SWIG Users Guide Extending SWIG 271

Extending SWIG

Introduction

This chapter attempts to describe the process of extending SWIG to support new target lan-
guages and documentation methods. First a word of warning--SWIG started out being a rela-
tively simple system for building interfaces to ANSI C programs. Since then, it has grown into
something much more than that (although I’'m still trying to figure out what). As a result, it is
undergoing a number of growing pains. Certain parts of the code have been rewritten and others
can probably be described as a hackish nightmare. I’'m always working on ways to improve the
implementation, but expect to find a few warts and inconsistencies.

Prerequisites
In order to develop or modify a SWIG module, | assume the following :

< That you understand the C API for the scripting language of interest.

= You have a good understanding of how SWIG operates and a good idea of how
typemaps work.

= That you have some experience with C++. SWIG is written in C++, but doesn’t use it
maximally. However, familiarity with classes, inheritance, and operator overloading will
help.

< That you’re just a little crazy (this will help alot).

SWIG Organization

SWIG is built around a central core of functions and classes responsible for parsing interface
files, managing documentation, handling datatypes, and utility functions. This code is contained
in the “SWIG” directory of the distribution, but contains no information specific to any one
scripting language. The various scripting language modules are implemented as C++ classes and
found in the “Modules” directory of the distribution. The basic idea behind writing a module is
that you write a language class containing about a dozen methods for creating wrapper func-
tions, variables, constants, etc.... To use the language, you simply create a language “object”, pass
it on the parser and you magically get wrapper code. Documentation modules are written in a
similar manner.

An important aspect of the design is the relationship between ANSI C and C++. The original ver-
sion of SWIG was developed to support ANSI C programs. To add C++ support, an additional
“layer” was added to the system---that is, all of the C++ support is really built on top of the ANSI
C support. Language modules can take advantage of both C and C++ although a module written
only for C can still work with C++ (due to the layered implementation).

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 272

As for making modifications to SWIG, all files in the “SWIG” directory should be considered
“critical.” Making changes here can cause serious problems in all SWIG language modules.
When making customizations, one should only consider files in the “Modules” directory if at all
possible.

The organization of this chapter

The remainder of this chapter is a bottom-up approach is to building SWIG modules. It will start
with the basics and gradually build up a working language module, introducing new concepts
as needed.

Compiling a SWIG extension

The first order of business is that of compiling an extension to SWIG and using it. This is the easy
part.

Required files

To build any SWIG extension you need to locate the files “swi g. h” and “l i bswi g. a”. In a typ-
ical installation, these will usually be found in /usr/ | ocal /includeand/usr/local/lib
respectively. All extension modules will need to include the “swi g. h” header file and link
againstthe | i bswi g. a library.

Required C++ compiler

Due to name-mangling in the C++ compiler (which is different between compiler implementa-
tions), you will need to use the same C++ compiler used to compile SWIG. If you don’t know
which C++ compiler was used, typing ‘swi g -ver si on’ will cause SWIG to print out its ver-
sion number and the C++ compiler that was used to build it.

Writing a main program

To get any extension to work, it is necessary to write a small mai n() program to create a lan-
guage object and start the SWIG parser. For example :

#i ncl ude <swi g. h>
#i nclude “swigtcl.h” // Language specific header

extern int SWG main(int, char **, Language *, Docunentation *);
int main(int argc, char **argv) {

TCL *|I = new Tcl ; // Oeate a new Language obj ect
init_args(argc, argv); [l Initialize args
return SWG nain(arge, argv, |, 0);
}
Compiling

To compile your extension, do the following :
%c++ tcl.cxx nmain. cxx -1swig -0 nyswg

In this case we get a special version of SWIG that compiles Tcl extensions.

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 273

SWIG output

The output of SWIG is a single file that is organized as follows :

f _header ——p Headers
f _wrappers —p Wrapper Functions
f_init ——» Module initialization

During code generation, the three sections are created as separate files that are accessed using the
following file handles :

FI LE *f _header; // Header section
FI LE *f_wrappers; // Wapper section
FILE *f_init; /1l Initialization function

On exit, the three files are merged into a single output file.

When generating code, your language module should use the 1/0 functions in the C
<st di 0. h> library. SWIG does not use the C++ streams library.

The use of each output section can be roughly described as follows :

« The header section contains forward declarations, header files, helper functions, and run-
time functions (such as the pointer type-checker). All code included with %{,%]} also ends
up here.

= The wrapper section contains all of the SWIG generated wrapper functions.

= The initialization section is a single C function used to initialize the module. For large
modaules, this function can be quite large. In any case, outputtof _i ni t should be
treated with some care considering that the file is essentially one big C function.

The Language class (simple version)

Writing a new language module involves inheriting from the SWIG Language class and imple-
menting methods for a few virtual functions. A minimal definition of a new Language module is
as follows :

// File : nylang.h
// A nminimal SWG Language nodul e

class MYLANG : public Language {

private:
char *nodul e;

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 274

public :
MWLANG) {
nodul e = 0;
b
// Mirtual functions required by the SWG parser
voi d parse_args(int, char *argv[]);
voi d parse();
void create_function(char *, char *, DataType *, Parnlist *);
void link variable(char *, char *, DataType *);
voi d decl are_const (char *, char *, DataType *, char *);
void initialize(void);
voi d headers(void);
voi d cl ose(void);
voi d set_nodul e(char *,char **);
voi d create_command(char *, char *);
b

Given the above header file, we can create a very simplistic language module as follows :

e e
// A sinple SWG Language nodul e

#i ncl ude "swi g. h"
#i ncl ude "nyl ang. h"

e R
/1 MYLANG : parse_args(int argc, char *argv[])

11

// Parse command |ine options and initializes variabl es.

L e

void MYLANG : parse_args(int argc, char *argv[]) {
printf(“CGetting command |ine options\n”);
typenap_|l ang = “nyl ang”;

R e R LR
/1 void MYLANG : parse()

/1

// Start parsing an interface file.

void MYLANG : parse() {
fprintf(stderr,"Miking wappers for M/ Language\n");

headers();
yyparse(); /1 Run the SWG parser
}
R e
/1 MYLANG : set _nodul e(char *nod_nane, char **nod_| i st)
/1

/1l Sets the nodul e nane. Does nothing if it's already set (so it can
/1 be overridden as a cormand |ine option).

/1

// mod list is a NLL-termnated |ist of additional nodules. This

// is really only useful when building static executabl es.

e R R R

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 275

voi d MYLANG : set _nodul e(char *mod_name, char **mod_list) {
if (rmodul e) return;
nodul e = new char [strl en(nmod_nane) +1] ;
st rcpy(nodul e, nod_nane) ;

}
L e R LT T T
/1 MYLANG : header s(voi d)
/1
// Generate the appropriate header files for MYLANG i nterface.
R R R L T
voi d MYLANG : header s(voi d) {
em t _banner (f _header); /1 Print the SWG banner nessage
fprintf(f_header,"/* Inplementation : My Language */\n\n");
}
R L R
/1 MYLANG :initialize(void)
/1

/1 Produces an initialization function. Assunes that the nodul e
// nane has al ready been specifi ed.

e e R R
void MYLANG :initialize() {
if (!'modul e) nodule = “swig”; // Pick a default name
// Start generating the initialization function
fprintf(f_init,"int % _initialize() {\n", nodul e);
}
R R TR
/1 MYLANG : cl ose(voi d)
/1

// Finish the initialization function. dose any additional files and
I/ resources in use.
e T
voi d MYLANG : cl ose(voi d) {

// Finish off our init function

fprintf(f_init,"}\n");

}

R e e e e

/1 MYLANG : creat e_command(char *cname, char *inane)

/1

/1 Oreates a new conmand froma C function.

/1 cname = Nane of the C function

/1 inane = Name of function in scripting | anguage

R e e LR R

voi d MYLANG : creat e_command(char *cnane, char *iname) {
fprintf(f_init,”\t Oeating command %\n”, inane);

}

R e e e LT T

/1 MYLANG : create_function(char *nane, char *inane, DataType *d, Parniist *I)

/1

/1 Oreate a function declaration and register it with the interpreter.

/1 name = Name of real C function

/1 inane = Name of function in scripting | anguage

/1 d = Return dat atype

I/ I = Function paraneters

R LR e P LT PP

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 276

void MYLANG : create_function(char *name, char *inane, DataType *d, Parniist *|) {
fprintf(f_wappers,”\nwap_%() { }\n\n", nare);
cr eat e_conmmand(nane, i nane) ;

}

R LR LR LT R

/1 MYLANG :|ink_variabl e(char *nane, char *iname, DataType *t)

/1

/I Ceate alink to a Cvariable.

/1 name = Name of C variable

/1 iname = Name of variable in scripting | anguage

/1 t = Datatype of the variable

e e R

void MYLANG : |ink_variabl e(char *name, char *inane, DataType *t) {
fprintf(f_init,”\t Linking variable : %\n”, inane);

}

R e

/1 MYLANG : decl are_const (char *name, char *iname, DataType *type, char *val ue)

/1

/1 Makes a constant.

