SWIG Users Guide Documentation System 74

Documentation System

Introduction

While SWIG makes it easy to build interfaces, it is often difficult to keep track of all of the differ-
ent functions, variables, constants, and other objects that have been wrapped. This especially
becomes a problem when your interface starts to grow in size from a handful to several hundred
functions. To address these concerns, SWIG can automatically generate documentation in a num-
ber of formats including ASCIIl, HTML, and LaTeX. The goal is that you could look at the docu-
mentation file to see what functions were wrapped and how they are used in the target scripting
language.

Usage documentation is generated for each declaration found in an interface file. This documen-
tation is generated by the target language module so the Tcl module will follow Tcl syntax, the
Perl module will use Perl syntax, and so on. In addition, C/C++ comments can be used to add
descriptive text to each function. Comments can be processed in a number of different styles to
suit personal preferences or to match the style used in a particular input file.

Automatic documentation generation for C/C++ programs is a fairly formidable problem and
SWIG was never intended to be a substitute for a full-blown documentation generator. However,
| feel that is does a reasonable job of documenting scripting language interfaces. It seems to do
just fine for many of SWIG’s primary applications--rapid prototyping, debugging, and develop-
ment.

How it works

For each declaration in an interface file, SWIG creates a “Documentation Entry.” This entry con-
tains three components; (1) a usage string, (2) a C information string, and (3) descriptive text. For
example, suppose you have this declaration in an interface file :

int fact(int n);
/* This function conputes a factorial */

The documentation entry produced by the SWIG ASCII module will look like this for Tcl:

fact n
[returns int]
This function conputes a factorial

The first line shows how to call the function, the second line shows some additional information
about the function (related to its C implementation), while the third line contains the comment

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 75

text. The first two lines are automatically generated by SWIG and may be different for each lan-
guage module. For example, the Perl5 module would generate the following output :

fact ($n)
[returns int]
This function conputes a factorial

Of course, this is only a simple example, more sophisticated things are possible.

Choosing a documentation format

The type of documentation is selected using the following command line options :

-dasci i Produce ASO | docunentation
-dhtm Produce HTM. docunent ation
- dl at ex Produce LaTeX docunentation
- dnone Produce no docunent ati on

The various documentation modules are implemented in a manner similar to language modules
so the exact choice may change in the future. With a little C++ hacking, it is also possible for you
to add your own modules to SWIG. For example, with a bit of work you could turn all of the doc-
umentation into an online help command in your scripting language.

Function usage and argument names

The function usage string is produced to match the declaration given in the SWIG interface file.
The names of arguments can be specified by using argument names. For example, the declara-
tions

void insert _iten(List *, char *);
char *| ookup_iten{char *nare);

will produce the following documentation (for Python) :

insert_iten(List *, char *)
[returns void]

| ookup_i t em(nane)
[returns char *]

When argument names are omitted, SWIG will use the C datatypes of the arguments in the doc-
umentation. If an argument name is specified, SWIG will use that in the documentation instead.
Of course, it is up to each language module to create an appropriate usage string so your results
may vary depending on how things have been implemented in each module.

Titles, sections, and subsections

The SWIG documentation system is hierarchical in nature and is organized into a collection of
sections, subsections, subsubsections, and so on. The following SWIG directives can be used to
organize an interface file :

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 76

e %iitle “Title Text”.Setthe documentation title (may only be used once)
e Osection “Section title”.Startanew section.

e Osubsection “Subsection title”.Createanew subsection.

e Osubsubsection “Subsubsection title”. Create anew subsubsection.

The % i t | e directive should be placed prior to the first declaration in an interface file and may
only be used once (subsequent occurrences will simply be ignored). The section directives may
be placed anywhere. However, “%subsect i on can only be used after a %sect i on directive and
%subsubsect i on can only be used after a %subsect i on directive.

With the organization directives, a SWIG interface file looks something like this :

%itle “Exanple Interface File”
%rodul e exanpl e

%

#i ncl ude “ny_header. h”

%

%ection “Mithemati cal Functions”
. declarations ...

