Small Files Aggregation Operations Guide

Small Files Aggregation Operations Guide.

Small Files Aggregation Operations Guide

Table of Contents

B 014 (o6 11115 To) o AT PR PPPRRN 4
2 Structure Of enstore CAChING SYSIEIMN.eiiiiiiiiiiiiiiieeiiee ettt et et e et e st ee e sabeeesabeeesneeeeaans 4
2.1 HAardware fOI CACREeeeeee e e e e eeassanaeeeseesnnnness 7
2.2 FALES QNA CACRE oottt e e e e e e ettt a e eeseeaaeseeaaesseeanseeans 7
2.2.1 File names 1N CACNE.coooiiiiiiiiiiiiiiie e 7

2.2.2 Package file. ..cc..ooiuiiiiiiiieieeee et 8
2.2.2.1 Package file NAMe CONVENTIONeeeruiieriiiiriiieeniieeiieeeiiee et e et ee e e et e e e e e eaieeeeens 8

2.2.2.2 Additional entries in file table of enstore DBccoociiiiiiiiiiiiii 9

2.2.2.3 Cached file INTOIMAIONuuveieeiieeiiieieiiiieieeeeeeeeee e e e e eeaannaeeeesenens 9

2.3 Enstore Caching System COMPONENLS.c..eeerurieeiuieeeiiieeniieeenitieenieeesieeesreeeeeesssnneeeessssnseeeess 10
2.3.1 Library Manager Configuration Changes.ccoceevuieriiriiiinieniieenieneeeee e 10

2.3.2 Library Manager DITECIOT.ccceerviiiiiiiriiiieinie ettt e 10
2.3.2.1 Library Manager Director configuration.cceoeueeerieeeiieenniiieeeeeniieeee e 10

2.3.2.2 Policy File FOIMALcccviiiiiiiiiiiiiiiieeeiee ettt et e e Al

2.3.2.3 Library Manager Director enstore commandsccoccueeenieernieennieeeinniieeeeeenne 13

2.3.2.4 Encp Interaction with Library Manager Director.ccccceevvieiniiiiieeiinniiieeeennnnns 13

2.3.3 Modified File CIerkcooiiriiiiiiiiieieeeeeee e 14
2.3.3.1 Additional File Clerk Enstore Commandscceeeveeeeiimmmeiieeeeeeeeeimreiieeeeeeeerneeeennns 14

2.3.4 POLICY ENZINE SEIVET. ...oiiiiiiieiiieeiiieeiie ettt ettt ete e et e e s e e s nsbae e e e e enanneeaeeas 14
PRI 3 B 51 (30 I T A 200 0 - | S 15

2.3.5 Migration DISPatCREr.ccccooviiiiiiiiiiiieceeeeee e 16
2.3.5.1 Migration Dispatcher Configurationcccceeeeriieeniieeiienienieenreeieesee e 16

2.3.6 Python implementation of Policy Engine Server and Migration Dispatcher — Dispatcher.
16

237 MIZLALOT. «..eiiiiieiitte ettt ettt e e e et e e st e e s ab et e e abe e e sbeeebbeeebbeeenbbeeeeeeasnneeas 21
2.3.7.1 Migrator configuration and enstore cOmMmands.ccccueeerveemnieennieeeinniiieeeeeennns 21
3 Write and read reqUESE PIOCESSINZ. ..ccc.veeeriierriiierriieeeiteeeiteestteesieeesteeesseeesbeeesnbaeeeesenanaeeeeesnnns 23
3.1 Write request processing of files written via CaCheccceeveeeriiieeniiiiniieiniieeie e 23
3.2 Read reqUESE PIOCESSINEZ. .euveeruiiiiieiiieitteeiie ettt et e ettt et e ste e e bt e sbt e et e e sbbesabeesbbeeabbeeeaabbeeeanbaeas 24
3.3 Purge file from CAChec.coiiiiiiii e 25
A AQMINISTIATION. teiiivreiieeeeeeeeeitte e et eeeettte e eeeeettaraaesseeesssanaaseeeessssmnnsssessnnesessnnsessnnseessnneees 26
4.1 Configuring enstore cache COMPONENLS.covuiiiriiiiiiieiiiieeiee et ertee et ee e eiieeeee e e 26
4.1.1 Clustered DisSK Cache ..o 26

o AN (0] L 53 10) (=) SO 26

4.1.3 Enstore Cache SEIVETIS. ..ccoooiiiiiiiiiiiiii e 27

4.1.4 Configuring Small File Aware Library Managerc.cccocceevvvieiiiniiniieeeniieeeieeeee 29
4.1.4.1 Enabling Small Files Aggregation Featurec.cccoevvieiiniieiiiiiienniieeiee e, 29
4.1.4.2 Disabling Small Files Aggregation Featurecccccoovvieiiiiiniiieeniieeniee e, 29

4.1.5 Adding or modifying @ POIICYeeruiiimiiiiiiiiiiie et 29

4.2 Starting enstore cache COMPONENLScc..eiiiiiiiiiiiiaiieeeiieeeie et e et e et e e et e e e e s eiiereeeeeaanee 33

Small Files Aggregation Operations Guide

4.2.1.1 AMQP DIOKETeeiiiiiiiiiiiee ettt e e e et e e e e e e eeeetabb e e e e e e e e eeeanranreeaaaens 33

4.2.2 ENStore Cache SEIVETS. ..ocoooiiiiiiiiiiiii e 33
4.3 Stopping enstore Cache COMPONENLScc.eerruierriueerriieeiiieeitieesiteesireesteeesseeesseeensseesssseenns 35
VA RC T B BN LY (@) S o) (o) () SRR 35

4.3.2 ENStOre CaCRE SEIVETS. ..ooovieeeeeiiiieeeieeeeee ettt e e e e e ettt e e e e et e e eaaeeeeas 35
4.4 Monitoring enstore CaChe COMPONENLScc.ueirririirriieiaiiieeiieeeiteeeiteeeiee et e e sbeeesbeeesaneeeeeeas 35
V4S5 B EANLY (@] S o) ¢0) () USSR 35

4.4.2 EnStore CaChe SEIVETS. .coooiiiiiiiiiiiiiie 37
4.5 Monitoring and controlling WIite TEQUESES.ceouieriierierieiiieeie ettt ettt e e e sieee e 39
4.6 Emergency data migration tO LAPE.cecueerueeriieniierieeniieeteeriee st e e ieesite et e siteebeesabeebeesbeeeens 40
4.7 Migration tO NEW MEAIA. ..ccccueeiriieiiiieiiiie et et ee et et et e st e e st e e sabee e st eeeessnanbbeeeessnnnnes 40

S Document Change 10gocuoiiiiiiiiiiieeeeet ettt st et s 41

Small Files Aggregation Operations Guide

1 Introduction

This project is primarily driven by the need to aggregate small files into bigger packages for more
efficient use of tape drives.

Tape drive transfer rates depend on the size of the files. If the size of a file is relatively small then
overall average data throughput rate is less than for the relatively big file size. There are several reasons
for this: seeking to the files position, starts/ stops etc. The optimal size for a file on tape depends on the
tape technology and currently is about 1GB with tendency to grow'. The upper limit on the small file
depends on a particular tape technology and has tendency to grow. For now and foreseeable future the
reasonable limitation is 500 MB. Today's large file is tomorrow's small file

Users can not always easily control the size of files they write to tapes, and many storage systems
provide transparent aggregation of files for the user. Enstore does not provide this functionality and this
project is intended to provide this. It is of particular interest to existing and upcoming Neutrino
experiments, whose data files are typically small.

Another fact to take into considerations is that there are already many files with relatively small sizes
stored in the Fermilab enstore tape systems. We are migrating from tapes with small files to tapes with
much larger capacity, resulting in tapes with tens of thousands of small files on them. The access to
such files can be quite slow and inefficient, tying up valuable resources. To optimize access and
transfer rates for relatively small files we need to create a mechanism of packaging such files as a
single entity (package), stored on tape, while at the same time permitting transparent access to each
file in a package.

Packaging files before writing them to tape requires a disk buffer to aggregate files into a package.
Unpacking files from their package retrieved from tape before they get delivered to users requires a
disk cache. This disk space can not be requested on the user side because users may not be able to give
up a part (sometimes substantial) of their disk space for packaging. This disk cache must be an internal
to enstore , allowing to optimize packing / unpacking and delivery of individual files.

This cache/buffer will be used by multiple migrators/stagers to transfer files (packaged or not) between
disks and tapes in a distributed environment. Files will arrive from client nodes to the caching system
and will be stored on its disks. To provide a flexible environment for such files the caching system
should provide access to each file in cache from any host involved in transfer, packaging, migration,
staging, and unpacking. Thus the main requirement for such a cache is to provide a global access to any
file, which can be achieved by using a clustered file system.

2 Structure of enstore caching system.

1 We consider an optimal file size the size, which provides the throughput not less than 90% of maximum

Small Files Aggregation Operations Guide

The structure of integrated caching system is illustrated in fig 1. Such a system will easily scale by
adding migrators and by expanding the clustered file system. The clustered file system sustain
simultaneous high data throughput to multiple sources and destinations.