/1 name = Nanme of the constant

I/ i name = Scripting | anguage nane of constant

I/ type = Datatype of the constant

/1 val ue = Constant value (as a string)

e e e T T

voi d MYLANG : decl are_const (char *name, char *iname, DataType *type, char *val ue) {
fprintf(f_init,”\t CGeating constant : % = %\n", nane, val ue);

}
To compile our new language, we write a main program (as described previously) and do this :

% g++ mai n. cxx nylang.cxx -1/usr/local/include -L/usr/local/lib -Iswig -0 nysw g

Now, try running this new version of SWIG on a few interface files to see what happens. The var-
ious printf () statements will show you where output appears and how it is structured. For
example, if we run this module on the following interface file :

/* File : exanple.i */

%rodul e exanpl e

%

/* Put headers and ot her declarations here */

%

/1 A function
ext ern doubl e foo(double a, double b);

[/l A variable
extern int bar;

/1 A constant
#defi ne SPAM 42

We get the following output :

/*

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 277

* FILE : exanple_wap.c

*

* This file was autonatically generated by :

* Sinplified Wapper and Interface Generator (SWQ

* Version 1.1 (Final)

*

* Portions Copyright (c) 1995-1997

* The University of Wah and The Regents of the University of California
* Permission is granted to distribute this file in any manner provided
* this notice remains intact.

*

* Do not make changes to this file--changes will be |ost!

*

*/

#def i ne SW GOCDE
/* Inplementation : M/ Language */

/* Put headers and ot her declarations here */
extern doubl e foo(doubl e ,double);
extern int bar;

wap_foo() { }

int exanple_initialize() {
Oreating coomand f oo
Li nking variable : bar
Oreating constant : SPAM = 42

}

Looking at the language module and the output gives some idea of how things are structured.
The first part of the file is a banner message printed by the eni t _banner () function. The
“extern” declarations are automatically supplied by the SWIG compiler when use an extern
modifier. The wrapper functions appear after all of the headers and forward declarations.
Finally, the initialization function is written.

It is important to note that this minimal module is enough to use virtually all aspects of SWIG. If
we feed SWIG a C++ file, we will see our low-level module functions being called even though
we have not explicitly defined any C++ handling (this is due to the layered approach of imple-
menting C++ on top of C). For example, the following interface file

%rodul e exanpl e

struct Vector {
doubl e x,y, z
Vector();
~Vector ();
doubl e magni tude() ;

b
produces accessor functions and the following output :

/*
* FILE : exanple_wap.c

*

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 278

* This file was autonatically generated by :

* Sinplified Wapper and Interface Generator (SWQ

* Version 1.1 (Final)

*

* Portions Copyright (c) 1995-1997

* The University of Wah and The Regents of the University of California.
* Permssion is granted to distribute this file in any manner provided
* this notice remains intact.

*

* Do not make changes to this file--changes will be |ost!

*

*/

#def i ne SW GOCDE
/* Inplementation : M/ Language */

static double Vector_x_set(Vector *obj, double val) {
obj ->x = val;
return val;

}

wap_Vector_x_set() { }

static double Vector_x_get(Vector *obj) {
double result;
result = (double) obj->x;
return result;

}

wap_Vector_x_get() { }

static double Vector_y set(Vector *obj, double val) {
obj->y = val;
return val;

}
wap_Vector_y set() { }

static double Vector_y get(Vector *obj) {
double result;
result = (double) obj->y;
return result;

}
wrap_Vector_y get() { }

static double Vector_z_set(Vector *obj, double val) {
obj->z = val;
return val;

}

wap_Vector_z_set() { }

static double Vector_z get(Vector *obj) {
double result;

result = (double) obj->z;
return resul t;

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 279

wap_Vector_z_get() { }

static Vector *new Vector() {
return new Vector();

}

wrap_new Vect or ()

{1}

static void del ete Vector(Vector *obj) {

del ete obj;

}

wrap_del et e_Vect or

0 {1}

static doubl e Vector_magnitude(Vector *obj) {
doubl e _result = (double)obj->magnitude();

return _result

}

wrap_Vector _magni tude() { }

int exanple_initialize() {

Oreating
Oreating
Oeating
Oreating
Oreating
Oreating
Oreating
Oreating
Oreating
}

command
command
comrand
comrand
comrand
comrand
command
command
comrand

Vector_x_set

Vect or _x_get

Vector _y_set
Vect or _y_get
Vector_z_set

Vect or _z_get

new Vect or

del et e Vect or
Vect or _nagni t ude

With just a little work, we already see that SWIG does quite alot for us. Now our task is to fill in
the various Language methods with the real code needed to produce a working module. Before
doing that, we first need to take a tour of some important SWIG datatypes and functions.

A tour of SWIG datatypes

While SWIG has become somewhat complicated over the last year, its internal operation is based
on just a few fundamental datatypes. These types are described now although examples of using
the various datatypes are shown later.

The DataType class

All C datatypes are represented by the following structure :

cl ass DataType {
publ i c:
Dat aType() ;

Dat aType(Dat aType *);
~Dat aType() ;

int
char

Version 1.1, June 23, 1997

type;

I/ SWG Type code

name[MAXNAME] ; // Nane of type

SWIG Users Guide Extending SWIG 280

char i s_pointer; // 1Is this a pointer?

char inplicit_ptr; // Inplicit ptr

char i s_reference; /1 A C++ reference type

char st at us; // 1s this datatype read-only?

char *qualifier; /1 Aqualifier string (ie. const).

char *arraystr; /1 String containing array part

int id; /1 type identifier (unique for every type).
// Qutput methods

char *print_type(); // Return string containing datatype

char *print_full(); /1l Return string with full datatype

char *print_cast(); // Return string for type casting

char *print_nmangl e(); /1 Return mangl ed version of type

char *print_mangl e_defaul t(); // Default mangling schene

char *print_real (); /1l Print the real datatype

char *print_arraycast(); /1l Prints an array cast

// Array query functions

int array_di nensi ons(); // Return nunber of array dinensions (if any)
char *get _dimension(int); // Return string for a particular di mension

}s

The fundamental C datatypes are given a unique numerical code which is stored in the t ype
field. The current list of types is as follows :

C Dat at ype SW G Type Code
int T INT
short T _SHORT

| ong T_LONG
char T _CHAR
f1 oat T_FLOAT
doubl e T _DOUBLE
voi d T Vvab
unsi gned i nt T UNT
unsi gned short T_USHORT
unsi gned | ong T_ULONG
unsi gned char T_UCHAR
signed char T_SCHAR
bool T BOOL
<user > T_USER
error T_ERRCR

The T_USER type is used for all derived datatypes including structures and classes. The
T_ERROR type indicates that a parse/type error has occurred and went undetected (as far as |
know this doesn’t happen).

The nane[] field contains the actual name of the datatype as seen by the parser and is currently
limited to a maximum of 96 bytes (more than enough for most applications). If a typedef has
been used, the name field contains the actual name used, not the name of the primitive C
datatype. Here are some examples :

C Dat at ype type nane

doubl e T _DOUBLE doubl e

unsi gned i nt T UNT unsi gned i nt
si gned | ong T_LONG signed | ong
struct Vector T_USER struct Vector
Real T_DAUBLE Real

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 281

C qualifiers such as “const ” or “vol ati | e” are stored separately in the qual i fi er field. In
order to produce usable wrapper code, SWIG often needs to strip the qualifiers. For example,
trying to assign a passed function argument into a type of “const i nt ” will irritate most com-
pilers. Unfortunately, this kind of assignment is unavoidable when converting arguments
between a scripting and C representation.

The i s_poi nt er field indicates whether or not a particular datatype is a pointer. The value of
i s_poi nt er determines the level of indirection used. For example :

C Dat at ype type is_pointer
doubl e * T_DOUBLE 1
int *x* T INT 3
char * T CHAR 1

Thei nplicit_ptr field is an internally used parameter that is used to properly handle the use
of pointers in typedef statements. However, for the curious, in indicates the level of indirection
implicitly defined in a datatype. For example :

typedef char *String;

is represented by a datatype with the following parameters :

type = T _CGHAR
nare[] =“String”;
i s_pointer = 1;
inplicit_ptr = 1;

Normally, language modules do not worry about thei nplicit_ptr field.

C++ references are indicated by the i s_r ef er ence field. By default, the parser converts refer-
ences into pointers which makes them indistinguishable from other pointer datatypes. However,
knowing that something is a reference effects some code generation procedures so this field can
be checked to see if a datatype really is a C++ reference.

The arrayst r field is used to hold the array dimensions of array datatypes. The dimensions are
simply represented by a string. For example :

C Dat at ype type is_pointer arraystr
doubl e a[50] T_DOUBLE 1 [50]

int b[20][30][50] T_INT 1 [20][30][50]
char *[NAX] T_CHAR 2 [MAX]

SWIG converts all arrays into pointers. Thus a “doubl e [50] ” is really just a special version of
“doubl e *”. If a datatype is not declared as an array, the arraystr field contains the NULL
pointer.