%ection “ Q@ aphics”
%ubsection “2D Plotting”
Decl arations ...
%ubsection “3D P otting”
%ubsubsection “Vi ewi ng transformations”
Decl arations ...
%ubsubsection “Lighting”
Decl arations ...
%ubsubsection “Primtives”
Decl arations ...

Y%ection “File I/O

Declarations ...

Formatting

Documentation text can be sorted, chopped, sliced, and diced in a variety of ways. Formatting
information is specified using a comma separated list of parameters after the %itl e, %sec-
tion,%ubsection,or %subsubsecti on directives. For example :

%itle “M/ Docunentation”, sort, before, pre

This tells SWIG to sort all of the documentation, use comments that are before each declaration,
and assume that text is preformatted. These formatting directives are applied to all children in
the documentation tree--in this case, everything in an interface file.

If formatting information is specified for a section like this

%ubsection “3D G aphi cs”, nosort, after

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 77

then the effect will only apply to that particular section (and all of its subsections). In this case,
the formatting of the subsection would override any previous formatting, but these changes
would only apply to this subsection. The next subsection could use its own formatting or that of
its parent.

Style parameters can also be specified using the %t yl e and % ocal st yl e parameters. The
¥st yl e directive applies a new format to the current section and all of its parents. The % ocal -
st yl e directive applies a new format to the current section. For example :

%tyle sort, before, skip=1 # Apply these formats everywhere
% ocal styl e sort # Apply this fornat to the current section

Use of these directives usually isn’t required since it’s easy enough to simply specify the infor-
mation after each section.

Default Formatting

By default, SWIG will reformat comment text, produce documentation in the order encountered
in an interface file (nosort), and annotate descriptions with a C information string. This behav-
ior most closely matches that used in SWIG 1.0, although it is not an exact match due to differ-
ences in the old documentation system.

When used in the default mode, comment text may contain documentation specific formatting
markup. For example, you could embed LaTeX or HTML markup in comments to have precise
control over the look of the final document.

Comment Formatting variables

The default formatting can be changed by changing one or more of the following formatting
variables :

after Use conmments after a declaration (default)
bef ore Use comments before a declaration

chop_t op=nl i nes Comment choppi ng (prefornatted)
chop_bot t omenl i nes Comment choppi hg (pref or nat t ed)

chop_| ef t =nchar Comment choppi ng (pref or natt ed)

chop_ri ght =nchar Comment choppi ng (prefor natt ed)

f or mat Alow SWGto reformat text (the defaul t)
i gnore I gnore comrent s

info Print Cinfornmation text (default)

keep Keep conments (opposite of ignore)

noi nf o Don't print Cinformation text

nosort Don’t sort docunentation (default)

pre Assune text is prefornatted

ski p=nl i nes Nunber of bl ank Iines between comment and decl aration
sort Sort docurent ati on

tabify Leave tabs intact

unt abi fy Convert tabs to spaces (default)

More variables may be available depending on particular documentation modules. The use of
these variables is described in the next few sections.

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 78

Sorting
Documentation can be sorted using the ‘sor t * parameter. For example :

%itle “M/ interface”, sort

When used, all documentation entries, including sections will be alphabetically sorted. Sorting
can be disabled in particular sections and subsection by specifying the ‘nosort ’ parameter in a
section declaration. By default, SWIG does not sort documentation. As a general rule, it really
only comes in handy if you have a really messy interface file.

For backwards compatibility with earlier versions of SWIG, the following directives can be used
to specify sorting.

%l pha Sort document ation al phabetical |y (obsol et e)
% aw Keep docunentation in order (obsolete)

These directives only apply globally and should near the beginning of file. Future support of
these directives is not guaranteed and generally discouraged.

