ");
12 baseAddr.setCnvSvcType(castor::SVC_DBCNV);
13
14 try {
15 // Creates a new entry in the table
16 svcs()->createRep(&baseAddr , request , false);
17
18 // Stores the TapeRequest associations
19 tapeRequest =
20 dynamic_cast <castor::vdqm:: TapeRequest*>(request);
21 if (0 != tapeRequest) {
22 svcs()->createRep(&baseAddr ,
23 (IObject *)tapeRequest ->client(),
24 false);
25
26 svcs()->fillRep (&baseAddr , request ,
27 OBJ_ClientIdentification , false);
28 svcs()->fillRep (&baseAddr , request ,
29 OBJ_Tape , false);
30 svcs()->fillRep (&baseAddr , request ,
31 OBJ_DeviceGroupName , false);
32 svcs()->fillRep (&baseAddr , request ,
33 OBJ_TapeAccessSpecification , false);
34 svcs()->fillRep (&baseAddr , request ,
35 OBJ_TapeDrive , false);
36 svcs()->fillRep (&baseAddr , request ,
37 OBJ_TapeServer , false);
38 }
39
40 // Stores the TapeDrive associations
41 tapeDrive =
42 dynamic_cast <castor::vdqm::TapeDrive*>(request);
43 if (0 != tapeDrive) {
44 // similar handling as for the TapeRequest
45 ...
46 }
47
48 // Handling of the associations of
49 // other container classes
50 ...
51 } catch (castor:: exception:: Exception e) {
52 // Error occurred ! Rollback of the transaction
53 svcs()->rollback (&baseAddr);
54
55 castor::vdqm::TapeRequest *tapeRequest =
56 dynamic_cast <castor::vdqm:: TapeRequest*>(request);
57 if (0 != tapeRequest) {
58 // EVQNOVOL : error message number for RTCPClientD

84

Chapter 8. Implementation of the Robotic Tape Queueing System

59 castor:: exception:: Exception ex(EVQNOVOL);
60 ex.getMessage() << e.getMessage().str();
61 tapeRequest = 0;
62 throw ex;
63 }
64
65 // Error handling for the other container classes
66 ...
67 }
68 }

Listing 8.4: Storing of new database entries

Every container class is derived from an IObject class. It is represented by the

parameter of the function header (request). A BaseAddress object has to be prepared

(see Line 10-12) to recall the needed service to store the data of the container class

into the database. The recall of a service has been discussed in Section 4.2.2.

The BaseRequestHandler class itself is derived from the BaseObject class, which

represents the root of every functional object in CASTOR2. It provides basic func-

tionalities for the error handling and for the service calls.

The svcs() function of the BaseObject class returns in Line 16 an access to the

Service Manager (see Figure 4.4). The createRep() functions inserts then a new row

for the container class into the database. Its third parameter specifies whether the

inserted row should immediately be committed, or not. As it is mandatory to do

a rollback of the whole request in case of errors, the commit is done not until the

whole run through of the protocol process (see 7.2).

Each container object can include other container objects, which represent the

association to row of another table. The association have to be committed separately.

Therefore, dynamic casts (see Line 20 and 42) are done to determine during runtime

the forwarded container class representation. The fillRep() function is used to create

the association between the two rows. The third parameter determines the object

type of the foreign table.

If an error occurs during the transaction, an Exception will be thrown. Before it

is hand over to the function caller, the transaction is rolled back (see Line 53) and

the appropriate error number is determined for the request client.

85

Chapter 8. Implementation of the Robotic Tape Queueing System

8.5 Database Query Handling

The recalling of information with a database query has been represented in the

sequence diagrams of the previous Chapter via the IVdqmSvc interface.

Listing 8.5 gives a concrete example for the selectTapeRequest function from the

IVdqmSvc. The function is used to recall tape request information from the Oracle

database with help of the 32 bit representation of the unique row id. The problem

has been discussed in Section 7.3.1.