Enstore caching system is implemented with encp clients and disk movers. This implementation allows
to reuse reliable data delivery mechanisms already incorporated into enstore, such as CRC calculations,
internal retries, etc. The data caching system is shown in Fig. 1.

Communication between enstore caching system components in Fig.1 is supported by two protocols:
Enstore UDP (EUDP) and AMQP. EUDP protocol is used because some components of enstore
caching systems are standard enstore servers and clients. AMQP is used to communicate with
components involving Policy Engine because it is one of its possible communication protocols.

Small Files Aggregation Operations Guide

Library
Manager
Director

Policy Engine
Server
And
Migration
Dispatcher

A

[]
: Disk Mover

v

Migrator

-

Fig 1. Structure of integrated data caching and tape system using encp and disk movers.

The Library Manager Director (LMD) functionality is to determine whether to send data to tape library
directly or to cache first. Encp (client) sends to Library Manager Director request (ticket) containing
library name from “library” tag in pnfs directory it tries to write file to. Library Manager Director has
associated with it Policy Engine with set of rules defining selection of ether tape or disk library
manager. The selection rules can be based on different parameters. These parameters are discussed in
details later. The main is the file size. Each external encp client may contact LMD for write request if it

uses a special option “--enable-redirection”. In the future the default behavior may get changed so
that each encp will contact LMD.

Very important detail in this structure is that all disk movers are connected to the same clustered file

Small Files Aggregation Operations Guide

system, so that they all can access any file in cache. Further we will address details of enstore caching
system using encp clients and disk movers.

2.1 Hardware for cache

The enstore cache will be implemented as a clustered file system available for access by any migrator.
It must be very reliable to reduce to the minimum possible corruption of data for files written to cache
and awaiting their migration to tapes. It has been decided to use Oracle ZFS based disk system
Advanced HPC File Server Nexenta OS (Open Solaris with Linus user level utilities with 63 TB of disk
space, 48 GB memory and 10 GB Ethernet network interface.

2.2 Files and cache

2.2.1 File names in cache.

Files written into cache by disk mover have their path and names derived from the file pnfs id. Pnfs id
consists of 36 hexadecimal digits. To prevent having too many files in a single directory in cache the
pnfs file id maps to the corresponding file name according to algorithm:

file_id_hex = int("0x"+file_id, 16)

first = "%s"%((file_id_hex & OxFFF) * ((file_id_hex >> 24) & OxFFF),)
second = "%s"%((file_id_hex>>12) & OxFFF,)

path = os.path.join(root, first, second, file_id)

So for instance:

root = '"/data_files"
file_id = ""00001E9281CFB7054652B62737ED1ED3B3F6"
return value:

'"/data_files/3816/3387/00001E9281CFB7054652B62737ED1ED3B3F6"

Thus each path will contain not more than Oxfff (4095) files. And files will be evenly distributed
between different directories.

All files get written by disk mover into a temporary directory, with name unique for each disk mover:
/prefix/DN
— where DN is a disk mover name from enstore configuration

When disk mover completes write file transfer into this directory it immediately renames it according
to a pnfs id name convention. Only one file can be in this temporary directory for each disk mover.

This approach guaranties that there will be no partially files on disk due to disk mover failures during

Small Files Aggregation Operations Guide

file transfers (for write operations).

2.2.2 Package file.

Package file contains a files packaged according certain criteria defined by policy and a special file
README.1ST with the following format:

List of cached files and original names
cached_file_path_1 file_name_in_the_name_spacel CRC1
cached_file_path_2 file_name_in_the_name_space2 CRC2

cached_file_path_N file_name_in_the_name_spaceN CRCN

This file makes package file self describing and allows to recover files from tape to their original
locations in cases when enstore database is absent. These cases may be:

1. Loss of the database

2. Transfer of the tape to another system, which may be enstore or some other tape based storage
system.

2.2.2.1 Package file name convention
Package files are written and read by encp client, so they are regular enstore and pnfs files.
Package files for archiving (to get written to tape) will be kept in the special archiving area.

The separate directory for a packaged file is needed to not allow a conflict between package file
contents during packaging.

Staged package files will be kept in staging area

/<stage>

where <archive> and <stage> paths to archiving and staging areas.

Archiving and staging areas can be part of enstore cache or just local disk areas on Migrator nodes.
Package file path in the name space is:

<name_space_for_package>/<volume_family>/<tape>/package-<Migrator>-YYYY-mm-ddT%HH:
9%MM:%SSZ .tar,

where <Migrator> is the name of migrator, which wrote this file. Time stamp suffix is in accordance to
ISO8601 time format.

Small Files Aggregation Operations Guide

2.2.2.2 Additional entries in file table of enstore DB
Additional entries in file table of enstore DB are:

packageld - character varying default "' - This entry is a bfid of a package file, indicates that the file
is a part of package and can not be accessed as an individual file directly on tape.

PackageFileCounter integer default -1 — counter of active files in package (gets updated only for a
package file).

PackageFileNumber integer default 0 — total number of files in a package.

Package can be deleted when PackageFileCounter=0.

2.2.2.3 Cached file information
If file was written to cache it will have the following additional entries in file table of enstore DB:

cache_status character varying default "'
archive_status character varying default '
cache_mod_time timestamp without time zone
archive_mod_time timestamp without time zone
where:

* cache_status — shows if file is in cache/migration/purge status. It can have the following values:
- CREATED - file was written to cache
- PURGING - file is being purged
- PURGED - file was deleted in cache
- STAGING_REQUESTED - staging of the file has commenced
- STAGING - file is being staged to cache from tape
- CACHED - file is in cache
- FAILED - something wrong happened, requires investigation
- None — default value
* archive_status — file migration/purge status. It can have the following values:
- ARCHIVING - file is being written to tape. This state is useful for the recovery from failure
- ARCHIVED - file was written to tape
- FAILED - something wrong happened, requires investigation
- None — default value

* cache_mod_time — time when cache_status has changed

Small Files Aggregation Operations Guide

* archive_mod_time — time when archive_status has changed

New table in file DB holds a status of files in transition — files_in_transition. This table contains files
written to cache but not yet migrated to tape.

bfid character varying
file_status character varying default "'

cache_mod_time timestamp without time zone.

Special purge rules in PE Server define if a certain file needs to get purged.

2.3 Enstore Caching System Components.

In this section Enstore Section Components shown in Fig. 1 will be described.

2.3.1 Library Manager Configuration Changes.

Configuration dictionary for each Library Manager may have entry with new key “use LMD" with
value containing reference (key) configuration dictionary entry for LMD, e.g.

configdict['LTO03.library manager'] = { ..,'use LMD': 'lm director',}

When 'use LMD" entry is present, encp shall contact specified LMD to get configuration entry for
Library Manager to be used for transfer. When entry is not present encp acts in a “classical” way.

2.3.2 Library Manager Director.

The Library Manager Director (LMD) functionality is to determine shall client send data directly to
tape library or use file aggregation in cache. External encp clients contact LMD first. LMD decides
destination of the transfer: tape or enstore cache based on the set of policy rules defined to perform
selection of tape or disk based Library Manager. The selection rules can be based on different
parameters most importantly file size.

The LMD is a regular enstore server, monitored by inquisitor and shown on System Status page and
Servers page. It can be started and stopped just as other enstore servers using “enstore start/stop”
command. The LMD can be used without UDP2AMQP server (see comments to LMD configuration).

2.3.2.1 Library Manager Director configuration.
Library Manager Director configuration is as:
configdict['lm director'] = {

‘host': 'pmig@l.fnal.gov',

10

Small Files Aggregation Operations Guide

‘port': 5602,
‘logname’ : 'LMDSRV"',
‘udp port': 5602, # set the same as 'port'
‘policy file': "/home/enstore/policy files/lmd policy.py"
}
'host' - host on which “Im_director” is running
‘port' - “Im_director” communication port as enstore server
'logname’ - “Im_director” log name
‘'udp_port' — legacy parameter. Set the same as 'port'.
'policy file' — file containing policies for a given LMD.

Note! The 'use_LMD' for Library Manager should point to 'lm_director'.

2.3.2.2 Policy File Format

Library Manager Director and implemented in Python Policy Engine Server / Migration Dispatcher use
the same policy file, although it can be different.

The policy file is a Python dictionary and has a following format:
{Library_Manager1: {policyl:
{'rule':
{'storage_group': 'G1',
'file_family': 'F1',
'wrapper':'cpio_odc'
}
'minimal_file_size': 2000000000L
'min_files_in_pack': 100,
'max_waiting_time': 300,
'max_member_size': 200000000,

'resulting_library': 'new_library

}
{policy2:

{

11

Small Files Aggregation Operations Guide

b
Library_Manager2: { policyl:

}
Here is an example and explanation
'LTO3.library_manager':{1: {'rule': {'storage_group': 'G1',
'file_family': 'F1',
'wrapper':'cpio_odc'
}
'minimal_file_size': 2000000000
'min_files_in_pack': 100,
'max_waiting_time': 300,
'resulting_library': 'disk_library'

}

'minimal_file_size' - if file is less than this size the file will be aggregated
‘min_files_in_pack' - minimal number of files in package,

if total size of files to be aggregated is less than minimal_file_size

and number of files >= min_files_in_pack then files will get packaged
'max_member_size' - if file is bigger it will not be packaged (optional)
'max_waiting_time' - if time of collection of files for a package exceeds this value (sec),

the files will get packaged

If request comes from encp with library LTO3.library_manager and it satisfies this rule and
minimal_file_size conditions (less than the minimum) it will be sent to ' disk_library'.