Comment placement and formatting

Comments may be placed before or after a declaration. This is specified using the ‘bef or e’ and
‘af t er * parameters. The space between a comment and a declaration can be set by changing
the ‘ski p’ parameter. By default, ski p=1, indicating that a comment and declaration must be
on adjacent lines. Use of the ski p parameter makes it possible for the documentation genera-
tor to ignore comments that are too far away and possibly unrelated to a declaration.

By default, SWIG reformats the text found in a comment. However, in many cases, your file
may have preformatted comments or comment blocks. To handle such comments correctly, you
can use preformatted mode. This is specified using the ‘pre’ parameter as follows :

%ection “Preformatted Section”, pre
%ection “Refornmatted Section”, fornmat

All declarations in this section will now be assumed to have preformatted comments. When
using the preformat mode, a variety of other parameters are available as shown in the following
diagram :

chop_| eft chop_ri ght

[1

Chop_t Op t /**'k***

* Ivoi d Plot2D line(int x1, int yl, int x2, int y2, Pixel color)

* IDraV\s a line between the points (x1,yl) and (x2,y2) using the
* khe given color. The line is cropped to fit in the current

* poundi ng box.
*
*

skip
extern void Plot2D line(int x1, int yl, int x2, int y2, Pixel color);

Chop_bottom z’ **Pt***

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 79

The chopping parameters can be used to strip out the text of block comments. For example,
using chop_| ef t =3, chop_t op=1, chop_bot t om=1 on the above comment produces the fol-
lowing output :

Plot2D |ine x1 yl x2 y2 col or
[returns void]
void Plot2D line(int x1, int y1, int x2, int y2, Pixel color)

Draws a |line between the points (x1,yl) and (x2,y2) using the
the given color. The line is cropped to fit in the current
boundi ng box.

Uses the Bresenham|ine draw ng al gorithm

The chopping parameters only apply if a comment is sufficiently large (i.e.. if the number of lines
exceed chop_t op+chop_bott om. Thus, in our example, a one line comment will be unaltered
even though chopping has been set. By default, SWIG sets chop_left=3 and all others to zero.
This setting removes the ‘/* ‘or‘// *preceeding a comment.

Tabs and other annoyances

When using the preformatted mode, SWIG will automatically convert tabs to white space. This
is done assuming that tabs are placed every 8 characters. The tabification mode can be selected
using the ‘tabify’ and ‘untabify’ parameters :

%ection “Untabified Section”,untabify
%ection “Leave those tabs al one”, tabify

Tabs are simply ignored when comments are reformatted (well, actually, they’re just copied into
the output, but the target documentation method will ignore them).

Ignoring comments
To ignore the comments in a particular section, you can use the ‘ignore’ parameter. For example :

%ection “No Comrents”, ignore
%ection “Keep Comments”, keep

The ‘keep’ parameter is used to disable the effect of an ignore parameter (if set by a section’s
parent).

C Information

Normally, each declaration in a file will have a C information tag attached to it. This is usually
enclosed in [] and contains the return type of a function along with other information. This text
can disabled using the ‘noinfo’ parameters and reenabled using the ‘info’ parameter.

9%ection “No C Information”, noinfo
Y%ection “Print ClInformation”, info

Adding Additional Text

Additional documentation text can be added using the % ext directive as shown :

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 80

% ext %
This is sone additional docurmentation text.
%

The % ext directive is primarily used to add text that is not associated with any particular decla-
ration. For example, you may want to provide a general description of a module before defining
all of the functions. Any text can be placed inside the %4, % block except for a ‘%4 ’ that ends the
block. For the purposes of sorting, text segments will always appear immediately after the previ-
ous declaration.

Disabling all documentation

All documentation can be suppressed for a portion of an interface file by using the %di sabl e-
doc and %enabl edoc directives. These would be used as follows:

%li sabl edoc

. A a bunch of declarations with no docunentation ...
%enabl edoc

. Now decl arations are docunented again ...

These directives can be safely nested. Thus, the occurrence of these directives inside a %di s-
abl edoc section has no effect (only the outer-most occurrence is important).