The other Oracle functions of the IVdqmSvc interface have been developed in a

similar ways.

01 /// SQL statement for function selectDeviceGroupName
02 const std::string castor::db::ora:: OraVdqmSvc::
03 s_selectTapeRequestStatementString =
04 "SELECT id FROM TapeRequest WHERE CAST(id AS INT) = :1";
05
06
07 castor::vdqm:: TapeRequest*
08 castor::db::ora:: OraVdqmSvc:: selectTapeRequest(
09 const int VolReqID)
10 throw (castor:: exception:: Exception) {
11
12 // The 64 bit representation of the tape request id
13 u_signed64 id;
14
15 // Checks whether the statements are OK
16 if (0 == m_selectTapeRequestStatement) {
17 m_selectTapeRequestStatement =
18 createStatement(s_selectTapeRequestStatementString);
19 }
20 // Execute statement and get result
21 try {
22 // Gives the 32 bit representation of
23 // the tape request id as parameter
24 m_selectTapeRequestStatement ->setInt(1, VolReqID);
25 oracle::occi::ResultSet *rset =
26 m_selectTapeRequestStatement ->executeQuery();
27
28 if (oracle::occi::ResultSet:: END_OF_FETCH
29 == rset ->next()) {
30 m_selectTapeRequestStatement ->closeResultSet(rset);
31 // we found nothing , so let’s return NULL
32 return NULL;
33 }
34 // If we reach this point , then we selected
35 // successfully a tape and it’s id is in rset
36 id = (u_signed64)rset ->getDouble(1);
37 m_selectTapeRequestStatement ->closeResultSet(rset);
38 } catch (oracle::occi:: SQLException e) {
39 ...
40 throw e;

86

Chapter 8. Implementation of the Robotic Tape Queueing System

41 }
42
43 // Now , get the tape from its id
44 try {
45 castor:: BaseAddress ad;
46 ad.setTarget(id);
47 ad.setCnvSvcName("DbCnvSvc ");
48 ad.setCnvSvcType(castor::SVC_DBCNV);
49 castor::IObject* obj = cnvSvc()->createObj(&ad);
50 castor::vdqm::TapeRequest* tapeRequest =
51 dynamic_cast <castor::vdqm:: TapeRequest*> (obj);
52 if (0 == tapeRequest) {
53 castor:: exception:: Internal e;
54 e.getMessage()
55 << "createObj return unexpected type "
56 << obj->type() << " for id " << id;
57 delete obj;
58 obj = 0;
59
60 throw e;
61 }
62
63 // Get the foreign related object
64 cnvSvc()->fillObj (&ad, obj ,
65 castor:: OBJ_ClientIdentification);
66 cnvSvc()->fillObj (&ad, obj , castor:: OBJ_TapeDrive);
67 obj = 0;
68
69 return tapeRequest;
70 } catch (oracle::occi:: SQLException e) {
71 ...
72 throw e;
73 }
74 // We should never reach this point
75 }

Listing 8.5: Recalling of the tape request from the database

As with every service instance, the concrete IVdqmSvc instance is managed from

the Service Manager. This means, that the object is instantiated only once in the

whole lifetime of VDQM.

Each database query is stored in a global private static string constant (see

Line 02-04). This is required to create once and for all the global private ora-

cle::occi::Statement object (see Line 16-19) from the Oracle library for this function

in the heap memory. All global objects are declared in the header file of the class.

After the 32 bit id of the tape request is given as first parameter of the statement

(see Line 24, 04), it is ready to be executed (see Line 25-26). The result of the

database query returns the 64 bit representation of the id number in an ResultSet

object. This object is a linked list of the found results. In this case it contains only

87

Chapter 8. Implementation of the Robotic Tape Queueing System

one value.

If the ResultSet does not contain any value, the function will return a NULL

pointer (see Line 28-33). Otherwise the recalled id is stored in an unsigned 64 bit

variable. In both cases, the connection to the database has to be closed (see Line

30, 37).