A collection of “output” methods are available for datatypes. The names of these methods are
mainly “historical” in that they don’t actually “print” anything, but now return character strings
instead. Assuming that t is a datatype representing the C datatype “const i nt *” here’s what
the methods produce :

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 282
Qperation Qut put
t->print_type() int *

t->print_full() const int *

t->print_cast() (int *)
t->print_nangl e() < | anguage dependent >
t->print_mangl e_def aul t () _int_p

A few additional output methods are provided for dealing with arrays :

type Qper ati on Qut put
int a] 50] t->print_type() int *
int af 50] t->print_real () int [50]

int a[50]
int a[50][50]

t->print_arraycast()
t->print_arraycast()

(int *)
(int (*)[50])

Additional information about arrays is also available using the following functions :

type Qperation Resul t
int af50] t->array_di mensi on() 1

int a[50] t - >get _di nensi on(0) 50

int b[MMXN] [10] t->array_di nensi on() 2

int b[MAXN [10] t - >get _di nensi on(0) MAXN
int b[MAXN [10] t - >get _di nensi on(1) 10

The Dat aType class contains a variety of other methods for managing typedefs, scoping, and
other operations. These are usually only used by the SWIG parser. While available to language
modaules too, they are never used (at least not in the current implementation), and should proba-
bly be avoided unless you absolutely know what you’re doing (not that this is a strict require-
ment of course).

Function Parameters
Each argument of a function call is represented using the Par mstructure :

struct Parm {
Par m(Dat aType *type, char *nare);

Par m(Par m *p) ;

~Par () ;

Dat aType *t; /1 Datatype of this paraneter

int call _type; /1 Call type (value or reference or val ue)
char *nane; /1 Nane of paraneter (optional)

char *def val ue; /1 Default value (as a string)

int i gnor e; /1 lgnore flag

b
t is the datatype of the parameter, nane is an optional parameter name, and def val ue is a
default argument value (if supplied).

cal | _type is an integer code describing any special processing. It can be one of two values :

e CALL_VALUE. This means that the argument is a pointer, but we should make it work
like a call-by-value argument in the scripting interface. This value used to be set by the
%val directive, but this approach is now deprecated (since the same effect can be
achieved by typemaps).

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 283

e CALL_REFERENCE. This is set when a complex datatype is being passed by value to a
function. Since SWIG can’t handle complex datatypes by value, the datatype is implicitly
changed into a pointer and cal | _t ype setto CALL_REFERENCE. Many of SWIG’s
internals look at this when generating code. A common mistake is forgetting that all
complex datatypes in SWIG are pointers. This is even the case when writing a language-
module---the conversion to pointers takes place in the parser before data is even passed
into a particular module.

The i gnor e field is set when SWIG detects that a function parameter is to be “ignored” when
generating wrapper functions. An “ignored” parameter is usually set to a default value and
effectively disappears when a function call is made from a scripting language (that is, the func-
tion is called with fewer arguments than are specified in the interface file). The i gnor e field is
normally only set when an “ignore” typemap has been used.

All of the function parameters are passed in the structure Par nLi st . This structure has the fol-
lowing user-accesible methods available :

class Parniist {

publ i c:
int npar ns; /1 Nunber of parns in |ist
voi d append(Parm *p); /1 Append a paraneter to the end
void insert(Parm*p, int pos); // Insert a paraneter into the |ist
void del (int pos); // Delete a paraneter at position pos
int nunopt () ; /1 Get nunber of optional argurents
int nunarg(); // Get nunber of active argunents
Parm *get (i nt pos); // Get the paraneter at position pos
b

The methods operate in the manner that you would expect. The most common operation that
will be performed in a language module is walking down the parameter list and processing indi-
vidual parameters. This can be done as follows :

/1 Wl k down a paraneter |ist

Parmii st *I; /1 Function paraneter list (already created)
Par m *p;
for (int i =0; i <Il->nparns; i++) {

p =1l->get(i); // Get ith paraneter

// do sonething with the paraneter

The String Class

The process of writing wrapper functions is mainly just a tedious exercise in string manipula-
tion. To make this easier, the St ri ng class provides relatively simple mechanism for construct-
ing strings, concatenating values, replacing symbols, and so on.

class String {

publ i c:
String();
String(const char *s);
~String();

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 284

char *get() const;

friend String& operator<<(String& const char *s);
friend String& operator<<(String& const int);
friend String& operator<<(String& const char);
friend String& operator<<(String& String&);
friend String& operator>>(const char *s, String&);
friend String& operator>>(String&, String&);
String& operator=(const char *);

operator char*() const { return str; }

void untabify();

void replace(char *token, char *rep);

void replaceid(char *id, char *rep);

}s
Strings can be manipulated in a manner that looks similar to C++ 1/0 operations. For example :
String s;
s << “void" << * foo() {\n"
<< tab4 << “printf(\"Hello World\");\n”
<< “WI\n";
fprintf(f_wappers,”%"”, (char *) s);

produces the output :

void foo() {
printf(“Hello Vrld”);

}

The << operator always appends to the end of a string while >> can be used to insert a string at
the beginning. Strings may be used anywhere a char * is expected. For example :

String si,s2;

i.l.‘.(strcnp(sl, s2) == 0) {
printf(“Equal!'\n");
}

The get () method can be used to explicitly return the char * containing the string data. The
unt abi f y() method replaces tabs with whitespace. The r epl ace() method can be used to
perform substring replacement and is used by typemaps. For example :

s.replace(“$target”,”_arg3”);

The repl acei d() method can be used to replace valid C identifiers with a new value. C iden-
tifiers must be surrounded by white-space or other non-identifier characters. Ther epl ace()
method does not have this restriction.

Hash Tables
Hash tables can be created using the Hash class :

cl ass Hash {
publi c:
Hash();

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 285

~Hash() ;
int add(const char *key, void *object);
int add(const char *key, void *object, void (*del)(void *));

void *lookup(const char *key);
void renove(const char *key);
void *first();

void *next();

char *firstkey();

char *nextkey();

}

Hash tables store arbitrary objects (cast to voi d *) with string keys. An optional object dele-
tion function may be registered with each entry to delete objects when the hash is destroyed.
Hash tables are primarily used for managing internal symbol tables although language modules
may also use them to keep track of special symbols and other state.

The following hash table shows how one might keep track of real and renamed function names.

Hash wrapped_functi ons;

int add_function(char *nane, char *renamed) {
char *nn = new char[strl en(renaned)+1];
strcpy(nn, renaned);
if (wapped_functions.add(nane, nn) == -1) {
printf(“Function nultiply defined!'\n");
delete [] nn;
return -1;
}
}

char *get_renaned(char *nare) {
char *rn = (char *) wapped_functions. | ookup(nane);
return rn;

}

The renove() method removes a hash-table entry. The first() and next () methods are
iterators for extracting all of the hashed objects. They return NULL when no more objects are
found in the hash. The firstkey() and nextkey() methods are iterators that return the
hash keys. NULL is returned when no more keys are found.

The WrapperFunction class

Finally,a W apper Funct i on class is available for simplifying the creation of wrapper functions.
The class is primarily designed to organize code generation and provide a few supporting ser-
vices. The class is defined as follows :

cl ass Wapper Function {
publ i c:
String def;
String |locals;
String code;
voi d print(FILE *f);
voi d print(String &);
voi d add_| ocal (char *type, char *nane, char *defval ue
char *new | ocal (char *type, char *name, char *defval ue

0);
0);

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 286

Three strings are available. The def string contains the actual function declaration, the | ocal s
string contain local variable declarations, and the code string contains the resulting wrapper
code.

The method add_I ocal () creates a new local variable which is managed with an internal sym-
bol table (that detects variable conflicts and reports potential errors). The new_| ocal ()
method can be used to create a new local variable that is guaranteed to be unique. Since a
renaming might be required, this latter method returns the name of the variable that was actu-
ally selected for use (typically, this is derived from the original name).

The print () method can be used to emit the wrapper function to a file. The printing process
consolidates all of the strings into a single result.

Here is a very simple example of the wrapper function class :

W apper Function f;

f.def << “void count_n(int n) {“;
f.add_l ocal (“int”,”i");
f.code << tab4 << “for (i =0; i <n; i++) {\n"
<< tab8 << “printf(\"%M\\n\",i);\n”
<< tab4 << “}\n”
<< “I\n”;

f.print(f_wappers);
This produces the following output :

void count_n(int n) {
int i;
for (i =0; i <n; i++) {
printf(“%l\n”,i);
}
}

Of course, as you can guess, the functions actually generated by your language module will be
more complicated than this.

Typemaps (from C)

The typemapper plays a big role in generating code for all of SWIG’s modules. Understanding
the % ypemap directive and how it works is probably a good starting point for understanding
this section.