The primary use of these directives is for disabling the documentation on commonly used mod-
ules that you might use repeatedly (but don’t want any documentation for). For example :

%li sabl edoc

% ncl ude wi sh. i
% ncl ude array. i
% nclude tiner.i
%enabl edoc

An Example

To illustrate the documentation system in action, here is some code from the SWIG library file
‘array.i’.

/1
/1 array.i
// This SWGlibrary file provides access to C arrays.

%rodul e carray

%ection "SWG C Array Mdul e",info,after, pre, nosort, ski p=1, chop_| eft =3,
chop_ri ght =0, chop_t op=0, chop_bot t om0

% ext %
% ncl ude array. i

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System

Thi s nodul e provi des scripting | anguage access to various kinds of G+
arrays. For each datatype, a collection of four functions are created :

<type>_array(size) : Ceate a new array of given size
<type> get (array, index) : Get an elenent fromthe array
<type> set(array, index, value) : Set an elerment in the array

<t ype>_dest roy(array) : Destroy an array

The functions in this library are only | owlevel accessor functions
designed to directly access C arrays. Like C no bounds checking is
performed so use at your own peril.

%

e e e
I/ Integer array support

%ubsection "Integer Arrays”
/* The follow ng functions provide access to integer arrays (mapped
onto the C'int' datatype. */

%
%

int *int_array(int nitens);
/* Oreates a new array of integers. nitens specifies the nunber of el enents.
The array is created using nalloc() in Cand new) in G+ */

Supporting C code ...

void int_destroy(int *array);
/* Destroys the given array. */

int int_get(int *array, int index);
/* Returns the value of array[index]. */

int int_set(int *array, int index, int value);
/* Sets array[index] = value. Returns value. */

R e e
// Floating point
L e TP

%ubsection "Fl oati ng Poi nt Arrays"
/* The follow ng functions provide access to arrays of floats and doubles. */

%
%
doubl e *doubl e_array(int nitens);

/* Oreates a new array of doubles. nitens specifies the nunber of el enents.
The array is created using nalloc() in Cand new) in G+ */

Supporting C code ...

voi d doubl e_destroy(doubl e *array);
/* Destroys the given array. */

doubl e doubl e_get (doubl e *array, int index);
/* Returns the value of array[index]. */

doubl e doubl e_set (doubl e *array, int index, double val ue);

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 82

/* Sets array[index] = value. Returns value. */

float *float_array(int nitens);
/* Oreates a new array of floats. nitens specifies the nunber of elenents.
The array is created using nalloc() in Cand new) in G+ */

void fl oat_destroy(float *array);
/* Destroys the given array. */

float float_get(float *array, int index);
/* Returns the value of array[index]. */

float float_set(float *array, int index, float val ue);
/* Sets array[index] = value. Returns value. */

R e e
/'l Character strings
R R R LR TR

%ubsection "String Arrays"

% ext %

The fol Il owing functions provide support for the 'char **' datatype. Thi s
is primarily used to handl e argurent |ists and other simlar structures that
need to be passed to a T G++ function.

%
#if defined(SWGIQL)
% ext %
To convert froma Tcl list into a 'char **', the follow ng code can be used :
$list is alist
set args [string_array expr {[Ilength $list] + 1}]
set i O
foreach a $list {
string_set $args $i $a
incr i 1
}
string_set $i ""
$args is now a char ** type
%
#el i f defi ned(SWGPERL)
% ext %
To convert froma Perl list into a 'char **', code sinilar to the follow ng

can be used :

@ist is alist

ny $I = scalar(@ist);

ny $args = string_array($l +1);

ny $i =0;

foreach $arg (@ist) {
string_set($args, $i, $arg);
$i ++;

}

string_set($args, $i,"");

(of course, there is always more than one way to do it)

%

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 83

#el i f defined(SWGPYTHON)

% ext %
To convert froma Python list to a 'char **', code sinilar to the follow ng
can be used :

#'list' is alist
args = string_array(len(list)+1)
for i in range(0,len(list)):
string_set(args,i,list[i])
string_set(args,len(list),"")
%
#endi f
%
Supporting C code ...
%

char **string_array(int nitens);