With the 64 bit id it is possible to use the Service Manager facility for retrieving

the database information of that row. As described in Section 4.2.2, the data are

put together in the appropriate container class by the Converter of the table. This

information recall is handled with the createObj() function of the Service Manager

(see Line 49).

If available, the associations of a table row can additionally be recalled with the

fillObj() function (see Line 64-66). Similar to the storing process (see Section 8.4),

the associated container objects have to be specified by their object type constant.

The returning TapeRequest object contains then all recalled data objects.

88

Chapter 9

Summary and Conclusion

This Chapter will give a summary of the experiences gained during the implemen-

tation and testing phases. Furthermore, we will evaluate whether the technical re-

quirements have been achieved with the reimplementation of the robotic queueing

system. Finally, we will discuss reasonable extensions and future prospects.

9.1 Evaluation

The new robotic tape queueing system implementation comprises approximately

20,000 lines of code. About 11,500 lines are autogenerated via the CASTOR2 code

generator. This includes all container classes for the database tables and the helper

classes for the Service Manager, such as Conversion Services and Factory classes.

The use of an autogeneration saves not only time, but makes an application much

more robust. Since it is based on the XMI-file parser of the Open Source Project

Umbrello, no licence fees have to be spent for a designing tool. In exchange, the

programmers have to live with a defective graphical interface.

The stateless design guarantees a minimal information loss in case of a system

crash. Moreover, the use of a database enables us to manage a very large number of

tape requests. VDQM can run simultaneously on several machines for load balancing.

The implementation of two thread pools assures that there are always enough

resources for the two main tasks: the handling of incoming requests and the sending

of tape assign requests to the Remote Tape Copy Daemon. The number of threads

in each pool can be determined via start parameters. By default, they are initiated

89

Chapter 9. Summary and Conclusion

with twenty threads.

Existing test tools, which were developed for the former Volume and Drive Queue

manager, were useful to check whether the reimplementation could handle all request

types. A stress test with five emulated tape drives and hundreds of tape request ran

successful, after some small bug fixes. The new VDQM system was also tested with

two HP LTO3 as well as with two IBM 3592 drive devices. The robotic tape library

used was an IBM 3584, which was filled with different tape models. In this setup,

the application ran without crashing for more than one week, which proved its

robustness and error tolerance.

A test run in the production environment arose that the administrative

showqueues command performed slowly with more than 1000 requests. This can

be tuned with a lighter database query for retrieving all tape requests and their

associated information from related tables.

Tape drives can be dedicated for specific jobs with entries into the TapeDriveDed-

ication table of the database. A Perl Script serves as user interface and assures that

the entries in that table are valid. The advantage is that the table can be extended

for future needs without having to change the C++ implementation, because only

the database procedure to assign tape requests to tape drives makes use of it.

The assignment of tapes to asymmetric tape drives can not yet be proven, because

the protocol extension on the tape daemon side is still missing. However, the logic

on VDQM is implemented and works fine in symmetric mode. Instead of the drive

device name we use the cartridge model name to fill the TapeDriveCompatibility

table.

The usage of the DLF logging facility has an unaesthetic side-effect, which is

related to the mandatory initialisation of the log messages at start time (see Sections

4.3 and 8.2): Since every sent log message has to be referred by its log number, it is

not possible to use the implemented classes in foreign CASTOR2 components. This

fact reduces a lot the power of the object oriented design.

We conclude that the main problems of the old implementation, mentioned in

Section 5.1, are solved. Furthermore, the code is easier to maintain, because of

the object oriented design and the use of clear tape drive states. Above all, the

system is extendable for new protocols and its database design allows the inclusion

of additional features, such as error logging for the tapes and tape drives.

90

Chapter 9. Summary and Conclusion

Because of missing CASTOR2 documentation, the preparation of Chapter 4 took

a lot of time. The understanding of the single components has been acquired with

the help of the CASTOR2 team members.