The typemap C API.
There is a relatively simple C API for managing typemaps in language modules.

void typemap_register(char *op, char *lang, DataType *type, char *pnaneg,
char *code, Parniist *I = 0);

Registers a new typemap with the typemapper. This is the C equivalent of the
% ypemap directive. For example :

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 287

% ypemap(| ang, op) type pnane { ... code ... };
% ypemap(| ang, op) type pnane(ParniList) { ... code ... };

code contains the actual typemap code, while | is a parameter list containing local vari-
able declarations. Normally, it is not necessary to execute this function from language
modules.

voi d typemap_regi ster _default(char *op, char *lang, int type, int ptr,
char *arraystr, char *code, ParnList *args)

Registers a default typemap. This works in the same way as the normal registration func-
tion, but takes a type code (an integer) instead. Default typemaps are more general than
normal typemaps (see below).

char *typemap_| ookup(char *op, char *lang, DataType *type,
char *pnane, char *source, char *target,
W apper Function *f = 0);

Looks up a typemap, performs variable substitutions, and returns a string with the corre-
sponding typemap code. The tuple (op, |ang, type, pnanme) determine which
typemap to find. sour ce contains the string to be assigned to the $sour ce variable,
t ar get contains the string to be assigned to the $t ar get variable. f is an optional
wrapper function object. It should be supplied to support parameterized typemaps (ie.
typemaps that declare additional local variables).

t ypemap_| ookup() returns NULL is no typemap is found. Otherwise it returns a
string containing the updated typemap code. This code has a number of variables sub-
stituted including $sour ce, $t ar get , $t ype, $nangl e, and $baset ype.

char *typemap_check(char *op, char *lang, DataType *type, char *pnane)

Checks to see if a typemap exists. The tuple (op, |ang, type, pnamne) determine
which typemap to find. If the typemap exists, the raw typemap code is returned. Other-
wise, NULL is returned. While t ypermap_| ookup() could be used to accomplish the
same thing, this function is more compact and is significantly faster since it does not per-
form any variable substitutions.

What happens on typemap lookup?
When looking for a typemap, SWIG searches for a match in a series of steps.

« Explicit typemaps. These are specified directly with the % ypenap() directive. Named
typemaps have the highest precedence while arrays have higher precedence than point-
ers (see the typemap chapter for more details).

= If no explicit typemap is found, mappings applied with the %appl y directive are
checked. Basically, %appl y is nothing more than a glorified renaming operation. We
rename the datatype and see if there are any explicit typemaps that match. If so, we use
the typemap that was found.

< Default typemaps. If no match is found with either explicit typemaps or apply direc-

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 288

tives, we make a final search using the default typemap. Unlike other typemaps, default
typemaps are applied to the raw SWIG internal datatypes (T_| NT, T_DOUBLE, T_CHAR,
etc...). Asaresult, they are insentive to typedefs and renaming operations. If nothing is
found here, a NULL pointer is returned indicating that no mapping was found for that
particular datatype.

Another way to think of the typemap mechanism is that it always tries to apply the most specific
typemap that can be found for any particular datatype. When searching, it starts with the most
specific and works its way out to the most general specification. If nothing is found it gives up
and returns a NULL pointer.

How many typemaps are there?

All typemaps are identified by an operation string such as “in”, “out”, “memberin”, etc... A
number of typemaps are defined by other parts of SWIG, but you can create any sort of typemap
that you wish by simply picking a new name and using it when making calls to
typermap_| ookup() andtypemap_check().

File management

The following functions are provided for managing files within SWIG.
voi d add_directory(char *dirnane);

Adds a new directory to the search path used to locate SWIG library files. This is the C
equivalent of the swi g - | option.

int insert_file(char *filename, FILE *output);
Searches for a file and copies it into the given output stream. The search process goes
through the SWIG library mechanism which first checks the current directory, then in
various parts of the SWIG library for a match. Returns -1 if the file is not found. Lan-
guage modules often use this function to insert supporting code. Usually these code
fragments are given a ‘. swg’ suffix and are placed in the SWIG library.

int get_file(char *filenanme, String &str);

Searches for a file and returns its contents in the String st r. Returns a -1 if the file is not
found.

i nt checkout _file(char *source, char *dest);
Copies a file from the SWIG library into the current directory. dest is the filename of
the desired file. This function will not replace a file that already exists. The primary use
of this function is to give the user supporting code. For example, we could check out a
Makefile if none exists. Returns -1 on failure.

int include_file(char *fil enane);

The C equivalent of the SWIG % ncl ude directive. When called, SWIG will attempt to

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 289

openfi | ename and start parsing all of its contents. If successful, parsing of the new file
will take place immediately. When the end of the file is reached, the parser switches back
to the input file being read prior to this call. Returns -1 if the file is not found.

Naming Services

The naming module provides methods for generating the names of wrapper functions, accessor
functions, and other aspects of SWIG. Each function returns a new name that is a syntactically
correct C identifier where invalid characters have been converted toa *“_”.

char *name_wrapper (char *fnanme, char *prefix);
Returns the name of a wrapper function. By default, it will be “_wr ap_pr ef i xf nane”.

char *nane_nenber (char *mame, char *cl assnane;
Returns the name of a C++ accessor function. Normally, this is “cl assnanme_mmane”.

char *nanme_get (char *vnane);
Returns the name of a function to get the value of a variable or class data member. Nor-
mally “vnane_get " is returned.

char *nane_set (char *vnane);
Returns the name of a function to set the value of a variable or class data member. Nor-
mally, “vname_set ” is returned.

char *name_construct (char *cl assnane);
Returns the name of a constructor function. Normally returns “new _cl assnane”.

char *nane_destroy(char *cl assnane);
Returns the name of a destructor function. Normally returns “del et e_cl assnane”.

Each function may also accept an optional parameter of AS | S. This suppresses the conversion
of illegal characters (a process that is sometimes required). For example:

char *nane = name_nenber (“fo0”,"bar”,AS |19); // Produce a nane, but don’'t change
[l illegal characters.

It is critical that language modules use the naming functions. These function are used through-
out SWIG and provide a centralized mechanism for keeping track of functions that have been
generated, managing multiple files, and so forth. In future releases, it may be possible to change
the naming scheme used by SWIG. Using these functions should insure future compatibility.

Code Generation Functions

The following functions are used to emit code that is generally useful and used in essentially
every SWIG language module.

int emt_args(DataType *t, ParnList *I, WapperFunction &f);

Creates all of the local variables used for function arguments and return value. t is the
return datatype of the function, | is the parameter list holding all of the function argu-

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 290

ments. f is a WrapperFunction object where the local variables will be created.

void emt _func_call (char *nane, DataType *t, Parniist *I|,
W apper Functi on &f);
Creates a function call to a C function. narme is the name of the C function, t is the return
datatype, | is the function parameters and f is a WrapperFunction object. The code gen-
erated by this function assumes that one has first called emi t _ar gs() .

void em t_banner (FILE *file);
Emits the SWIG banner comment to the output file.

void enit_set _get(char *nanme, char *renane, DataType *t);
Given a variable of type t, this function creates two functions to set and get the value.
These functions are then wrapped like normal C functions. nane is the real name of the
variable. r ename is the renamed version of the variable.

void emnmt_ptr_equival ence(FILE *file);
To keep track of datatypes, SWIG maintains an internal table of “equivalent” datatypes.
This table is updated by typedef, class definitions, and other C constructs. This function
emits code compatible with the type-checker that is needed to make sure pointers work
correctly. Typically this function is called after an interface file has been parsed com-
pletely.

Writing a Real Language Module

Whew, assuming you’ve made it this far, we’re ready to write a real language module. In this
example, we’ll develop a simple Tcl module. Tcl has been chosen because it has a relatively sim-
ple C API that is well documented and easy to understand. The module developed here is not
the same as the real SWIG Tcl module (which is significantly more complicated).

The header file
We will start with the same header file as before :

// File : nylang.h
// A sinple SWG Language nodul e

class MYLANG : public Language {

private:
char *nodul g;
public :
MWLAN) {
nodul e = 0;
|

/1 Mirtual functions required by the SWG parser

voi d parse_args(int, char *argv[]);

voi d parse();

void create_function(char *, char *, DataType *, Parnlist *);
void link_variable(char *, char *, DataType *);

voi d decl are_const(char *, char *, DataType *, char *);

void initialize(void);

voi d headers(void);

voi d cl ose(void);

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 291

voi d set_modul e(char *, char **);
voi d create_command(char *, char *);

Command Line Options and Basic Initialization
Command line options are parsed using the par se_ar gs() method :

T e R E LR
// A sinple SWG Language nodul e

/1
R e e e T

#i ncl ude "swi g. h"
#i ncl ude "nyl ang. h"

static char *usage = "\
M/ Language Options\n\

-nodul e nane - Set nane of nodul e\n\n";
L R
/1 MYLANG : parse_args(int argc, char *argv[])

/1
// Parse ny command line options and initialize by variabl es.
I e e L P LT TR

void MYLANG : parse_args(int argc, char *argv[]) {
/1 Look for certain conmand |ine options
for (int i =1; i <argc; i++) {
if (argv[i]) {
if (strcrp(argv[i],"-module") == 0) {
if (argv[i+1]) {
set _nodul e(argv[i +1],0);
mark_arg(i);
mark_arg(i +1);
i ++;
} else {
arg_error();

}
} else if (strenp(argv[i],"-help") == 0) {
fprintf(stderr,"%\n", usage);
}
}

}
/1 Set location of SWGIibrary

strepy(LibDr,"tcl");

/1 Add a synbol to the parser for conditional conpilation
add_synbol ("SWGICL", 0, 0);

/1 Add typenap definitions
typemap_lang = "tcl”;

}

Parsing command line options follows the same conventions as for writing a C++ main program
with one caveat. For each option that your language module parses, you need to call the func-
tion mark_arg(). This tells the SWIG main program that your module found a valid option

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 292

and used it. If you don’t do this, SWIG will exit with an error message about unrecognized com-
mand line options.