/* Oreates a new array of strings. nitems specifies the nunber of el enents.
The array is created using nalloc() in C and new) in G+ Each el enent
of the array is set to NILL upon initialization. */

voi d string_destroy(char *array);

/* Destroys the given array. Each element of the array is assumed to be
a NULL-terminated string allocated with malloc() or new). Al of
these strings will be destroyed as well. (It is probably only safe to
use this function on an array created by string_array) */

char *string_get(char **array, int index);
/* Returns the value of array[index]. Returns a string of zero |length
if the corresponding elenent is NULL. */

char *string_set(char **array, int index, char *val ue);

/* Sets array[index] = value. value is assuned to be a NULL-term nated
string. A string of zero length is napped into a NULL val ue. Wen
setting the value, the value will be copied into a new string all ocated
with nmalloc() or new(). Any previous value in the array will be
destroyed. */

In this file, all of the declarations are placed into a new section. We specify formatting informa-
tion for our section. Since this is a general purpose library file, we have no idea what formatting
our parent might be using so an explicit declaration makes sure we get it right. Each comment
contains preformatted text describing each function. Finally, in the case of the string functions,
we are using a combination of conditional compilation and documentation system directives to
produce language-specific documentation. In this case, the documentation contains a usage
example in the target scripting language.

When processed through the ASCII module, this file will produce documentation similar to the
following :

7. SWGC Array Mdul e

% ncl ude array. i

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System

Thi s nodul e provi des scripting | anguage access to various kinds of TG+t
arrays. For each datatype, a collection of four functions are created :

<type>_array(size) : Geate a new array of given size
<type>_get (array, index) : Get an elenent fromthe array
<type> set (array, index, value) : Set an element in the array

<t ype>_dest roy(array) : Destroy an array

The functions in this library are only | owl evel accessor functions
designed to directly access C arrays. Like C no bounds checking is
performed so use at your own peril.

7.1. Integer Arrays
The followi ng functions provide access to integer arrays (napped
onto the C'int' datatype.

int_array(nitens)
[returns int *]
Oeates a new array of integers. nitens specifies the nunber of el enents.
The array is created using nmalloc() in Cand new) in Ct+.

int_destroy(array)
[returns void]
Destroys the given array.

int_get (array, i ndex)
[returns int]
Returns the val ue of array[index].

i nt_set (array, i ndex, val ue)
[returns int]
Sets array[index] = value. Returns val ue.

7.2. FHoating Point Arays

The followi ng functions provide access to arrays of floats and doubl es.

doubl e_array(nitens)
[returns double *]
O eates a new array of doubl es. nitens specifies the nunber of elerents.
The array is created using malloc() in Cand new() in G+

doubl e_dest roy(array)
[returns void]
Destroys the given array.

doubl e_get (array, i ndex)
[returns double]
Returns the val ue of array[index].

doubl e_set (array, i ndex, val ue)
[returns double]
Sets array[index] = value. Returns val ue.

float _array(nitens)
[returns float *]

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 85

Oeates a new array of floats. nitens specifies the nunber of el ements.
The array is created using malloc() in Cand new() in G+

fl oat _destroy(array)
[returns void]
Destroys the given array.

fl oat _get (array, i ndex)
[returns float]
Returns the val ue of array[index].

fl oat _set (array, i ndex, val ue)
[returns float]
Sets array[index] = value. Returns val ue.

7.3. String Arrays

The followi ng functions provide support for the 'char **' datatype. This
is primarily used to handl e argunent |ists and other sinilar structures that
need to be passed to a T C+ function.