9.2 Extensibility and Future Prospects

A revision of the tape daemon still has to be done to support the asymmetric use of

the tape drives (see Section 5.6). Moreover, in case of errors during a tape request

handling, an informative message could be sent to VDQM. As described in Section

7.1. This message could be used to collect statistical data about the reasons of

tapes and drives fail. For instance, it is interesting to know if some tape causes only

problems on certain drives. The dedication pattern array of the old protocol, which

is not used anymore (see Section 5.5), could be utilised for the transmission. This

avoids an adaption of the other components, because the length of the message body

would not change.

Since all information about VDQM is stored in the database, it enables us to

write administrative web services. For a better overview about the states of the tape

drives it is, for instance, suggestive to use a graphical interface.

The deactivation of a tape server for maintenance purposes could also be handled

with such a web interface. Therefore, the status of a server has to be set to TAPE-

SERVER INACTIVE in the database. Its tape drives will then no longer be selected

for an tape assignment, because the value is checked in the assign procedure.

91

Chapter 9. Summary and Conclusion

92

Appendix A

VDQM Class Diagram

93

Appendix A. VDQM Class Diagram

Figure A.1: The complete VDQM class overview

94

Appendix B

CD Contents

• PDF of this thesis (print version)

• PDF of this thesis (with highlighted hyperlinks)

• Source code of the CASTOR project

• Documentation of the source code in HTML format

• PDF files of the electronically available references

• All images used in this thesis

95

Appendix B. CD Contents

96

Appendix C

Glossary

ALICE - A Large Ion Collider Experiment at CERN’s Large Hadrons Collider
API - Application Interface
ATLAS - A Toroidal Large Hadrons Collider ApparatuS
CASTOR - CERN Advanced STORage manager
CCM - Configuration Cache Manager
CDB - Configuration Data Base
CERN - European Organization for Nuclear Research
CDR - Central Data Recording service
CLAPI - Client API from HPSS
CMS - The Compact Muon Solenoid
CVS - Concurrent Versions System

DESY - Deutsches Elektronen-Synchrotron
DLF - Distributed Logging Facility

EDG - European DataGrid project
ELFms - Extremely Large Fabric management system

FNAL - Fermi National Accelerator Laboratory

GridFTP - Grid File Transfer Protocol
GSI - Grid Security Infrastructure
GSSAPI - Generic Security Services Application Programming Interface
GssFTP - Generic Security Services File Transfer Protocol

HEP - High Energies Physics HSM - Hierachical Storage Management
HPSS - High Performance Storage System

IBM - Industrial Business Machines

97

Appendix C. Glossary

LCG - LHC Computing Grid project (Distributed Production Environment
for Physics Data Processing)
LCLI - Lemon Command Line Interface
LEAF - LHC-Era Automated Fabric
LEMON - LHC Era Monitoring
LEP - Large Electron Positron collider
LHC - The Large Hadrons Collider
LHCb - The Large Hadrons Collider study of CP violation in B-meson decays LSF
- Large Scale Facility
LTO - Linear Tape Open

MR - Monitoring Repository
MSA - Monitoring Sensor Agent

NCM - Node Configuration Manger

PKG - Solaris Package Manager
PNFS - The Perfectly Normal File System
POSIX - Portable Operating System Interface

Quattor - System Administration Toolsuite

RFIO - Remote File Input/Output
RPM - RPM Package Manager
RRD - Round Robin Database
RTCPD - CASTOR Remote Tape Copy Daemon
RTCPClientD - CASTOR Remote Tape Copy Client Daemon

SOAP - Service-Oriented Architectural Pattern
SPMA - Software Package Management Agent
SAN - Storage Area Network
STK - StorageTek