12

Small Files Aggregation Operations Guide

2.3.2.3 Library Manager Director enstore commands

Library Manager Director is a regular enstore server, monitored by inquisitor and shown on System
Status page and Servers page. It can be started and stopped just as other enstore servers using “enstore
start/stop” command. It responds to the following commands:

[enstore@dmsen02 test_dir]$ enstore Imd

Usage: Imd [OPTIONS]...

-a, --alive

prints message if the server is up or down.

--do-alarm <DO_ALARM> turns on more alarms

(snip ...)

--load load a new policy file

--retries <ALIVE_RETRIES> number of attempts to resend alive requests
--show - print the current policy in python format

--timeout <SECONDS> number of seconds to wait for alive response
--usage - prints short help message

The options of interest are —load and —show.

2.3.2.4 Encp Interaction with Library Manager Director.

The new encp switch allows users to select whether they want to use the file aggregation feature:
enable-redirection. The default value of this switch is to not use Library Manager Director to select a
library manager. If this switch is specified the encp will try to send a request to a Library Manager
Director.

User side encp client extracts library name from “1library” tag in pnfs directory (name space)
where it tries to write file to. For enstore pnfs tags see “The Enstore and dCache User's Guide.
Chapter 4: PNFS Namespace 4-1. Enstore configuration file will have entry specifying if caching is
enabled for concrete tape Library Manager. The configuration dictionary entry for Library Manager
may have entry “use LMD”. For backward compatibility, if there is no such entry encp acts in a old
way, encp does not contact LMD and it contacts Library Manager directly. When “use LMD" entry is
present in configuration its value contains key in configuration dictionary for LMD. Encp contacts
specified LMD to get configuration entry for Library Manager to be used for transfer. Encp sends
ticket to LMD in the same format it usually sends to Library Manager. The ticket contains library
name from “library” tag in pnfs directory (name space).

The choice of caching Library Manager is described by LMD Policy Engine rules. As a simple case,
each original tape Library Manager has corresponding Caching Library Manager. LMD make decision

13

http://computing.fnal.gov/docs/products/enstore/pnfstags.html#Xae8346

Small Files Aggregation Operations Guide

to cache or not to cache and selects one of LMs from the pair.

LMD receives ticket from encp, processes the ticket in policy engine, modifies ticket field
ticket[“vc”] [“1library”] if necessary and then sends ticket as a reply back to encp.

2.3.3 Modified File Clerk

Existing File Clerk (FC) was modified to notify Policy Engine (PE) Server when files are created in
cache and when read file is requested. For the communications with PE Server file clerk uses AMQP
API, described in “Messaging HL.D”. The specific of enstore file write operation is such that the file
may not get considered as written into enstore even if mover successfully completed data transfer. File
is considered as written into enstore when enstore client (encp) sets the pnfsld of written file in enstore
file database by calling a corresponding File Clerk Client (FCC) method, which in turn sends a
message to FC. When this is done File Clerk sends CACHE_WRITTEN event to PE Server. A special
process (thread) in File Clerk will set timeouts when File Clerk gets a new_bit_file request from disk
mover. If set_pnfsid request does not arrive from encp for the corresponding bfld, File Clerk raises an
alarm and makes an entry into the list of suspect files on disk. This is needed for the subsequent
cleanup of not completed file writes.

For read requests Library Manager checks if requested file is on disk and if not it sends an Open
request to File Clerk, which sends CACHE_MISS event to PE Server.

More details about File Clerk modifications can be found in File Clerk and enstore DB modifications

2.3.3.1 Additional File Clerk Enstore Commands
The following command options were added:
--children <BFID> find all children of the package file
--replay replay cache written events — replays events for files_in_transition table
--package Force printing package files and non-packaged
files (used along with --list)
--pkginfo Force printing information about package_id

archive/cache status (used along with --list)

2.3.4 Policy Engine Server.

Policy Engine Server (PE Server) collects events from other servers (particularly from File Clerk)
combines them into the request lists and submits them to Migration Dispatcher. This is why it is
implemented as a part of the process running both PE Server and Migration Dispatcher. The
communication between PE Server and Migration Dispatcher is done via shared memory. The events
destined for PE Server are described in the corresponding “Messaging HL.D” document. PE Server

14

https://cdcvs.fnal.gov/redmine/documents/show/87
https://cdcvs.fnal.gov/redmine/documents/159
https://cdcvs.fnal.gov/redmine/documents/show/87

Small Files Aggregation Operations Guide

receives event from File Clerk specifying that the new file arrived into cache or the file written to tape
needs to get staged from it. PE Server has 3 types of file lists:

1. Archive Lists. List of files to be written to tape (cache_written pool).
2. Stage Lists. Lists of files to be staged from tape(s) to cache (cache_missed pool).
3. Purge Lists. Lists of files to be purged in cache (cache_purge pool).

Lists may be groups of files belonging to a certain storage group, file family, directory, having certain
size limits, time in cache, etc. Dispatcher has

» filling — list is being populated with new files
e full - listis full

* work — list is sent for the execution

* done — execution was completed successfully
* failed — execution failed.

When policy rule is satisfied for a certain list it gets put into migration_pool. Migration Dispatcher
picks up lists from migration_pool and puts them into migrators work queue. Migrators pick up lists
from this queue for processing.

2.3.4.1 File List Format.
File list format is as follows:
File list ID - unique file list id.
list_item_1[, list_item_2, ..., list_item_N]
where list_item_i is:
enstore bit file ID(BFID) — assigned when file gets written into enstore disk cache

name space file id (pnfs Id) — name space (pnfs) id. This allows to avoid contacting file clerk
to fetch a file on disk

file path — complete file path. This allows to avoid contacting file clerk.
tape library list — information from pnfs library tag
file CRC
All information about requested file can be obtained from enstore file database referring by BFID.

Tape library list is needed to identify to tape(s) from what library (or libraries for multiple copy) the
files will be written of from what tape in what library it will (or may be) staged. The operation type
(archive, stage, purge) performed on the list is specified in the message sent to the server.

15

Small Files Aggregation Operations Guide

2.3.5 Migration Dispatcher.

Migration Dispatcher (MD) receives file lists from Policy Engine Server via corresponding methods
and distributes file lists between Migrators. There must be at least 1 write, read and purge migrators
configured to serve requests from dispatcher. For the scalability of the file storage the disk library is
provided in the request list. Clusterisation of the storage is implemented around specific disk library. If
clusterisation is required dispatcher configuration will contain the following entry:
'clustered_configuration': True. In this case dispatcher will create and use AMQP exchanges to send
lists to migrators. In such case each migrator will have 'disk_library' set in its configuration. For
non-clustered configuration simple queues are used. When migrator replies with result of the work,
MD sends corresponding event to Policy Engine Server.

2.3.5.1 Migration Dispatcher Configuration

Migration Dispatcher configuration is described in enstore configuration file, presents a python
dictionary, and contains the following attributes:

'host": - MD host (string)
'port': - MD port (string)
'logname': - MD log name in enstore log (string)

'norestart':' - automatic restart flag (string)

2.3.6 Python implementation of Policy Engine Server and Migration
Dispatcher — Dispatcher.

Python implementation of Policy Engine Server and Migration Dispatcher has both these components
running in the same process, because they share a lot of information. They run in separate threads.

The Dispatcher is a regular enstore server, monitored by inquisitor and shown on System Status page
and Servers page. It can be started and stopped just as other enstore servers using “enstore start/stop”
command. Its configuration is as:

configdict['dispatcher'] = {
‘host': 'pmig0@l.fnal.gov',
‘port': 5603,
'logname': 'DISP',

‘queue work': 'policy engine',
‘queue reply': 'file clerk',
'queue write': 'encache.write requests',

16

Small Files Aggregation Operations Guide

‘queue read': 'encache.read requests’,
‘queue purge': 'encache.purge requests',
'migrator reply': 'migrator reply',

'policy file': "/home/enstore/policy files/lmd policy.py",
'max_time in cache': 600,

‘purge watermarks':(.8, .4),

‘clustered configuration': True,

‘libraries to purge': ['CD-DiskSF', 'CD-DiskSFT']

¥

'host': - sever host
‘port' - server port

'logname’ — server log name

'queue_work'": - events (from file clerk) come to this queue

'queue_reply': - replies (if needed) are sent on this queue

'queue_write": - queue or exchange for write requests

'queue_read": - queue or exchange for write requests

'queue_purge': - queue or exchange for purge requests

‘migrator_reply": - replies from migrators come to this queue

'policy_file": - policy file (same as for Library Manager Director).

'max_time_in_cache": 600 — purge file if it was written max_time_in_cache ago

'purge_watermarks':(.8, .4) — start purging staged files if occupied space is more than .8*Total,
stop purging files if occupied space is less than .4*Total

'clustered_configuration': if True use clusters named by the disk library in the request.

libraries_to_purge': ['CD-DiskSF', 'CD-DiskSFT']: - select purge candidates only for these disk
libraries.