After processing command line options, you next need to set the variable Li bDi r with the name
of the subdirectory your language will use to find files in the SWIG library. Since we are mak-
ing a new Tcl module, we’ll just set this to “t cl .

Next, we may want to add a symbol to SWIG’s symbol table. In this case we’re adding
“SW GTCL” to indicate that we’re using Tcl. SWIG modules can use this for conditional compila-
tion and detecting your module using #i f def .

Finally, we need to set the variable t ypemap_| ang. This should be assigned a name that you
would like to use for all typemap declarations. When a user gives a typemap, they would use
this name as the target language.

Starting the parser
To start the SWIG parser, the par se() method is used :

R R LT TR TP
/1 void MYLANG : parse()

/1

// Start parsing an interface file for MYLANG

R e

void MYLANG : parse() {

fprintf(stderr,"Miking wappers for Tcl\n");
headers(); /1 Emt header files and other supporting code

/1l Tell the parser to first include a typemap definition file

if (include_file("lang. map") == -1) {
fprintf(stderr,"Unable to find I ang. map!'\n");
SWG exit(1);

}

yyparse(); /1 Run the SWG parser

}

This function should print some kind of message to the user indicating what language is being
targeted. The header s() method is called (see below) to emit support code and header files.
Finally, we make a call to yypar se() . This starts the SWIG parser and does not return until the
entire interface file has been read.

In our implementation, we have also added code to immediately include a file ‘l ang. map’. This
file will contain typemap definitions to be used by our module and is described in detail later.

Emitting headers and support code

Prior to emitting any code, our module should emit standard header files and support code.
This is done using the header s() method :

/1 MYLANG : header s(voi d)
/1

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 293

// Generate the appropriate header files for MYLANG i nterface.
e e T T

voi d MYLANG : header s(voi d)

{
eni t _banner (f _header); /1 Print the SWG banner nessage
fprintf(f_header,"/* Inplementation : My TCL */\n\n");
/1 1nclude header file code fragnent into the output
if (insert_file("header.swg",f_header) == -1) {
fprintf(stderr,"Fatal Error. Unable to | ocate 'header.swy .\n");
SWG exit(1);
}
/1 Emt the default SWG pointer type-checker (for strings)
if (insert_file("swigptr.swg",f_header) == -1) {
fprintf(stderr,"Fatal Error. Wnable to locate 'swigptr.swg' .\n");
SWG exit(1);
}
}

In this implementation, we emit the standard SWIG banner followed by a comment indicating
which language module is being used. After that, we are going to include two different files.
‘header . swg’ is a file containing standard declarations needed to build a Tcl extension. For
our example, it will look like this :

/* File : header.swy */
#i ncl ude <tcl. h>

The file ‘swi gpt r. swg’ contains the standard SWIG pointer-type checking library. This library
contains about 300 lines of rather nasty looking support code that define the following 3 func-
tions :

voi d SW G_Regi st er Mappi ng(char *typel, char *type,
void *(*cast)(void *))
Creates a mapping between C datatypes t ypel and t ype2. This is registered with the
runtime type-checker and is similiar to a typedef. cast is an optional function pointer
defining a method for proper pointer conversion (if needed). Normally, cast is only used
when converting between base and derived classes in C++ and is needed for proper
implementation of multiple inheritance.

void SWG MakePtr(char *str, void *ptr, char *type);
Makes a string representation of a C pointer. The result is stored in str which is
assumed to be large enough to hold the result. ptr contains the pointer value and t ype
is a string code corresponding to the datatype.

char *SWG GetPtr(char *str, void **ptr, char *type);
Extracts a pointer from its string representation, performs type-checking, and casting.
st r is the string containing the pointer-value representation, pt r is the address of the
pointer that will be returned, and t ype is the string code corresponding to the datatype.
If a type-error occurs, the function returns a char * corresponding to the part of the
input string that was invalid, otherwise the function returns NULL. If a NULL pointer is
given for t ype, the function will accept a pointer of any type.

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 294

We will use these functions later.

Setting a module name
The set _nodul e() method is used whenever the %rodul e directive is encountered.

/1 MYLANG : set _nodul e(char *nod_nane, char **nod_| i st)

11

// Sets the nodul e nane. Does nothing if it's already set (so it can

/1 be overriddent as a command |ine option).

/1

// mod_list is a NLL-termnated |ist of additional nodules to initialize
/1 and is only provided if the user specifies something like this :

/1 %rodul e foo, nodl, nod2, nod3, nod4

voi d MYLANG : set _nodul e(char *nod_nane, char **nod_|ist) {
if (rmodul e) return;
nodul e = new char[strl en(mod_nane) +1] ;
st rcpy(modul e, mod_nane) ;
/1 Make sure the name conforns to Tcl naming conventions
for (char *c = nodul e; (*c); c++)
*c = tolower(*c);
t oupper (nmodul e) ;

This function may, in fact, be called multiple times in the course of processing. Normally, we
only allow a module name to be set once and ignore all subsequent calls however.

Final Initialization

The initialization of a module takes several steps--parsing command line options, printing stan-
dard header files, starting the parser, and setting the module name. The final step in initializa-
tioniscallingtheinitialize() method:

/1 MYLANG :initialize(void)

/1

// Produces an initialization function. Assunes that the nodul e

// nane has al ready been specifi ed.

R e e e LT TP T

void MYLANG :initialize()

// Check if a nodul e has been defined

if (!'modul e) {
fprintf(stderr,”VWarning. No nodul e name given!\n”);
nodul e = “swi g”;

}

// Generate a CPP synbol containing the nanme of the initialization function
fprintf(f_header, "#define SWG.init %_Init\n\n\n", nodul e);

// Start generating the initialization function
fprintf(f_init,"int SWG.init(Tcl_Interp *interp) {\n");

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 295

fprintf(f_init,"\t if (interp ==0) return TOL_ERROR \n");
}

Theinitialize() method should create the module initialization function by emitting code
to f _init as shown. By this point, we should already know the name of the module, but
should check just in case. The preferred style of creating the initialization function is to create a
C preprocessor symbol SWG init. Doing so may look weird, but it turns out that many
SWIG library files may want to know the name of the initialization function. If we define a sym-
bol for it, these files can simply assume that it’s called SW G_i ni t () and everything will work
out (okay, so it’s a hack).

Cleanup

When an interface file has finished parsing, we need to clean everything up. This is done using
the cl ose() method:

L e R R
/1 MYLANG : cl ose(voi d)

11

// Wap things up. dose initialization function.

L e e T LT T

voi d MYLANG : cl ose(voi d)

{
/1 Dunp the pointer equival ency table
emt_ptr_equival ence(f_init);

/1 Finish off our init function and print it tothe init file
fprintf(f_init,"\t return TOL_CGK\n");
fprintf(f_init,"}\n");

}

The cl ose() method should first call emit _ptr_equi val ence() if the SWIG pointer type
checker has been used. This dumps out support code to make sure the type-checker works cor-
rectly. Afterwards, we simply need to terminate our initialization function as shown. After this
function has been called, SWIG dumps out all of its documentation files and exits.

Creating Commands

Now, we’re moving into the code generation part of SWIG. The first step is to make a function
to create scripting language commands. This is done using the cr eat e_conmand() function:

T e e LR R T
/1 MYLANG : creat e_command(char *cname, char *inane)

/1

// Oreates a Tcl command froma C function.

e e e e T

voi d MYLANG : creat e_command(char *cnane, char *inanme) {
/1 Create a name for the wapper function
char *wname = name_w apper (cnane,””);

/] Create a Tcl conmand

fprintf(f_init,"\t Tcl _CeateCommand(interp, \"%\",%, (dientData) NULL,
(Tcl _QmlDel eteProc *) NULL);\n", inane, wnare);

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 296

For our Tcl modaule, this just calls Tcl_CreateCommand to make a new scripting language com-
mand.