To convert froma Python list to a 'char **', code sinilar to the follow ng
can be used :

#'list' isalist

args = string_array(len(list)+1)

for i in range(O,len(list)):
string_set(args,i,list[i])

string_set(args,len(list),"")

string_array(nitens)
[returns char **]
O eates a new array of strings. nitens specifies the nunber of el ements.
The array is created using malloc() in C and new() in C++ Each el ement
of the array is set to NULL upon initialization.

string_destroy(array)
[returns void]
Destroys the given array. Each element of the array is assumed to be
a NULL-termnated string allocated with malloc() or new(). Al of
these strings will be destroyed as well. (It is probably only safe to
use this function on an array created by string_array)

string_get(array, i ndex)
[returns char *]
Returns the value of array[index]. Returns a string of zero | ength
if the corresponding el enent is NULL.

string_set(array, i ndex, val ue)
[returns char *]
Sets array[index] = value. value is assuned to be a NULL-term nated
string. A string of zero length is nmapped into a NULL val ue. Wen
setting the value, the value will be copied into a new string all ocat ed
with nalloc() or new(). Any previous value in the array will be
dest r oyed.

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 86

ASCII Documentation

The ASCII module produces documentation in plaintext as shown in the previous example. Two
formatting options are available (default values shown) :

ascii_indent = 8
ascii_colums = 70

‘asci i _i ndent’ specifies the number of characters to indent each function description.
‘asci i _col ums’ specifies the width of the output when reformatting text.

When reformatting text, all extraneous white-space is stripped and text is filled to fit in the spec-
ified number of columns. The output text will be left-justified. A single newline is ignored, but
multiple newlines can be used to start a new paragraph. The character sequence ‘\\’ can be
used to force a newline.

Preformatted text is printed into the resulting output unmodified although it may be indented
when used as part of a function description.

HTML Documentation

The HTML module produces documentation in HTML format (who would have guessed?).
However, a number of style parameters are available (shown with default values)

htm _title = “<HL>: </ HI>"

htm _contents = “<HL>: </ HL>"

htm _section = “<HR><H2>: </ H2>"

ht M _subsection = “<H3>: </ H3>"

ht mM _subsubsection = “<H4>: </ H4>"

ht M _usage = “<TT>: </ TT></ B>"

ht M _descrip = “<BLOCKQUOTE>: </ BLOCKQUOTE>"
htm _text = “<pP>"

htm _cinfo = “*

htm _prefornmat = “<PRE>: </ PRE>"

ht mM _body = “<BODY bg_col or =\"#ffffff\”>: </ BCDY>"

Any of these parameters can be changed, by simply specifying them after a % i tl e or %sec-
t i on directive. However, the effects are applied globally so it probably makes sense to use the
¥t yl e directive instead. For example :

9%tyl e ht ml _cont ent s=" <HR><H1>: </ H1>"
. Rest of declarations ...

Each tag uses a “;” to separate the start and end tags. Any text will be inserted in place of the *“.”.
Since strings are specified in SWIG using quotes, any quotes that need to be inserted into a tag
should be escaped using the “\” character.

Sample HTML output is shown below :

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 87

Grail: SWIG Library Reference

File Go Search Bookmarks Preferences Help
@ [URL: |ﬂ|e:fh0mefbeazlenyWIGfSWlm.1b2fswig_libfautodoc_wrap.html

7. SWIG C Array Module

%include array.i

Thiz module provides soripting language access to wariocus kinds of CfC++
arrays. For each datatype, a ocllecticon of four functicns are oreated :

<type® array({size) : Create a new array of given size

<type® get{array, index) : Get an element from the array

<type® set{array, index, walue} : Set an element in the array

<type® destroy{array) : Destroy an array _J

The functicns in this likrary are only low-lewel accesscr functicns
designed to directly access C arrays. Like €, no kounds checking is
performed so use at your own peril.
7.1. Integer Arrays
The following functicons provide access to integer arrays {mapped
onte the € 'int' datatype.
int array(nitems);
[returns int *]
Cregtes o new array of integers. nitems specifies the mumber of elements
The array is oreated using malleof) in € and new(} in C++.

int destroy({array);

[returns weid]
Lestroys the given array. £

= I

Since our example used preformatted text, the output is very similar to the ASCII module. How-
ever, if you use the default mode, it is possible to insert HTML markup directly into your C com-
ments for a more personalized document.