Dispatcher responds to the following commands:

[enstore@pmig01 src]$ enstore disp --help

Usage:
disp [OPTIONS]...
-a, --alive prints message if the server is up or down.

17

Small Files Aggregation Operations Guide

--delete-work <DELETE_WORK> delete list from migration pool identified
by its id

--do-alarm <DO_ALARM> turns on more alarms

--do-log <DO_LOG> turns on more verbose logging

--do-print <DO_PRINT> turns on more verbose output

--dont-alarm <DONT_ALARM> turns off more alarms

--dont-log <DONT_LOG> turns off more verbose logging

--dont-print <DONT_PRINT> turns off more verbose output

--get-queue print content of pools

-h, --help prints this message
--id <ID> get information about specific ID in migration pool.
--load load a new policy file

--retries <ALIVE_RETRIES> number of attempts to resend alive requests
--show print the current policy in python format

--start-draining start draining write requests

--timeout <SECONDS> number of seconds to wait for alive response
--usage prints short help message

-v, --verbose verbose output. Used with —get-queue

The options of interest are load, show (same as for Library Manager Director), get-queue, id,
delete-work, start-draining

Here is an example output of “enstore disp —get” command:

[enstore @dmsen03 ~]$ enstore disp --get

Pool cache_missed Pool size 0

Pool cache_purge Pool size 0

Pool cache_written Pool size 1

Pool migration_pool Pool size 6

id e2db31c4-61bc-4cbd-9a53-64f484fbIb8c policy LTO3GS.ANM.FF 1.cpio_odc. list length 19 type CACHE_WRITTEN
time_qd Tue Mar 27 14:40:24 2012

id 96ea70d9-30ed-4c3d-a7de-01b4ae33138e policy LTO3GS.ANM.FF1.cpio_odc. list length 9 type CACHE_WRITTEN

18

Small Files Aggregation Operations Guide

time_qd Tue Mar 27 14:34:27 2012

id ba71a926-f702-4d5f-a8db-b0661f256b5b policy LTO3GS.ANM.FF1.cpio_odc. list length 21 type CACHE_WRITTEN
time_qd Tue Mar 27 14:31:39 2012

id 1332877307 _0 policy Purge_1332877307_0 list length 6 type MDC_PURGE time_qd Tue Mar 27 14:41:47 2012

id cda34e66-6031-448c-8a63-27b813b858c7 policy LTO3GS.ANM.FF 1.cpio_odc. list length 18 type
CACHE_WRITTEN time_qd Tue Mar 27 14:42:26 2012

id 04ce6bbb-6732-4b3e-842d-9656b596¢784 policy LTO3GS.ANM.FF 1.cpio_odc. list length 22 type
CACHE_WRITTEN time_qd Tue Mar 27 14:32:23 2012

Here is a example of verbose output:
‘cache_purge': {},

‘cache_written': {'LTO3GS.ANM.FF1.cpio_odc.': id=27ba6428-c548-484a-99dc-14f9¢0997c5d
name=LTO3GS.ANM.FF1.cpio_odc. type=CACHE_WRITTEN content [{'libraries': ['LTO3GS'], 'path’:
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/38/dmsen03_7ele0bdc784311ela604
0030487c224e.data’, 'bfid': 'GCMS133287747300000', 'nsid': '00007658E5192007424CB813BDAO90EDAS55',
'‘complete_crc': 3228300499}, {'libraries': ['LTO3GS'], 'path’':
"/pnfs/data/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/35/dmsen03_7e5dfae4784311e1961b
0030487c224e.data’, 'bfid': 'GCMS133287748200000', 'nsid': '0000A87F4BEEF4174DD18C7EFFC3B7A59937',
'‘complete_crc': 3548739519}, {'libraries': ['LTO3GS'], 'path’':
"/pnfs/data/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/63/dmsen03_7fe45d36784311e186el
0030487c224e.data’, 'bfid': 'GCMS133287748300000', 'nsid': '00008A59D1665648461F80577323B427F95C",
'‘complete_crc': 2683267258}, {'libraries': ['LTO3GS'], 'path’:
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/32/dmsen03_80dd3db6784311el1b4a8
0030487c224e.data’, 'bfid': 'GCMS133287749800000', 'nsid': '00006472BDD7B7D642DCB3B7543DA3537C07',
'‘complete_crc': 2603776297}, {'libraries': ['LTO3GS'], 'path’:
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/30/dmsen03_81eab3aa784311ela98d
0030487c224e.data’, 'bfid': 'GCMS133287750000000', 'nsid': '0000C49CA019CB44458C8C381A5BE5S4C2E15',
'‘complete_crc': 3652691175}, {'libraries': ['LTO3GS'], 'path’':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/41/dmsen03_834829b2784311e18aal
0030487c224e.data’, 'bfid': 'GCMS133287751500000', 'nsid’: '0000680410435A834296B3A5B90438D411D5’,
‘complete_crc': 400400435}, {'libraries': ['LTO3GS'], 'path':
"/pnfs/data/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/43/dmsen03_84635e¢52784311e18578
0030487c224e.data’, 'bfid': 'GCMS133287751700000', 'nsid': '0000B34B12E1C9EO4EF597214BF3F4AC15CB’,
‘complete_crc': 400400435}, {'libraries': ['LTO3GS'], 'path':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/15/dmsen03_857db242784311e19093
0030487c224e.data’, 'bfid': 'GCMS133287751900000', 'nsid': '0000C33037FCA2A2475BB96B4F 12E9A69699',
‘complete_crc': 175899208}, {'libraries': ['LTO3GS'], 'path':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/14/dmsen03_86376930784311e184bb
0030487c224e.data’, 'bfid': 'GCMS133287752300000', 'nsid': '0000346CABCODD034784B685B43751410482',
'‘complete_crc': 647363521}, {'libraries’: ['LTO3GS'], 'path':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/44/dmsen03_87662332784311e1b4b8
0030487c224e.data’, 'bfid': 'GCMS133287752400000', 'nsid’: '00004E3E06C90891479FS0AA6CCAC37D0689’,
'‘complete_crc': 3175043570}, {'libraries': ['LTO3GS'], 'path’':
"/pnfs/datal/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/95/dmsen03_885ee044784311elaed4

19

Small Files Aggregation Operations Guide

0030487c224e.data’, 'bfid': 'GCMS133287752800000', 'nsid': '00001362D9957B8B497DB7040990C4DADSIE’,
'‘complete_crc': 3908708536}, {'libraries': ['LTO3GS'], 'path’':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/66/dmsen03_89b4d96c784311e194b8
0030487c224e.data’, 'bfid': 'GCMS133287752900000', 'nsid': '00007F0592EFADOE47DOBB572F993F8A7D75',
'‘complete_crc': 1639662650}, {'libraries': ['LTO3GS'], 'path’':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/88/dmsen03_8a5734a0784311e188a9
0030487c224e.data’, 'bfid': 'GCMS133287753300000', 'nsid': '0000844BDA7422B24FC9A3F4DC685901CEE2’,
'‘complete_crc': 269296325}, {'libraries': ['LTO3GS'], 'path':
'/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/53/dmsen03_8b2bf35c¢784311e18356
0030487 c224e.data’, 'bfid': 'GCMS133287753300001', 'nsid': '0000D8E536712B7341CA89F14399B93FC8A2’,
'‘complete_crc': 2669110146}, {'libraries': ['LTO3GS'], 'path’:
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/47/dmsen03_8de9be12784311eladel
0030487c224e.data’, 'bfid': 'GCMS133287753900000', 'nsid': '000078C334FDB740443ABD1FB654079DB704',
'‘complete_crc': 4098067407}, {'libraries': ['LTO3GS'], 'path’':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/67/dmsen03_8db911cc784311e184dd
0030487c224e.data’, 'bfid': 'GCMS133287753900001', 'nsid': '00000174FB37557348678DCSCDDO0ODE2F825',
'‘complete_crc': 650822416}, {'libraries’: ['LTO3GS'], 'path':
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/75/dmsen03_8f6df262784311e19c0e0
030487c224e.data’, 'bfid': 'GCMS133287754600000', 'nsid': '0000D1D2C4964BA34E36829DE799A381F702',
'‘complete_crc': 4187926220}, {'libraries': ['LTO3GS'], 'path’:
"/pnfs/data/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/94/dmsen03_904121d2784311ela202
0030487c224e.data’, 'bfid': 'GCMS133287754900000', 'nsid': '00004B7B12525A4E4037A61E89969A6A4338’,
'‘complete_crc': 3898010988}, {'libraries': ['LTO3GS'], 'path’:
'/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/42/dmsen03_92acfed2784311e1b9¢00
030487c224e.data’, 'bfid': 'GCMS133287756300000', 'nsid': '0000F 1A65780D87448BEAA43F7F9386D3100',
'‘complete_crc': 3393179417}]},