TCP - Transmission Control Protocol

UDP - User Datagram Protocol
UML - Unified Modelling Language

VDQM - CASTOR Volume and Drive Queue Manager
VMGR - CASTOR Volume Manager

wassh - Wide Area SSH

98

Appendix C. Glossary

XMI - XML Metadata Interchange
XML - Extensible Markup Language

99

Appendix C. Glossary

100

Bibliography

[1] Aerial view of the CERN LHC accelerator,
http://atlas.kek.jp/sub/photos/CERN/CERN-MontBlanc-letter.jpg,
December 2005

[2] German Cancio and Piotr Poznanski.”Managing Computer Centre machines
with Quattor”,
http://quattor.org/documentation/presentations/quattor-c5-12122003.pdf,
December 2003

[3] Miroslav Siket, German Cancio, David Front, Maciej Stepniewsk. ”Lemon
Monitoring” , Presentation,
http://lemon.web.cern.ch/lemon/doc/presentations/lemon-bologna-2005.ppt,
May 2005

[4] T. Perelmutov, D. Petravick. ”Storage Resource Manager”, CHEP 04,
Contribution 107,
http://indico.cern.ch/materialDisplay.py?contribId=107&sessionId=10&
materialId=paper&confId=0, December 2004

[5] S. Ponce. ”New stager architecture and deployment”, CASTOR external
operation meeting, CERN,
http://castor.web.cern.ch/castor/PRESENTATIONS/2005/External-
Operation-Worshop-20050614/CASTOR2-overview-20050614.pdf, June 2005

[6] Fred Moore. ”Storage Navigator”,
http://www.horison.com/horison/books/2005/, 2005

[7] StreamLine SL8500 Modular Library System,
http://www.storagetek.com/upload/documents/TC0018B SL8500 OC.pdf,
December 2005

[8] Linear Tape Open (LTO) Ultrium tape drives,
http://www.savedon.com/upload/documents/TC0021A LTO OC.pdf,
December 2005

101

http://atlas.kek.jp/sub/photos/CERN/CERN-MontBlanc-letter.jpg
http://quattor.org/documentation/presentations/quattor-c5-12122003.pdf
http://lemon.web.cern.ch/lemon/doc/presentations/lemon-bologna-2005.ppt
http://indico.cern.ch/materialDisplay.py?contribId=107&sessionId=10&materialId=paper&confId=0
http://castor.web.cern.ch/castor/PRESENTATIONS/2005/External-Operation-Worshop-20050614/CASTOR2-overview-20050614.pdf
http://www.horison.com/horison/books/2005/
http://www.storagetek.com/upload/documents/TC0018B_SL8500_OC.pdf
http://www.savedon.com/upload/documents/TC0021A_LTO_OC.pdf

Bibliography

[9] IBM TotalStorage 3592 Tape Drive Model J1A,
http://www.nctgmbh.de/download/3592TapeDriveModelJ1A.pdf, December
2005

[10] Gustavo Castets, Yotta Koutsoupias, Chris McLure, Juan Felipe Vazquez.
”IBM TotalStorage Enterprise Tape: A Practical Guide”,
http://www.redbooks.ibm.com/redbooks/pdfs/sg244632.pdf, June 2004

[11] Extremely Large Fabric management system (ELFms), http://cern.ch/elfms,
December 2005

[12] Quattor, http://quattor.org, December 2005

[13] LHC Era Monitoring (Lemon), http://cern.ch/lemon, December 2005

[14] G. Cancio, T. Kleinwort, W. Tomlin, M. Siket, V. Bahyl, S. Chapeland, J. van
Eldik, V. Lefebure, H. Meinhard, P. Poznanski, T. Smith, M. Stepniewski, D.
Waldron, CERN, Geneva, Switzerland. D. Front, Weizmann Institute of
Science, Rehovot, Israel. ”Current status of fabric management at CERN”,
CHEP 04, Contribution 489,
http://indico.cern.ch/getFile.py/access?contribId=489&sessionId=10&resId=1&
materialId=paper&confId=0, December 2004