Creating a Wrapper Function

The most complicated part of writing a language module is the process of creating wrapper func-
tions. This is done using the cr eat e_f uncti on() method as shown here :

e e LR
/1 MYLANG : create_function(char *nane, char *inane, DataType *d, Parniist *I)
/1
/1 OGreate a function declaration and register it with the interpreter.
e e R LT T
void MYLANG : create_function(char *name, char *inane, DataType *t, Parniist *|)
{
String source, target;
char *tm
String cl eanup, outarg;

W apper Function f;

/1 Make a wapper nane for this function
char *wnane = name_w apper (i nane, "");

/1 Nowwite the wapper function itself
f.def << "static int " << wname << "(dientData clientData, Tcl_Interp *interp, int
argc, char *argv[]) {\n";

/1 Emt all of the local variables for hol ding argurents.
int pcount = enit_args(t,|,f);

/1 Get nunber of optional/default argunents
int nunopt = | ->nunopt ();

/1 Emt count to check the number of argunents

f.code << tab4 << "if ((argc <" << (pcount-numopt) + 1 << ") || (argc >"
<< |->numarg()+1 << ")) {\n"
<< tab8 << "Tcl _SetResult(interp, \"Wong # args.\", TCL_STATIO;\n"
<< tab8 << "return TCQL_ERROR \n"
<< tab4 << "}\n";

/1 Now wal k the function parameter |ist and generate code to get arguments

int j =0; /1 Total nunber of non-optional arguments
for (int i =0; i < pcount ; i++) {

Parm& = (*1)[i]; /1l Get the ith argurent

source = "";

target = "";

/1 Produce string representation of source and target argurents
source << "argv[" << j+1 << "]"
target << "_arg" << i;
if (!p.ignore) {
if (j >= (pcount-numopt)) // Check if parsing an optional argunent
f.code << tab4 << "if argc >" << j+1 << ") {\n";

/] Get typenap for this argunent
tm= typenap_|l ookup("in",typemap_| ang, p. t, p. nane, source, target, &);

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 297

if (tm {

f.code << tm<< "\n";

f.code. repl ace("$arg", source); /1 Performa variabl e repl acerent
} else {

fprintf(stderr,"% : Line %l. No typemapping for datatype %\n",
input_file,line_nunber, p.t->print_type());
}
if (j >= (pcount-nunopt))
f.code << tab4 << "} \n";
j

}

/1 Check to see if there was any sort of a constaint typemap

if ((tm= typemap_| ookup("check", typemap_| ang, p.t, p. nane, source,target))) {
f.code << tm<< "\n";
f. code. repl ace(" $arg", source);

}

[l Check if there was any cl eanup code (save it for later)
if ((tm= typemap_| ookup("freearg",typenap_l ang, p.t, p. nane, t ar get,
"interp->result"))) {
cleanup << tm<< "\n";
cl eanup. repl ace(" $ar g", source);
}
if ((tm= typemap_| ookup("argout",typemap_| ang, p.t, p. nane, t ar get,
"interp->result"))) {
outarg << tm<< "\n";
out arg. repl ace("$arg", source);
}
}

// Now wite code to nake the function call
emt_func_call (nanme,t,I,f);

/!l Return value if necessary
if ((t->type !'=T_VAD || (t->is_pointer)) {
if ((tm= typemap_| ookup("out",typenap_| ang,t,nane," _result","interp->result"))) {
/Il Yep. Wse it instead of the default
f.code << tm<< "\n";
} else {
fprintf(stderr,"% : Line %d. No return typemap for datatype %\n",
input_file,line_nunber,t->print_type());
}
}

// Dunp argurent output code;
f.code << outarg;

// Dunp the argunent cl eanup code
f.code << cl eanup;

/1 Look for any renaining cleanup. This processes the %ew directive
if (Newoject) {
if ((tm= typemap_| ookup("newf ree",typenap_|l ang,t,iname," _result",""))) {
f.code << tm<< "\n";
}
}

/1 Special processing on return val ue.

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 298

if ((tm= typemap_| ookup(“"ret",typenap_|l ang,t,name," _result”,""))) {
f.code << tm<< "\n";

}

/1 Wap things up (in a manner of speaki ng)
f.code << tab4 << "return TCL_CK \n}";

/1 Substitute the cleanup code (some exception handlers |like to have this)
f. code. repl ace(" $cl eanup", cl eanup) ;

/1 Emt the function
f.print(f_wappers);

/1 Now register the function with the | anguage
creat e_command(i nane, i nane) ;

}

Creating a wrapper function really boils down to 3 components :

< Emit local variables and handling input arguments.
= Call the real C function.
= Convert the return value to a scripting language representation.

In our implementation, most of this work is done using typemaps. In fact, the role of the C++
code is really just to process typemaps in the appropriate order and to combine strings in the cor-
rect manner. The following typemaps are used in this procedure :

“in”. This is used to convert function arguments from Tcl to C.

= “out”. This is used to convert the return value from C to Tcl.

= “check”. This is used to apply constraints to the input values.

= “argout”. Used to return values through function parameters.

= “freearg”. Used to clean up arguments after a function call (possibly to release memory,
etc...)

= “ret”. Used to clean up the return value of a C function (possibly to release memory).

= “newfree” this is special processing applied when the %mewdirective has been used.

Usually its used to clean up memory.

It may take awhile for this function to sink in, but its operation will hopefully become more clear
shortly.

Manipulating Global Variables

To provide access to C global variables, the | i nk_vari abl e() method is used. In the case of
Tcl, only i nt, doubl e, and char * datatypes can be safely linked.

R e e T
/1 MYLANG :|ink_variabl e(char *nane, char *iname, DataType *t)

/1

/1 Oreate a Tcl link to a Cvariable.

L e

void MYLANG : |ink_variabl e(char *name, char *iname, DataType *t) {
char *tm

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 299

/1 Uses a typemap to stick code into the module initialization function
if ((tm= typemap_| ookup("varinit",typemap_| ang, t, nane, nane, i nane))) {
String tenp = tm
if (Status & STAT_READONLY)
tenp.replace("$status"," | TC_LINK_ READ ON\LY");
el se
tenp. repl ace("$status","");
fprintf(f_init,"%\n", (char *) tenp);
} else {
fprintf(stderr,"% : Line %d. Unable to link with variable type %\n",
input_file,line_nunber,t->print_type());
}
}

In this case, the procedure is looking for a typemap “varinit”. We’ll use the code specified with
this typemap to create variable links. If no typemap is supplied or the user gives an unsup-
ported datatypes, a warning message will be generated.

It is also worth noting that the St at us variable contains information about whether or not a
variable is read-only or not. To test for this, use the technique shown in the code above. Read-
only variables may require special processing as shown.

Constants

Finally, creating constants is accomplished using the decl ar e_const () method. For Tcl, we
could do this:

R e T e

/1 MYLANG : decl are_const (char *nane, char *iname, DataType *type, char *val ue)
/1

/1 Makes a constant.

L R e T

voi d MYLANG : decl are_const (char *nare, char *iname, DataType *type, char *val ue) {

char *tm

if ((tm= typenmap_| ookup("const",typemap_| ang, t ype, nane, nane, i nane))) {
String str =tm
str.repl ace("$val ue", val ue) ;
fprintf(f_init,"%\n", (char *) str);

} else {
fprintf(stderr,"% : Line %l. WUnhable to create constant % = %\n",

input_file, line_nunber, type->print_type(), value);
}
}

We take the same approach used to create variables. In this case, the ‘const ’ typemap specifies
the special processing.

The value of a constant is a string produced by the SWIG parser. It may contain an arithmetic

expression such as “3 + 4*(7+8)”. Because of this, it is critical to use this string in a way that
allows it to be evaluated by the C compiler (this will be apparent when the typemaps are given).

A Quick Intermission
We are now done writing all of the methods for our language class. Of all of the methods,

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 300

create_function() isthe most complicated and tends to do most of the work. We have also
ignored issues related to documentation processing and C++ handling (although C++ will work
with the functions we have defined so far).

While our C++ implementation is done, we still do not have a working language module. In
fact, if we run SWIG on the following interface file :

/* File : exanple.i */

%rodul e exanpl e

%

/* Put headers and ot her declarations here */

%

/1 A function
ext ern doubl e foo(double a, double b);

/] A variable
extern int bar;

/1 A constant
#def i ne SPAM 42

we get the following errors :

[beazl ey@ui nness lang]$./nysw g exanpl e. i
Maki ng wrappers for M Tcl

exanpl e. i Line 9. No typenappi ng for datatype doubl e
exanple.i : Line 9. No typenappi ng for datatype doubl e
exanple.i : Line 9. No return typemap for datatype doubl e
exanple.i : Line 12. Wnable to link with variable type int
exanpl e. i Line 16. Wnable to create constant int = 42

[beazl ey@m nness | ang] $

The reason for this is that we have not yet defined any processing for real datatypes. For exam-
ple, our language module has no idea how to convert doubles into Tcl strings, how to link with C
variables and so on. To do this, we need to write a collection of typemaps.

Writing the default typemaps

In our earlier par se() method, there is a statement to include the file ‘l ang. nap’. We will use
this file to write typemaps for our new language module. The ‘I ang. map’ file will actually go
through the SWIG parser so we can write our typemaps using the normal % yperap directive.
This approach makes it easy for us to debug and test our module because the typemaps can be
developed and tested without having to repeatedly recompile the C++ part of the module.

Without further delay, here is the typemap file for our module (you might want to sit down) :

e R e LT LT
/1 1ang. map

/1

/1 This file defines all of the type-nappings for our |anguage (TCL).