'migration_pool': {'04ce6bbb-6732-4b3e-842d-9656b596¢784': {'id': '04ce6bbb-6732-4b3e-842d-9656b596e784',
'list': [{'bfid': 'GCMS133287669900000',
‘complete_crc': 647363521,
'libraries’: ['LTO3GS'],
'nsid': '00008B73EABBAC7B4C55BA9C416A86C46DA2’,

'path’:
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/14/dmsen03_2ad5al9c784311e184bb
0030487c224e.data'},

{'bfid': 'GCMS133287670100000',
‘complete_crc': 3175043570,
'libraries': ['LTO3GS'],
'nsid': '00003DCE96614D794BC88E9BEF5D44437FD3’,

'path’:
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/44/dmsen03_2c110312784311e1b4b8
0030487c224e.data'},

{'bfid": 'GCMS133287670300000',

20

Small Files Aggregation Operations Guide

‘complete_crc': 3908708536,
'libraries’: ['LTO3GS'],
'nsid': '0000476A21DB3D42461599D185DBBD8966C7',

'path’:
"Ipnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/95/dmsen03_2cb46a3e784311elaed4
0030487c224e.data'},

{'bfid’: 'GCMS133287670500000',
‘complete_crc': 1639662650,
'libraries': ['LTO3GS'],
'nsid': '000067BD428141FF4ES83BADEG60525D3EES58’,

'path’:
"/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/66/dmsen03_2e¢004624784311e194b8
0030487c224e.data'},

sen03_3ff6fc9c784311elaba20030487c224e.data'},
{'bfid": 'GCMS133287676300000',
‘complete_crc': 1095276467,
'libraries’: ['LTO3GS'],
'nsid': '0000E4CAAA521864407A9C44F23A0A31864B',

'path’:
'/pnfs/data2/file_aggregation/LTO3/moibenko/dmsen06/torture_test/tape/dmsen03/68/dmsen03_413540fa784311e1a686
0030487c224e.data'}],

'policy’: 'LTO3GS.ANM.FF1.cpio_odc.',
‘time_qd': 'Tue Mar 27 14:34:27 2012,
‘type': u'CACHE_WRITTEN'},

2.3.7 Migrator.

Migrator is responsible for moving files between Enstore disk cache and tapes in both directions and
purging cache. Migrator can be configured to write, read, or purge. Each migrator is connected to the
corresponding queue or exchange defined by 'migrator_work' parameter in it configuration. In addition
the 'disk_library' parameter in migrator configuration defines a key by which migrator pulls requests
from dispatcher exchange for clustered configurations. Migrator receives a list of files from Migration
Dispatcher. If this list is a list of files to be written to tape, Migrator aggregates these files into
container and writes this container to tape. It then notifies MD that the file was written to tape, for each

21

Small Files Aggregation Operations Guide

file in the list. If list, received from Migration Dispatcher is a list of files to be staged from tape
Migrator stages requested files from tape to cache. Migrator will also stage files that happen to be in
the package along with requested files.

2.3.7.1 Migrator configuration and enstore commands.

Migrator is a regular enstore server, monitored by inquisitor and shown on System Status page and
Servers page. It can be started and stopped just as other enstore servers using “enstore start/stop”
command. Migrator configuration is described in enstore configuration file, presents a python
dictionary, and contains the following attributes:

'host'": - migrator host name (string)

'port': - migrator port number (integer)

'logname': - migrator name in the enstore log file (string)

"‘migration_dispatcher' — pointer to migration dispatcher structure in enstore configuration (keyword)
"‘migrator_work': - queue or exchange on which migrator receives work from dispatcher,

'data_area' — disk area where files are stored

‘archive_area' — disk area where archive is created during data archiving (string)

'stage_area' — disk area where archived files get staged from tape (string)

'tmp_stage_area' — disk area where staged files are temporarily stored (string)

'packages_dir' - directory in name space for packages

'dismount_delay' — delay for dismounting tape

'check_written_file' - if greater than 0, then randomly check files written using this number as the mean

(default value:0 - don't check)

‘aggregation_host' — host on which package will be built
'staging_host' — host on which package will be staged from tape
'tar_blocking_factor' — tar parameter

'disk_library' - serve request for this disk library (key used in AMQP exchange for clustered
configuration)

"max_process' — maximum number of processes serving requests
Migrator responds to the following enstore commands:
[enstore@enmvr005 ~]$ enstore mig
Usage:

mig [OPTIONS]... migrator_name

22

Small Files Aggregation Operations Guide

-a, --alive prints message if the server is up or down.
-h, --help prints this message
--offline offline migrator

--retries <ALIVE_RETRIES> number of attempts to resend alive requests
--status print migrator status
--timeout <SECONDS> number of seconds to wait for alive response

--usage prints short help message

Here is an example output of migrator status:
[enstore @dmsen03 ~]$ enstore mig --status M1

{'status": ('ok', None), 'internal_state": "WRITING_TO_TAPE', 'work': 'get_status',
'time_in_internal state': 5.0869381427764893, 'state': 'ARCHIVING/, 'time_in_state':
84.499337911605835}

Currently migrator can be in the following states:
Intermediate:

PURGING - in process of being purged in cache

STAGING - staging from tape to cache
STAGING_REQUESTED - staging from tape was requested
ARCHIVING - in process of being packaged and written to tape.
Final:

ARCHIVED - on tape

PURGED - purged from cache

CACHED - in cache

FAILED - failed, needs special attention

Internal states:

IDLE

PACKAGING - packaging file before sending to tape

UNPACKAGING - unpackaging files from package, staged from tape
CHECKING_CRC - checking crc of packaged files before sending to tape

23

Small Files Aggregation Operations Guide

WRITING_TO_TAPE

REGISTERING_ARCHIVE - registering files as ARCHIVED

CLEANING - cleaning files after operation on them was completed.
PREPARING_READ_FROM_TAPE - sate before reading from tape in STAGING
READING_FROM_TAPE - reading from tape in STAGING

Migrator “offline” command option is like the corresponding move option. When issued it causes
migrator to finish its current work and exit (this is different from mover behavior).

3 Write and read request processing.

Write and read request processing is graphically explained in ‘“File Aggregation in Enstore”
(CS-doc-4596-v1)

Here it will be described what is presented on corresponding pages in this document on page 10 (write)
and 11 (read)

3.1 Write request processing of files written via cache
1. Encp sends write request to Library Manager Director (LMD).

2. LMD defines the library manager to send a request to, according to policy and sends reply to
encp with modified (if required by policy) ticket[*“vc”’][“library”] and the name of the original
library in ticket[““vc”][“original_library”’]

Encp sends write request to Library Manger (LM) defined by ticket[“vc”][“library’]
Disk Mover (DM) sends a request for work to LM. LM sends write_to_hsm work to DM
DM transfers data from encp

To disk.

N o a o

DM creates new bit file calling new_bit_file method of File Clerk Client. File Clerk creates
bfld, sets cache_status to CREATED, makes entry in file_in_transition table and starts waiting
for create_pnfsld call from encp

8. Encp completes file operations and calls create_pnfsld FC Client method

9. FC sets pnfsld, sets cache_status to CACHED, and sends CACHE_WRITTEN event to PE
Server

10.PE Server creates lists of of events grouped according policy. The policy can be “group all files
with certain volume family if the size of the individual file is less than specified”, “immediately
migrate the file”, etc. When list fills in (satisfies fill in criteria, such as size of all files in the
list) it gets handed over to Migration Dispatcher. Migration dispatcher sends this list to common
queue and. Then it moves the list into active lists internally.

24

https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=4596
https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=4596

Small Files Aggregation Operations Guide

11. Migrator pulls list from common queue, packs files into package if necessary, sets all files

cache_status to ARCHIVING

12. Migrator sends the package to tape using encp. The package gets written to tape according to

© N o o s

pnfs tags, common to files in the package (as described in 2.2.2.1). Migrator sets statuses of all
packaged files to ARCHIVED and removes corresponding bfids from files_in_transition in
enstore DB

Read request processing.

. Encp gets the library manager from the file's record in enstore DB (this is a standard way for

encp, no changes are needed). It then send a request to library manager. If request comes to tape
Library Manager, it gets sent to tape mover (when request for work comes from the mover). It
then gets transferred to encp (client). If request comes to disk Library Manager, it checks
whether the file is in cache using File Clerk information contained in the incoming request. If
file is in cache (cache_status == CACHED) the request gets sent to disk mover (when request
for work comes from the mover). It then gets transferred to encp (client) — skip to step 10. If
file is not in cache and its cache_status != CACHED then there could be the following
scenarios:

1) cache_status == STAGING: This means that the file is being processed by one of migrators
or is a part of package, one of which files is being processed by migrator. If disk LM can
not find this file in at_movers list it moves this file in on_hold list.

a) When migrator completes file stage from tape it sets cache_status = CACHED

b) It then sends the stage confirmation to disk mover if there is one, waiting for a file, and
to Disk Library Manager

2) cache_status == purged: request gets sent to disk mover in this case:

Disk Library Manager sends open_bitfile request for the bfid of a package files containing
requested file.

When disk mover requests for the work Disk LM sends work for the requested file to it. Disk
mover switches to state SETUP and waits until cache_status of requested file becomes
STAGED. This may tape a long time as this process includes waiting in the queue of Tape
Library Manager and reading from tape.