[15] Tobias Oetiker. ”Round Robin Database tool (RRDtool)”,
http://rrdtool.org , December 2005

[16] GridFTP: www-unix.globus.org,
http://www-unix.globus.org/toolkit/docs/3.2/gridftp/key/index.html,
December 2005

[17] W. Allcock. ”GridFTP: Protocol Extensions to FTP for the Grid”,
http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf, April 2003

[18] Examples of GridFTP usage,
http://it-dep-fio-ds.web.cern.ch/it-dep-fio-ds/Documentation/
gridftp-examples.asp, December 2005

[19] www.dCache.org, http://www.dcache.org/, December 2005

[20] Patrick Fuhrmann. ”dCache, the commodity cache”, Twelfth NASA Goddard
and Twenty First IEEE Conference on Mass Storage Systems and
Technologies, Washington DC,
http://www.dcache.org/manuals/ieee2004.paper.pdf, March 2004

[21] Gene Oleynik, Bonnie Alcorn, Wayne Baisley, Jon Bakken, David Berg, Eileen
Berman, Chih-Hao Huang, Terry Jones, Robert D. Kennedy, Alexander
Kulyavtsev, Alexander Moibenko, Timur Perelmutov, Don Petravick, Vladimir

102

http://www.nctgmbh.de/download/3592TapeDriveModelJ1A.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg244632.pdf
http://cern.ch/elfms
http://quattor.org
http://cern.ch/lemon
http://indico.cern.ch/getFile.py/access?contribId=489&sessionId=10&resId=1&materialId=paper&confId=0
http://rrdtool.org
http://www-unix.globus.org/toolkit/docs/3.2/gridftp/key/index.html
http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf
http://it-dep-fio-ds.web.cern.ch/it-dep-fio-ds/Documentation/gridftp-examples.asp
http://www.dcache.org/
http://www.dcache.org/manuals/ieee2004.paper.pdf

Bibliography

Podstavkov, George Szmuksta, Michael Zalokar. ”Fermilab’s Multi-Petabyte
Scalable Mass Storage System”, 22nd IEEE/13th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSST 2005), 0-7695-2318-8/05,
http://storageconference.org/2005/papers/07 oleynikg fermilab.pdf, April
2005

[22] J. Bakken, E. Berman, Chi-Hao Huang, A. Moibenko, D. Petravick, M.
Zalokar. ”The status of the Fermilab Enstore Data Storage System”, CHEP
04, Contribution 464,
http://indico.cern.ch/getFile.py/access?contribId=464&sessionId=10&resId=
1&materialId=paper&confId=0, December 2004

[23] Richard W. Watson. ”High Performance Storage System Scalability:
Architecture, Implementation and Experience”, 22nd IEEE/13th NASA
Goddard Conference on Mass Storage Systems and Technologies (MSST
2005), 0-7695-2318-8/05,
http://storageconference.org/2005/papers/13 watsonr highperformance.pdf,
April 2005

[24] O. Bärring, B. Couturier, J.-D. Durand, S. Ponce. ”CASTOR: Operational
issues and new developments”, CHEP 04, Contribution 230,
http://indico.cern.ch/materialDisplay.py?contribId=230&sessionId=
10&materialId=paper&confId=0, December 2004

[25] ROOT - An Object-Oriented Data Analysis Framework, http://root.cern.ch/,
December 2005

[26] The Maui Scheduler,
http://www.nsc.liu.se/systems/cluster/grendel/maui.html, December 2005

[27] Using Platform LSF License Scheduler,
http://www.ms.washington.edu/Docs/LSF/LSF 6.0 Manual/
license scheduler 6.0/lsf license scheduler.html#122068, December 2005

[28] Umbrello UML Modeller homepage, http://umbrello.org, December 2005

[29] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. ”Design
Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley,
1994