/1 A typemap of ' SWG DEFAULT_TYPE shoul d be used to create default

/1 mappi ngs.
e

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 301

/**************************** FL’\C"’I O\l I ’\PLJTS ****************************/

I/ Integers

% ypemap(in) int SW G _DEFAULT_TYPE,
short SW G _DEFAULT_TYPE,
| ong SW G _DEFAULT_TYPE,

unsi gned i nt SW G DEFAULT_TYPE,
unsi gned short SWG DEFAULT_TYPE,
unsigned long SWG DEFAULT_TYPE,
si gned char SW G DEFAULT_TYPE,
unsi gned char SW G DEFAULT_TYPE
{ .
int tenp;
if (Tcl _GetInt(interp, $source, &enp) == TCL_ERRCR) return TCL_ERRCR
$target = ($type) tenp;
}

/1 Floating point
% ypemap(in) fl oat SW G DEFAULT_TYPE,
doubl e SWG DEFAULT_TYPE
{
doubl e tenp;
if (Tcl_GetDoubl e(interp, $source, & enp) == TOL_ERROR) return TCL_ERRCR
$target = ($type) tenp;
}

[/ Strings
% ypemap(in) char * SWG DEFAULT_TYPE
{

$target = $source;

}

/1 void *
% ypemap(in) void * SWG DEFAULT_TYPE
{

if (SWGGetPtr($source, (void **) &target, (char *) 0)) {
Tcl _SetResul t(interp,"Type error. Expected a pointer", TOL_STATI O ;
return TCL_ERRCR
}
}

/1 User defined types and all other pointers
% ypemap(in) User * SWG DEFAULT_TYPE

{
if (SWG GetPtr($source, (void **) &target, "$nmangle")) {
Tcl _SetResul t(interp,"Type error. Expected a $mangl e", TCL_STATI O ;
return TCL_ERRCR
}
}

/**************************** FLJ\CTI O\l wrPLJTS ****************************/

/1 Signed integers

% ypenap(out) int SW G DEFAULT_TYPE,
short SW G DEFAULT_TYPE,
I ong SW G DEFAULT_TYPE,

signed char SWG DEFAULT_TYPE

{
sprintf($target,"%d", (long) $source);

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 302

}

// Unsigned integers
% ypenmap(out) unsi gned SW G _DEFAULT_TYPE,
unsi gned short SWG DEFAULT_TYPE,
unsigned long SWG DEFAULT_TYPE,
unsi gned char SWG DEFAULT_TYPE
{
sprintf($target,"%u", (unsigned |ong) $source);

}

/1 Floating point
% ypemap(out) doubl e SWG DEFAULT_TYPE,
float SWG DEFAULT_TYPE

{

Tcl _PrintDoubl e(i nterp, (doubl €) $source,interp->result);
}
/1 Strings

% ypenap(out) char *SWG DEFAULT_TYPE
{

Tcl _Set Resul t (i nterp, $source, TCL_VQALATI LE) ;

}
/1 Pointers
% ypemap(out) User *SW G DEFAULT_TYPE
{
SWG MakePtr($target, (void *) $source, "$mangle");
}

/**************************** VAH ABLE O{ATI O\l ****************************I

/1 Integers
% ypemap(varinit) int SW G DEFAULT_TYPE,
unsigned int SWG DEFAULT_TYPE

{

Tcl _LinkVar (interp, "$target", (char *) &psource, TCL_LINK INT $status);
}
/1 Doubl es

% ypemap(varinit) doubl e SWG DEFAULT_TYPE {
Tcl _LinkVar (interp, "$target”, (char *) &psource, TCL_LI NK_ DOUBLE $st at us);

}

[/ Strings
% ypenmap(varinit) char * SWG DEFAULT_TYPE {

Tcl _LinkVar (interp,"$target”, (char *) &psource, TCL_LI NK_STR NG $stat us);
}

/****************************** (I]\STA‘\”’S **********************************/

/1 Signed Integers

% ypemap(const) int SW G DEFAULT_TYPE,
short SW G _DEFAULT_TYPE,
| ong SW G _DEFAULT_TYPE,

si gned char SW G DEFAULT_TYPE
{

static char * wap_S$target;
wap$target = (char *) nalloc(40);

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 303

sprintf(_wap_S$target,"%d", $val ue);

Tcl _LinkVar(interp,"$target”, (char *) & wap_$target, TCL_LINK STRING |
TOL_LI NK_READ O\LY);
}

/1 Unsigned integers

% ypemap(const) unsi gned SW G DEFAULT_TYPE,
unsi gned short SWG DEFAULT_TYPE,
unsigned long SWG DEFAULT_TYPE,
unsi gned char SW G DEFAULT_TYPE

static char * wap_S$target;

wap$target = (char *) nalloc(40);

sprintf(_wap_$target,"%u", $val ue);

Tcl _LinkVar(interp,"$target”, (char *) & wap_ $target, TCL_LINK STRING |
TOL_LINK_READ O\LY);
}

// Doubles and floats
% ypenap(const) doubl e SWG DEFAULT_TYPE,
float SWG DEFAULT TYPE

{

static char *_wap_$target;

wap$target = (char *) nalloc(40);

sprintf(_wap_$target,"%", $val ue);

Tcl _LinkVar(interp,"$target”, (char *) & wap_$target, TCL_LINK STRING |
TCL_LI NK_READ O\LY);
}

/1 Strings
% ypemap(const) char *SWG DEFAULT_TYPE
{

static char *_wap_S$target = "$val ue";

Tcl _LinkVar(interp,"$target", (char *) & wap_$target, TCL_LINK STR NG |
TCL_LI NK_READ O\LY) ;
}

/1 Pointers
% ypemap(const) User *SWG DEFAULT _TYPE

{

static char * wap_S$target;

wrap$target = (char *) nalloc(20+strlen("$nangle"));

SWG MakePtr(_wap $target, (void *) $val ue, "$nmangle");

Tcl _LinkVar(interp, "$target", (char *) & wap_$target, TCL_LINK STR NG |
TOL_LI NK_READ O\LY);
}

Now that we have our typemaps file, we are done and can start producing a variety of interest-
ing Tcl extension modules. Should errors arrise, one will either have to pry into the C++ module
or the typemaps file for a correction.

The SWIG library and installation issues
To make a new SWIG module generally usable, you will want to perform the following steps :

« Put the new binary in a publicly accessible location (ie. / usr/ | ocal / bi n).
= Make a subdirectory for your language in the SWIG library. The library should match up

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 304

with the name you assigned to the Li bDi r variable in par se_ar gs().

« Copy thefile ‘| ang. nap’ to the SWIG library directory. Your new version of SWIG will
now be able to find it no matter what directory SWIG is executed from.

= Provide some documentation about how your module works.

SWIG extensions are only able to target a single scripting language. If you would like to make
your module part of the full version of SWIG, you will need to modify the file ‘'swi gmai n. cxx’
in the SW GL. 1/ Modul es directory. To do this, follow these steps :

e Adda#include “lang. h” tothe sw gmai n. cxx file.

= Create a command line option for your module and write code to create an instance of
your language (just copy the technique used for the other languages).

< Modify Modul es/ Makefi | e to include your module as part of its compilation process.

< Rebuild SWIG by typing ‘make’.

C++ Processing

Language modules have the option to provide special processing for C++ classes. Usually this is
to provide some sort of object-oriented interface such as shadow classes. The process of develop-
ing these extensions is highly technical and the best approach may be to copy pieces from other
SWIG modules that provide object oriented support.

How C++ processing works

The wrapping of C++ classes follows a “file” metaphor. When a class is encountered, the follow-
ing steps are performed :

e Open a new class.

= Inherit from base classes.

= Add members to the class (functions, variables, constants, etc...)
= Close the class and emit object-oriented code.

As a class is constructed, a language module may need to keep track of a variety of data such as
whether constructors or destructors have been given, are there any data members, have
datatypes been renamed, and so on. It is not always a clear-cut process.

Language extensions

Providing additional support for object-oriented programming requires the use of the following
Language extensions. These are additional methods that can be defined for the Language class.

voi d cpp_open_cl ass(char *name, char *rename, char *ctype, int strip);
Opens a new class. nane is the name of the class, r enane is the renamed version of the
class (or NULL if not renamed), ct ype is the class type (st ruct, cl ass, uni on), and
st ri pisaflag indicating whether or not its safe to drop the leading type specifier (this is
often unsafe for ANSI C).

voi d cpp_inherit(char **baseclass, int node = | NHERI T_ALL);

Inherits from base classes. basecl ass isa NULL terminated array of class names corre-
sponding to all of the base classes of an object. node is an inheritance mode that is the

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 305

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

Hints

or’d value of | NHERI T_FUNC, | NHERI T_VAR, | NHERI T_CONST, or | NHERI T_ALL.

cpp_nenber func(char *nane, char *inane, DataType *t,

Par mLi st *1);
Creates a member function. narme is the real name of the member, i nane is the renamed
version (NULL if not renamed), t is the return datatype, and | is the function parameter
list.

cpp_static_func(char *nane, char *inane, DataType *t,

Par mLi st *1);
Create a static member function. The calling conventions are the same as for
cpp_menber _func().

cpp_vari abl e(char *name, char *inane, DataType *t);
Creates a member variable. name is the real name of the member, i name is the renamed
version (NULL is not renamed). t is the type of the member.

cpp_static_var(char *name, char *inanme, DataType *t);
Creates a static member variable. The calling convention is the same as for
cpp_variabl e().

cpp_decl are_const (char *name, char *inane, DataType *type,

char *val ue);
Creates a constant inside a C++ class. Normally this is an enum or member declared as
const. nane is the real name, i nane is the renamed version (NULL if not renamed),
t ype is the type of the constant, and val ue is a string containing the value.

cpp_constructor(char *nane, char *inane, ParnList *I);

Creates a constructor. nane is the name of the constructor, i nane is the renamed version,
and | is the function parameter list. Normally, nan®e is the same name as the class. If not,
this may actually be a member function with no declared return type (assumed to be an
intin C++).

cpp_destructor(char *name, char *newnane);
Creates a destructor. nane is the real name of the destructor (usually the same name as
the class), and newnane is the renamed version (NULL if not renamed).

cpp_cl ose_cl ass();
Closes the current class. Language modules should finish off code generation for a class
once this has been called.

cpp_cl eanup();
Called after all C++ classes have been generated. Only used to provide some kind of glo-
bal cleanup for all classes.