For navigation within the document, SWIG also produces a table of contents with links to each
section within the document. With a large interface, the contents may look something like this :

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System

88

Grail: SWIG Library Reference

Help

File Go Search Bookmarks Preferences
@ [URL: |ﬂ|e:fh0mefbeazlenyWIGfSWlm.1b2fswig_libfautodoc_wrap.html

SWIG Library Reference
Versicn 1.1 Beta 2
Degenber, 1998

Copyright {C) 1996
Lave Beazley

{This file was autematically generated by SWIG)

L_LA

Contents

@ 1. Introduction
< 1.1, Call for contributions
® 7. Character Class Testing bodule
@ 3. hemory Allocation hodule
® 4. hdemory Manipulation todule
® 5 Perl Library Files
< 5.1 perlmain.i
@ . Python Library Files

O B.1. embed.
O B2 embediai
&7 3WIGE C Array bModule
o 7.1 Integer Arrays
0 7.2, Floating Point Arrays
O 7.3 String Arrays
® 5. 3WI3E dath bodule
< 8.1 Functions
o 8.2 dathematical constants

® 3. Tcl Library Files
O a1 trishi

LaTeX Documentation

The LaTeX module operates in a manner similar to the HTML module.
parameters are available (some knowledge of LaTeX is assumed).

| atex_parindent = “0.0in"
latex_textwidth = “6.5in"
| at ex_docurent style = “[11pt] {article}”

| at ex_oddsi denargin = “0. 0i n”
| at ex_pagestyl e = “\\ pagest yl e{ headi ngs}”
latex_title = “{\\Large \\bf :} \\\\\n"”

latex_preformat = “{\\small \\begin{verbatin}:\\end{verbatin}}”

| atex_usage = “{\\tt \\bf : }”

The following style

latex_descrip = “{\\\\\n \\ nakebox[0.5i n]{} \begi n{m ni page}[t]{6in} : \n

\\ end{m ni page} \\\\";
latex_text = “:\\\\”

Version 1.1, June 23, 1997

SWIG Users Guide Documentation System 89

latex_cinfo = “{\\tt : }”

| atex_section = “\\section{:}"

| at ex_subsection = “\\subsection{:}”

| at ex_subsubsection = “\\subsubsection{:}"

The style parameters, well, look downright ugly. Keep in mind that the strings used by SWIG
have escape codes in them so it’s necessary to represent the “\’ character as ‘\\’. Thus, within
SWIG your code will look something like this :

9%tyl e | atex_section="\\newpage \n \\section{:}”

The default values should be sufficient for creating a readable LaTeX document in any case you
don’t want to worry changing the default style parameters.

C++ Support

C++ classes are encapsulated in a new subsection of the current section. This subsection contains
descriptions of all of the member functions and variables. Since language modules are responsi-
ble for creating the documentation, the use of shadow classes will result in documentation
describing the resulting shadow classes, not the lower level interface to the code.

While it’s not entirely clear that this is the best way to document C++ code, it is a start (and it’s
better than no documentation).

The Final Word?

Early versions of SWIG used a fairly primitive documentation system, that could best be
described as “barely usable.” The system described here represents an almost total rewrite of the
documentation system. While it is, by no means, a perfect solution, | think it is a step in the right
direction. The SWIG library is now entirely self-documenting and is a good source of docu-
mentation examples. As always suggestions and improvements are welcome.

Version 1.1, June 23, 1997

	Documentation System
	Introduction
	How it works
	Choosing a documentation format
	Function usage and argument names
	Titles, sections, and subsections
	Formatting
	Default Formatting
	Comment Formatting variables
	Sorting
	Comment placement and formatting
	Tabs and other annoyances
	Ignoring comments
	C Information

	Adding Additional Text
	Disabling all documentation
	An Example
	ASCII Documentation
	HTML Documentation
	LaTeX Documentation
	C++ Support
	The Final Word?