File clerk sends CACHE_MISSED event to Dispatcher

File Clerk sets cache_status to STAGING

Dispatcher sends stage request to the common migrator queue.
Migrator stages package file from tape.

Migrator unpacks package and sets cache_status to CACHED for all files in the package which
status is not CACHED.

25

Small Files Aggregation Operations Guide

9. Mover detects this change and transfers a file from cache

10. To client encp

3.3 Purge file from cache

When cache fills in the files get purged in it. If separate caches are used for writes and reads the files
get purged from write cache as soon as the maximum time in cache expires. This parameter is

(13

configurable and 1is defined in “‘Python implementation of Policy Engine Server and Migration
Dispatcher — Dispatcher” configuration.

For files staged into read cache files will be purged if the high watermark in read cache is passed based
on FIFO policy. The purge stops if the low watermark is passed (see configuration parameters in

3

‘Python implementation of Policy Engine Server and Migration Dispatcher — Dispatcher”.

Purge is done by migrators.

3.3.1

26

Small Files Aggregation Operations Guide

4 Administration.

4.1 Configuring enstore cache components.

Enstore cache comprises Clustered Disk Cache and enstore cache servers.

4.1.1 Clustered Disk Cache

Clustered Disk Cache is currently implemented as nfs mounted ZFS appliance. It is running on pagg01.
By convention it has 3 cache areas:

/volumes/aggwrite/cache - write cache
/volumes/aggread/cache - read (stage cache)

/volumes/aggpack/cache - packaging cache where files written into write cache get packaged and
written to tape.

These areas need to be nfs mounted on hosts running disk movers and migrators, as well as on the
server where enstore web server runs (¥*srv2n).

Currently we have 2 hosts for enstore disk movers and migrators: pmig01, pmig02.
The mount points in /etc/fstab are:
pagg01:/volumes/aggwrite/cache /volumes/aggwrite/cache nfs4 rw,hard,intr,bg,rsize=32768,wsize=32768 0 0

pagg01:/volumes/aggread/cache /volumes/aggread/cache nfs4 rw,hard,intr,bg,rsize=32768,wsize=32768 0 0
pagg01:/volumes/aggpack/cache /volumes/aggpack/cache nfs4 rw,hard,intr,bg,rsize=32768,wsize=32768 0 0

/etc/idmapd.conf must have

Domain = fnal.gov

4.1.2 AMQP Broker

AMAQP broker is a part of enstore cache messaging system. It comes as part of enstore rpm (SLF5 only,
for SLF6 gpid rpms need to be installed separately) and starts automatically on boot. It has a
corresponding entry in enstore configuration file. The example of broker configuration is:

configdict['amqp_broker'] = {
'host':enstore_gpid_broker_host,
'port':5672,
/

27

Small Files Aggregation Operations Guide

4.1.3 Enstore Cache Servers.
Enstore cache servers are:
Library Manager Director, Dispatcher, Migrators.
The examples of configuration for these servers are:

Library Manager Director
configdict['lm_director'] = {
‘norestart':'INQ’,
'host': 'pmig01.fnal.gov’',
‘port': 5602,
'logname':'LMDSRYV"',
‘udp_port': 5602,
'policy_file': ""/home/enstore/policy_files/lmd_policy.py"
/

Dispatcher
configdict['dispatcher'] = {
'norestart':'INQ’,
#'host': 'dmsen02.fnal.gov',
'host': 'pmig01.fnal.gov',
‘port': 5603,
'logname’':'DISP',
'‘queue_work': 'policy_engine’,
'queue_reply': 'file_clerk',
'migrator_work': 'migrator’,
'migrator_reply': 'migrator_reply’,

'policy_file': ""/home/enstore/policy_files/lmd_policy.py",
'max_time_in_cache': 600,
'purge_watermarks': (.8, .4),

/

28

Small Files Aggregation Operations Guide

Migrator
configdict['M1.migrator'] = {
#'host':'dmsen02.fnal.gov',
#'host':'enmvr007',
'host': 'pmig01’,
'port': 5610,
'logname’': ""MIMG',
'packages_dir':migrator_pack_dir,
'data_area': write_cache_area,
'archive_area': archive_area,
'stage_area': stage_area,
'tmp_stage_area': tmp_stage_area,
'norestart':'INQ’,
'migration_dispatcher': 'dispatcher’,
'dismount_delay': 2,
'check_written_file': mvr_check_f,
'aggregation_host': nfs_host,
'tar_blocking_factor':tar_blocking_factor,
/

All configurations were described in chapter 2.3

4.1.4 Configuring Small File Aware Library Manager

4.1.4.1 Enabling Small Files Aggregation Feature
To enable Small Files Aggregation for a certain library manager add to its configuration:

“use_LMD”: “Im_director” and re-load configuration (using, for instance, “enstore conf —conf
$ENSTORE_CONFIG_FILE -load” command). Note!!! If the change is done using mod_config,
configuration re-loading is done automatically.

29

Small Files Aggregation Operations Guide

4.1.4.2 Disabling Small Files Aggregation Feature
Small Files Aggregation for a certain library manager can be disabled by the following:
* remove “use_LMD”: “Im_director” from the library manager configuration
* modify “use_LMD” value like “use_LMD”: None, or “use_LMD”: “”’ (empty string)

After the change is done re-load configuration. Note!!! If the change is done using mod_config,
configuration re-loading is done automatically.

To disable SFA for the whole system modify “use_LLMD” key for all library managers, if they have it,
as described above.

4.1.5 Adding or modifying a policy
To add or modify a policy the following information is required from a user.

1. Storage Group

File Family

File Family Wrapper.

Tape library you are writing to (for duplicate files the 1st in the list).

Minimal file size - the minimal size of the file which will go directly to tape.

Maximal number of files in the package. If there is this many file written to cache they will be

aggregated and sent to a tape even if the minimal file size (of aggregated file) is not reached.
7. Maximal waiting time. Files will be aggregated and sent to tape even if 5 and 6 have not been

met.
Determine what disk library manager encp requests will be redirected if destined to tape library (item 4
from the list above).

o0 kwN

Suppose the following values were given:
1. storage_group = novaM

file_family =reco_NDOS

wrapper = cpio_odc

library = CD-LTO4F1

minFileSize = 5000000000

maxNumFiles =50

maxWaitTime = 86400

8. disk_library = CD-DiskSF

N o a kN

Find what is the policy file:

[enstore @pmig01 ~]$ enstore conf --show Im_director

30

Small Files Aggregation Operations Guide

{'host": 'pmig0O1.fnal.gov’,

'hostip': '131.225.13.70',

'logname': ' LTMDSRV/,

‘norestart’: 'INQ’,

'policy_file": '/opt/enstore/etc/stken_policy.py',
'port': 5602,

'status’: (‘'ok', None),

'udp_port": 5602}

The policy file to modify is /opt/enstore/etc/stken_policy.py on host pmigO1.fnal.gov.
Login as user “enstore” to pmig0O1.fnal.gov and modify /opt/enstore/etc/stken_policy.py.
The policy file is as:
[enstore@pmig01 ~]$ cat /opt/enstore/etc/stken_policy.py
This file contains library manager director policies
policydict = {'CD-LTO4F 1.library_manager': {1: {'rule': {'storage_group': 'nova’,
'file_family': 'rawdata_ NDOS_unmerged',
'wrapper': 'cpio_odc',
b
'minimal_file_size': 5000000000L,
'resulting_library':'CD-DiskSF"’,
'max_files_in_pack': 50,
'max_waiting_time': 24*3600,
b
b
'CD-LTO4F1T.library_manager': {2: {'rule': {'storage_group': 'ssa_test',
'file_family': 'ssa_test’,
'wrapper': 'cpio_odc’,
b
'minimal_file_size': 2000000000L,

31

Small Files Aggregation Operations Guide

'max_files_in_pack': 100,
'max_waiting_time': 120,
'resulting_library':'CD-DiskSF'
/

b
'CD-LTO4GST.library_manager': {1: {'rule': {'storage_group': 'ssa_test',

'file_family': 'ssa_test’,
'wrapper': 'cpio_odc',
b

'minimal_file_size': 2000000000L,

'max_files_in_pack': 100,

'max_waiting_time': 120,

'resulting_library':'CD-DiskSF'

/

b

It already has an entry for 'CD-LTOA4F1.library_manager'. Cut and paste it:

{1: {'rule’': {'storage_group': 'nova’,
'file_family': 'rawdata_ NDOS_unmerged’,

'wrapper': 'cpio_odc',

b
'minimal_file_size': 5000000000L,
'resulting_library':'CD-DiskSF"',
'max_files_in_pack': 50,
'max_waiting_time': 24%3600,
b

32

Small Files Aggregation Operations Guide

Modify:

{2: {'rule’: {'storage_group': 'novaM’,
'file_family': 'reco_NDOS',

'wrapper': 'cpio_odc’,

b
'minimal_file_size': 5000000000L,
'resulting _library':'CD-DiskSF "',
'max_files_in_pack': 50,
'max_waiting_time': 24*3600,
b

Re-load the policy file:

[enstore @pmig01 ~]$ enstore Imd —load
Check that new policy was loaded:
[enstore @pmig01 ~]$ enstore Imd —show

Check that tape library manager in enstore configuration file for which the policy was added has a
redirection key: 'use_LMD'": 'Im_director', add if not present, and re-load configuration according to the
corresponding procedure. See “Library Manager Configuration Changes” for more details.