Special C++ code generation is not for the weak of heart. Most of SWIG’s built in modules have
been developed for well over a year and object oriented support has been in continual develop-

ment.

If writing a new language module, looking at the implementation for Python, Tcl, or Perl5

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 306

would be a good start.

Documentation Processing

The documentation system operates (for the most part), independently of the language modules.
However, language modules are still responsible for generating a “usage” string describing how
each function, variable, or constant is to be used in the target language.

Documentation entries

Each C/C++ declaration in an interface file gets assigned to a “Documentation Entry” that is
described by the DocEnt r y object :

class DocEntry {

publ i c:
String usage; [/ Short description
String cinfo; // Information about Cinterface (optional).
String text; /1 Supporting text (optional)

b

The usage string is used to hold the calling sequence for the function. The ci nf o field is used
to provide additional information about the underlying C code. t ext is filled in with comment
text.

The global variable doc_ent r y always contains the documentation entry for the current decla-
ration being processed. Language modules can choose to update the documentation by referring
to and modifying its fields.

Creating a usage string

To create a documentation usage string, language modules need to modify the ‘usage’ field of
doc_entry. This can be done by creating a function like this :

e R R R LR T
// char *TCL::usage_string(char *iname, DataType *t, Parniist *I),

/1

// Generates a generic usage string for a Tcl function.

e e R TR

char * TCL::usage_string(char *inane, DataType *, Parniist *I) {
static String tenp;
Parm *p;
int i, nunopt, pcount;

tenp = "
tenp << inane << " "

/* Now go through and print paraneters */

i =0;
pcount = | ->npar ns;
nunopt = | ->nunopt () ;

p =1l->get first();
while (p '=0) {
if (!p->ignore) {

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 307

if (i >= (pcount-nuropt))
tenp << "?",

/* |f paraneter has been naned, use that. Cherwise, just print a type */

if ((p->t->type !'=T_VAD || (p->t->s_pointer)) {
if (strlen(p->nane) > 0) {
tenp << p->nane;
}
el se {
tenp << "{
}
}
if (i >= (pcount-nuropt))
tenp << "?";
tenp << " "

<< p->t->print_type() << " }";

}
p = 1->get_next();
}

return tenp;

}
Now, within the function to create a wrapper function, include code such as the following :

/1 Fill in the docurentation entry
doc_entry->usage << usage_string(inane,t,|);

To produce full documentation, each language module needs to fill in the documentation usage
string for all declarations. Looking at existing SWIG modules can provide more information on
how this should be implemented.

Writing a new documentation module

Writing a new documentation module is roughly the same idea as writing a new Language class.
To do it, you need to implement a “Documentation Object” by inheriting from the following base
class and defining all of the virtual methods :

cl ass Docurent ation {

publ i c:
virtual void parse_args(int argc, char **argv) = 0;
virtual void title(DocEntry *de) = 0;
virtual void newsection(DocEntry *de, int sectnun) = O;
virtual void endsection() = 0;
virtual void print_decl (DocEntry *de)
virtual void print_text(DocEntry *de)
virtual void separator() = O;
virtual void init(char *filename) = 0;
virtual void close(void) = 0;
virtual void style(char *nane, char *value) = 0;

0;
0;

b

void parse_args(int argc, char **argv);
Parses command line options. Any special options you want to provide should be
placed here.

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 308

void title(DocEntry *de;
Produces documentation output for a title.

voi d newsection(DocEntry *de, int sectnum
Called whenever a new section is created. The documentation system is hierarchical in
nature so each call to this function goes down one level in the hierarchy.

voi d endsection();
Ends the current section. Moves up one level in the documentation hierarchy.

voi d print_decl (DocEntry *de);
Creates documentation for a C declaration (function, variable, or constant).

void print_text(DocEntry *de);
Prints documentation that has been given with the % ext % 9% directive.

voi d separator();
Prints an optional separator between sections.

void init(char *fil ename);
Initializes the documentation system. This function is called after command line options
have been parsed. f i | enane is the file where documentation should be placed.

voi d cl ose(void);
Closes the documentation file. All remaining output should be complete and files closed
upon exit.

void styl e(char *nane, char *val ue);
Called to set style parameters. This function is called by the %t yl e and % ocal styl e
directives. Itis also called whenever style parameters are given after a section directive.

Using a new documentation module

Using a new documentation module requires a change to SWIG’s main program. If you are writ-
ing your own main() program, you can use a new documentation module as follows :

#i ncl ude <swi g. h>
#include “swigtcl.h” // Language specific header
#i ncl ude “nydoc. h” // New Docunent ati on nodul e

extern int SWG nmain(int, char **, Language *, Docunentation *);
int main(int argc, char **argv) {

TCL *|I = new TCL; // Oeate a new Language obj ect
M/Doc *d = new M/Doc; // New docunent ati on obj ect
init_args(argc, argv); I/ Initialize args

return SWG nain(argc, argv, |, d);

Version 1.1, June 23, 1997

SWIG Users Guide Extending SWIG 309

Where to go for more information

To find out more about documentation modules, look at some of the existing SWIG modules con-
tained in the SW GL. 1/ SW Gdirectory. The ASCIl and HTML modules are good starting points
for finding more information.

The Future of SWIG

SWIG’s C++ API is the most rapidly evolving portion of SWIG. While interface-file compatibil-
ity will be maintained as much as possible in future releases, the internal structure of SWIG is
likely to change significantly in the future. This will possibly have many ramifications on the
construction of language modules. Here are a few significant changes that are coming :

1. A complete reorganization of the SWIG type system. Datatypeswill be represented in amore
flexible manner that provide full support for arrays, function pointers, classes, structures, and
types possibly coming from other languages (such as Fortran).

2. Obijectification of functions, variables, constants, classes, etc... Currently many of SWIG’s
functions take multiple arguments such as functions being described by name, return
datatype, and parameters. These attributes will be consolidated into a single “Function”
object, “Variable” object, “Constant” object, and so forth.

3. Acomplete rewrite of the SWIG parser. This will be closely tied to the change in datatype
representation among other things.

4. Increased reliance on typemaps. Many of SWIG’s older modules do not rely on typemaps,
but this is likely to change. Typemaps provide a more concise implementation and are easier
to maintain. Modules written for 1.1 that adopt typemaps now will be much easier to inte-
grate into future releases.

5. A possible reorganization of object-oriented code generation. The layered approach will
probably remain in place however.

6. Better support for multiple-files (exporting, importing, etc...)

In planning for the future, much of a language’s functionality can be described in terms of
typemaps. Sticking to this approach will make it significantly easier to move to new releases. |
anticipate that there will be few drastic changes to the Language module presented in this sec-
tion (other than changes to many of the calling mechanisms).

Version 1.1, June 23, 1997

	Extending SWIG
	Introduction
	Prerequisites
	SWIG Organization
	The organization of this chapter

	Compiling a SWIG extension
	Required files
	Required C++ compiler
	Writing a main program
	Compiling

	SWIG output
	The Language class (simple version)
	A tour of SWIG datatypes
	The DataType class
	Function Parameters
	The String Class
	Hash Tables
	The WrapperFunction class

	Typemaps (from C)
	The typemap C API.
	What happens on typemap lookup?
	How many typemaps are there?

	File management
	Naming Services
	Code Generation Functions
	Writing a Real Language Module
	The header file
	Command Line Options and Basic Initialization
	Starting the parser
	Emitting headers and support code
	Setting a module name
	Final Initialization
	Cleanup
	Creating Commands
	Creating a Wrapper Function
	Manipulating Global Variables
	Constants
	A Quick Intermission
	Writing the default typemaps
	The SWIG library and installation issues

	C++ Processing
	How C++ processing works
	Language extensions
	Hints

	Documentation Processing
	Documentation entries
	Creating a usage string
	Writing a new documentation module
	Using a new documentation module
	Where to go for more information

	The Future of SWIG