103

http://storageconference.org/2005/papers/07_oleynikg_fermilab.pdf
http://indico.cern.ch/getFile.py/access?contribId=464&sessionId=10&resId=1&materialId=paper&confId=0
http://storageconference.org/2005/papers/13_watsonr_highperformance.pdf
http://indico.cern.ch/materialDisplay.py?contribId=230&sessionId=10&materialId=paper&confId=0
http://root.cern.ch/
http://www.nsc.liu.se/systems/cluster/grendel/maui.html
http://www.ms.washington.edu/Docs/LSF/LSF_6.0_Manual/license_scheduler_6.0/lsf_license_scheduler.html#122068
http://umbrello.org

Index

Index

A

ALICE . 1, 15
ATLAS . 1, 15

C

CASTOR.2, 15 ff, 27
configuration file.36
library. .37

CCM . 9
CDB. .8, 12
Charge Parity . 1
CLAPI . 25
CMS. .2, 15
container class .33
CVS. .8

D

daemon . 80
dCache . 20
DESY . 20, 23
DLF . 38, 90

E

EDG . 7
ELFms . 7
Enstore . 22

F

FNAL . 20, 22

G

GridFTP 13, 16, 19 f
GSI . 14

GSSAPI . 14

H

HEP . 1
HPSS . 24

I

IBM. 5

K

Kerberos . 14

L

LCG . 15
LCLI . 13
leaf . 8
Lemon . 10
LEP. 1
LHC . 1, 8
LHCb . 1
Linux. .8
LRF. .12
LSF . 12, 30

M

MAUI . 30
MigHunter . 31
MR . 12
MSA . 11 f

N

NCM. 10

104

Index

P

PKG . 10
PNFS . 23
POSIX . 25
Powderhorn . 6

Q

Quattor . 8

R

Request Replier 30
robotic tape library.50
RPM. 10
RRD . 12
RTCPClientD 31 f, 68
RTCPD . 32, 58

S

SAN . 24
SPMA. .10
SRM . 19
Stager . 30
STK. .6

T

tape daemon . 32
TCP . 4

U

UDP . 4
Umbrello . 33, 59

V

VDQM. .3, 32, 39

X

XMI. .34

105

	Introduction
	Motivation
	Thesis Overview
	Thesis Structure
	Prerequisites

	Technical Basics
	Storage Components
	Fabric Management Tools
	The Quattor System Administration Toolsuite
	The wassh Shell-Command
	The Large Hardron Collider Era Monitoring System

	Grid Interfaces
	Grid File Transfer Protocol
	Storage Resource Management

	Alternative Storage Managers
	Disk Cache
	Enstore
	High Performance Storage System

	CERN Advanced Storage Manager
	History and Limitations
	Architecture
	Database Generation and Handling
	The Database Interface

	The Distributed Logging Facility

	Technical Analysis
	Requirements
	The Communication Protocols
	The Request Accept Protocol
	The Tape to Tape Drive Assign Protocol

	State Analysis of the Volume and Drive Queue Manager
	Design Decisions for a Stateless Application
	Tape Drive Dedication
	The Asymmetric Tape Drive Problem

	Preliminary Design
	Scenario
	User Interfaces
	Administrator and Remote Tape Copy Client Commands
	Tape Daemon Commands
	Remote Tape Copy Daemon Command

	Detailed Design
	Information Handling in the Database
	Storing or Updating of a Tape Drive's Information
	Storing of a Tape Request
	Tape Drive Dedication
	Assignment of Tape Requests to Tape Drives

	The Protocol Facade
	Handling of Incoming Messages
	Handling of the Remote Tape Copy Client Messages
	Handling of Tape Daemon Messages
	Handling of Administration Requests

	Thread Pool Management

	Implementation of the Robotic Tape Queueing System
	Development Process
	Using the Distributed Logging Facility
	Protocol Determination
	Container Class Handling
	Database Query Handling

	Summary and Conclusion
	Evaluation
	Extensibility and Future Prospects

	VDQM Class Diagram
	CD Contents
	Glossary
	Bibliography
	Index