4.2 Starting enstore cache components

4.2.1.1 AMQP broker

AMAQP broker starts on boot. It can also be started by the following command (under root account):
[root@dmsen03]# /etc/init.d/qpid_broker start

Checking if the broker runs (on the host where gpid broker is supposed to run):

[root@dmsen(3 enstorel# /opt/enstore/sbin/qpid_broker status

gpidd (pid 17910) is running

4.2.2 Enstore Cache Servers.

Enstore cache servers start by “enstore start ...” command as any other enstore server (under enstore
account). The “enstore restart ...” command also works for enstore cache servers.

“EPS” and “Enstore EPS ...” commands can be used to check if the processes associated with enstore

33

mailto:root@pmig01

case SErvers run.

[enstore@pmig01 src]$ EPS

enstore

enstore

enstore

enstore

enstore

enstore

enstore

enstore

enstore

enstore

enstore

enstore

enstore

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

22578 0.0
22586 0.0
22587 0.0
24166 0.0
24166 0.0
24166 0.0
24166 0.0
24166 0.0
24166 0.0
24166 0.0
24166 0.0

0.0 154092 22578
0.0 154208 22586
0.0 154092 22587
0.1 306428 24166
0.1306428 24173
0.1306428 24174
0.1306428 24175
0.1 306428 24176
0.1306428 24177
0.1306428 24178
0.1306428 24179

Small Files Aggregation Operations Guide

1?
1?
1?

7378 0.0 0.0 148892 7378 1?
7385 0.0 0.0 159464 7386 2 ?
enstore 7385 0.1 0.0 159464 7385 2?

1187
1187
1187
1187
1187
1218
1218
1218
1218
1218
1246
1246
1246
1246
1246

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0262212 1187
0.0262212 1194
0.0 262212 1195
0.0 262212 1196
0.0262212 1197
0.0 262224 1218
0.0 262224 1225
0.0 262224 1226
0.0 262224 1227
0.0 262224 1228
0.0 262076 1246
0.0262076 2681
0.0262076 2682
0.0262076 2683
0.0 262076 2684

5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4
5 pts/4

S Mar26 00:00:00 /usr/bin/postmaster -p 5432 -D /var/lib/pgsql/data

Ss Mar26 00:00:01 postgres: writer process

Ss Mar26 00:00:00 postgres: wal writer process

8 pts/4
8 pts/4
8 pts/4
8 pts/4
8 pts/4
8 pts/4
8 pts/4
8 pts/4

N

Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl

Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl

09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
09:54 00:00:00 python /opt/enstore_cache/sbin/dispatcher
Mar26 00:00:00 python /opt/enstore_cache/sbin/lm_director
Mar26 00:02:24 python /opt/enstore_cache/sbin/lm_director
Mar26 00:02:50 python /opt/enstore_cache/sbin/lm_director
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M3.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M3.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M3.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M3.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M3.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M5.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M5.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M5.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M5.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M5.migrator
10:54 00:00:00 python /opt/enstore_cache/sbin/migrator M1.migrator
11:04 00:00:00 python /opt/enstore_cache/sbin/migrator M 1.migrator
11:04 00:00:00 python /opt/enstore_cache/sbin/migrator M1.migrator
11:04 00:00:00 python /opt/enstore_cache/sbin/migrator M1.migrator
11:04 00:00:00 python /opt/enstore_cache/sbin/migrator M1.migrator

34

Small Files Aggregation Operations Guide

4.3 Stopping enstore cache components

4.3.1.1 AMQP broker
AMAQP broker can be stopped by the following command (under root account):

[root@pmig01J# /etc/init.d/qpid_broker stop

4.3.2 Enstore Cache Servers.

Enstore cache servers stop by “enstore stop ...” command as any other enstore server (under enstore
account).

4.4 Monitoring enstore cache components

4.4.1.1 AMQP broker

AMQP broker is monitored by gpid console on the host where the broker runs.
The console starts automatically, but can also be started by the following commands:
[root@pmig01]# source /opt/enstore_cache/cumin/setup-cumin
[root@pmig01]# cumin-database start

[root@pmig01]# cumin --console > /var/log/cumin/master.log 2>&1 &

Monitoring of qpid broker status and queues can be done over web interface. For this start firefox on
the host where the broker runs and use the following URL:http://localhost:45672.

The page looks like:

q rEdhat. Administrator Your Account Grid User Hi, guest Log out About

Enterprise MRG Oyerview | Messaging | Grid | Inventory

|J|:.'I:'1l.erl 2012-03-28 11:45:15

£ Deepest Message Queues &P Longest Running Grid Submissions
Name Queue messages Description Duration
gmfc-v2-ui-pmig01.fnal.gov.22603.1 0
udp2amq_131.225.13.70_7710 0
file_clerk 0
M1 0
gmfc-v2-hb-pmig01.fnal.gov.22603.1 0

Busiest Systems

Host Load average

35

http://localhost:45672/
mailto:root@pmig01
mailto:root@pmig01
mailto:root@pmig01
mailto:root@pmig01

Small Files Aggregation Operations Guide

Select tab “Messaging’:

rEdhat. Administrator Your Account Grid User Hi, guest Log out About

~° Enterprise MRG | Oyerview | Messaging | Grid | Inventory

m Messaging Updated 2012-03-28 11:48:10
Brokers
Page 1 FontS, M, L Limit 25, 50, 100
[0 mMame 4 Host Port Cluster
[0 amaqgp-broker prmigo1.fnal.gov 5672
lofl

Select “amqp-broker”

‘ rEdhat. Administrator Your Account Grid User Hi, guest Log out About
- Entemprise MRG . oyerview = Messaging | Grid | Inventory
Messaging » amgp-broker Updated 2012-03-28 11:51:'Db
IJI amqp-broker
Add queue

» Add exchange
Add broker link
Move messages

Queues Exchanges Connections | Links = Access Control | Clustering Details

I'.'- Mame columr Search | Clear |

Act on selection Remove Purge

Page 1 FontS, M, L Limit 25, 50, 100
[Mame A Consumers Bindings Queue messages Bytes
[dispatcher 1 1 0 0
O file_clerk 2 3 0 0
O m1 1 1 0 0
O mz 1 1 0 0
O m3 1 1 0 0
O ma 1 1 0 0
O ms 1 1 0 0
O me 1 1 0 0
[0 migrator 6 1 0 0
[0 migrator_reply T 1 0 0
[policy_engine g 1 0 0

36

Small Files Aggregation Operations Guide

On this page you can see different queues and their status. The columns of interest are: “Queue

29 <¢

Messages” and “Bytes”. “Queue messages” show how many messages are queued. “Bytes” show how
many bytes are queued.

You can see all queues described in configuration plus individual queue for each migrator named by
its name in configuration.

4.4.2 Enstore Cache Servers.

The state of enstore cache servers can be checked at enstore monitoring web pages.

37

Small Files Aggregation Operations Guide

Status at a glance page (fragment):

|Home |System |Servers [Encp |Help ‘Muss Storage Status At-A-Glance

File Aggregation Test System

Brought To You By : Enstore
Last updated : 2012-Mar-2B 12:55:57

Overall Status

@enstore @GCC SL8500 salarms
Enstore Individual Server Status
Servers Library Managers Media Changers
@ Info Server @ Accounting Server @ LTO3GS.library manager o SLE500G 5 media changer

@ Alarm Server

@ Drivestat Server

@ File Clerk

@ Library Manager Director

@ PE Server and Migr.
Dispatcher

@ md.udp proxy server

o Configuration
Server

& Event Relay
@ Ingquisitor
& Logger

@ Volume Clerk

@ diskSF library manager

Movers
@LTO3 037 mover @ LTO3 038 mover GLTO3 039 mover @ disk]l . mover
@ disk? mover @ disk3 mover @ diskd mover @ disk5 mover
@ diskb . mover @ disk?7 mover @ disk8 mover
Migrators
@ M1 .migrator @ @ cocha) @ cocha)

@ M5 migrator

@ MG . migrator

Enstore Node/Server Mapping

« SLE500G5.media changer
« alarm Server

« configuration server

» event relay

= inquisitor

+ log_server

dmsen02

dmsend3

+ aocounting server
» drivestat server

» file clerk

» info server

+ volume clerk

38

Small Files Aggregation Operations Guide

Enstore Servers page (fragment):

!Home ‘Svstem ‘Servers !Encn ‘Help |Enstore Server Status

File Aggregation Test System

Brought To You By : The Inquisitor
Last updated : 2012-Mar-28 13:01:01

Shortcuts
!LTOBGS.Iihmn‘ manager |djsk5F.fihrm‘v manager |null.li manager |M0vers |Migr_at0rs
|Unmonitomd Servers |Full File List | | |
Name Status Host Date/Time Last Time Alive

accounting_server alive dmsen05 2012-Mar-28 13:00:48

alarm_server alive dmsen02 2012-Mar-28 13:00:33

drivestat _server alive dmsen(5 2012-Mar-28 13:00:29

event relay alive dmsen(2 2012-Mar-28 13:01:01

file_clerk alive dmsen05 2012-Mar-28 13:00:59

info_server alive dmsen05 2012-Mar-28 13:00:30

inquisitor alive dmsen02 2012-Mar-28 13:01:01

log_server alive dmsen02 2012-Mar-28 13:00:53

ratekeeper alive dmsen02 2012-Mar-28 13:00:30

volume_clerk alive dmsen05 2012-Mar-28 13:00:52

Im_director alive pmig01 2012-Mar-28 13:00:33

dispatcher alive pmigl1 2012-Mar-28 13:00:22

SL8500.media_changer alive dmsen02 2012-Mar-28 13:00:23
SL8500GS.media_changeralive dmsen0Z 2012-Mar-28 13:00:41

Imd.udp_proxy server alive pmig01 2012-Mar-28 13:00:21

LTO3GS.1i manager alive : unlocked pmig01 2012-Mar-28 13:01:01

diskSF.library manager

Ongoing Transfers 3 Pending Transfers 0 Full Queue Elements
Reading TEST75ITEST FF) using LTO3_037 mover from pmig02 by root

Reading VOK172(TEST FF2)using LTO3_039.mover from pmig02 by root

Reading VOK292(TEST FF)using LTO3 038 mover from pmig(02 by root

alive : nowrite pmigl 2012-Mar-28 13:01:01

Ongoing Transfers 8 Pending Transfers 284 Full Queue Elements

Reading common:TEST1. TEST FF2.cpio_odc:2012-03-09T13:31:18Z(TEST FF2) using disk4 mover from stkendm8a by enstore
Reading common: TEST1 . TEST FF.cpio odc:2012-01-31T11:49:33Z(TEST FF) using disk2 mover from stkendm?3a by enstore
Reading common:TEST1. TEST FF.cpio odc:2012-01-31T11:459:33Z(TEST FF) using disk 7 mover from stkendm9a by enstore
Reading common: TEST1 . TEST FF.cpio odc:2012-01-31T11:49:33Z(TEST FF) using disk8.mover from stkendmB3a by enstore
Reading common:TEST1. TEST FF2.cpio_odc:2012-03-09T13:31:18Z(TEST FF2) using disk1 mover from stkendm8a by enstore
Reading common: TEST1 . TEST FF.cpio_ odc:2012-01-31T11:49:33Z(TEST FF) using disk5 mover from stkendm6Ga by enstore
Reading common:TEST1. TEST FF.cpio odc:2012-01-31T11:49:33Z(TEST FF) using disk6.mover from stkendmb6a by enstore
Reading common:TEST1. TEST FF2.cpio odc:2012-03-08T13:31:18Z(TEST FF2) using disk3 mover from stkendmBa by enstore
Pending read of common:TEST1 TEST FF2.cpio odc:2012-03-09T13:31:187% from stkendm&a by enstore [RESTRICTED ACCESS]
Pending read of common:TEST1 . TEST FF2.cpio odc:2012-03-09T13:31:157 from stkendm&a by enstore []

Pending read of common: TEST1 TEST FF2.cpio odc:2012-03-08T13:31:187 from stkendmBa by enstore [RESTRICTED_ACCESS]

Pending read of common:TEST1 . TEST FF2.cpio odc:2012-03-09T13:31:1587 from stkendm&a by enstore []
Pending read of common: TEST1 . TEST FF2.cpio odc:2012-03-09T13:31:18%Z from stkendm&a by enstore []

Enstore alarms is raised if any of its servers is down, the e-mail is also sent in this case just as for any
existing enstore servers.

4.5 Monitoring and controlling write requests.

All files written into cache get registered in files_in_transition table in enstore DB. When file is written
to tape the corresponding entry is removed from files_in_transition table. File clerk periodically checks
this table an generates warning alarms: “N files stuck in files_in_transition table”, where N is the total
number of such files. The list of bfids in files_in_transition table is referred to in “Additional
Information” column on alarms page. Note that this is just a warning and usually does not require any
action. However if the number of such files continuously grows this may mean that some investigation

39

Small Files Aggregation Operations Guide

is needed to find the reason. The possible actions may be:

Check SAAG and Servers web pages

Check statuses of migrators (enstore mig —status) to find out if they do any work.
If migrator is down start it (enstore start).

Check queues in dispatcher (enstore disp —get-q). Check migration pool size. If it is O it is safe to
re-play events for files_in_transition table by the following command:

enstore file —replay

If migration pool size is not 0 check few minutes later. When files are in migration pool lists they are
queued for migration by migrators. If migration pool size does not get smaller this means that the
system is busy and you may want to check how encp requests from nodes, running migrators proceed
by examining “Enstore encp history” (http://www-stken.fnal.gov/enstore/encp enstore system.html for
instance), or checking enstore log files.

Note that for re-played events the corresponding lists in the intermediate (cache_written,
cache_missed, and purge_pool) pools have time_qd (time the first event was queued) since the last
re-play. Thus the time for the corresponding policy restarts. This is done on purpose to avoid writing
not grouped files to tape and allow administrator to make a decision how to proceed with such files. If
administrator decides that files in the intermediate cache_written lists needs to get written to tapes
immediately he can issue “enstore disp —start-draining command, which moves all lists from
intermediate pools to migration_pool and initiates migration.

If packaging and migration to tapes does not resume (enstore mig —status <migrator> is one of the ways
to check this) contact developers.

4.6 Emergency data migration to tape.

Some system operations, such as scheduled or unscheduled system shutdowns may require flushing all
files not yet written to tape to get written even if criteria defined in the Policy Engine Server were not
met. The special enstore command and the corresponding event will be designed for this.

Enstore command:

enstore disp —start-draining - this command instructs the policy engine to send all its current lists for
migration to tapes.

4.7 Migration to new media.

In enstore there is a need of consistent migration of data form one tape media to another as the old
media and drives get replaced with new technology. The natural way of providing such migration for
packaged files is to stage them to cache with subsequent repackaging and archiving to a new tape. This
approach does not require any changes in migration scripts.

40

http://www-stken.fnal.gov/enstore/encp_enstore_system.html

Small Files Aggregation Operations Guide

Document Change log

v2 103/28/12 |Sasha|Initial release

v3 |04/03/12 |Sasha|Changed per comments from John

v4 |08/27/12 |Sasha|Added description for configuration without UDP2AMQP server

V6 |10/26/12 |Sasha|Added a step to “Adding or modifying a policy”

v7 | 12/05/12 |Sasha|Added details about Migration Dispatcher pools and what happens after
replay command

v8 04/10/13 |Sasha|Modified Monitoring and controlling write requests.

v9 104/26/13 |Sasha|Added description of enabling/disabling SFA

v10 |05/02/13 | Sasha|Minor change per comments from Alex

vll [06/10/14 |Sasha|l. Removed all about proxy server. It is not needed.

2. Added clustered configuration
3. Added separate migrators for write, read, and purge requests

41

	1 Introduction
	2 Structure of enstore caching system.
	2.1 Hardware for cache
	2.2 Files and cache
	2.2.1 File names in cache.
	2.2.2 Package file.
	2.2.2.1 Package file name convention
	2.2.2.2 Additional entries in file table of enstore DB
	2.2.2.3 Cached file information

	2.3 Enstore Caching System Components.
	2.3.1 Library Manager Configuration Changes.
	2.3.2 Library Manager Director.
	2.3.2.1 Library Manager Director configuration.
	2.3.2.2 Policy File Format
	2.3.2.3 Library Manager Director enstore commands
	2.3.2.4 Encp Interaction with Library Manager Director.

	2.3.3 Modified File Clerk
	2.3.3.1 Additional File Clerk Enstore Commands

	2.3.4 Policy Engine Server.
	2.3.4.1 File List Format.

	2.3.5 Migration Dispatcher.
	2.3.5.1 Migration Dispatcher Configuration

	2.3.6 Python implementation of Policy Engine Server and Migration Dispatcher – Dispatcher.
	2.3.7 Migrator.
	2.3.7.1 Migrator configuration and enstore commands.

	3 Write and read request processing.
	3.1 Write request processing of files written via cache
	3.2 Read request processing.
	3.3 Purge file from cache

	4 Administration.
	4.1 Configuring enstore cache components.
	4.1.1 Clustered Disk Cache
	4.1.2 AMQP Broker
	4.1.3 Enstore Cache Servers.
	4.1.4 Configuring Small File Aware Library Manager
	4.1.4.1 Enabling Small Files Aggregation Feature
	4.1.4.2 Disabling Small Files Aggregation Feature

	4.1.5 Adding or modifying a policy

	4.2 Starting enstore cache components
	4.2.1.1 AMQP broker
	4.2.2 Enstore Cache Servers.

	4.3 Stopping enstore cache components
	4.3.1.1 AMQP broker
	4.3.2 Enstore Cache Servers.

	4.4 Monitoring enstore cache components
	4.4.1.1 AMQP broker
	4.4.2 Enstore Cache Servers.

	4.5 Monitoring and controlling write requests.
	4.6 Emergency data migration to tape.
	4.7 Migration to new media.

	5 Document Change log

