SWIG Users Guide SWIG and Tcl 215

SWIG and Tcl

This chapter discusses SWIG’s support of Tcl. SWIG supports Tcl versions 7.3 and newer, includ-
ing Tcl 8.0. Tk 3.6 and newer can also be used. However, for the best results you should consider
using Tcl 7.5/Tk4.1 or later.

Preliminaries

You will need to install Tcl/Tk on your system if you haven’t done so already. If you are using Tcl
7.5 or newer, you should also determine if your system supports dynamic loading and shared
libraries. SWIG will work with or without this, but the compilation process varies.

Running SWIG
To build a Tcl module, run swig using the - t cl option as follows :

swig -tcl exanple.i

This will produce 2 files. The first file, exanpl e_w ap. ¢, contains all of the C code needed to
build your Tcl module. The second file contains supporting documentation and may be named
exanpl e_wr ap. doc, exanpl e_wr ap. ht nl , exanpl e_wr ap. t ex, etc... To build a Tcl exten-
sion you will need to compile the exanpl e_wr ap. c file and link it with the rest of your pro-
gram (and possibly Tcl itself).

Additional SWIG options
The following options are also available with the Tcl module :

-tcl 8 Produce Tcl 8.0 native wappers (use in place of -tcl).
-nodul e Set the nodul e nane.
- nanespace Use [incr Tcl] nanespaces.

-prefix pkg Set a package prefix of ‘pkg . This prefix will be
attached to each function.
-htcl tcl.h Set name of Tcl header file.

-htk tk.h Set name of Tk header file.
- pl ugi n Generate additional code for the netscape pl ugin.
- noobj ect Ot object oriented extensions (conpatibility with SWG 1.0)

Many of these options will be described later.

Getting the right header files and libraries

In order to compile Tcl/Tk extensions, you will need to locate the “t cl . h” and “t k. h” header
files. These are usually located in / usr/ | ocal /i ncl ude. You will also need to locate the Tcl/

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 216

Tk libraries i bt cl . aand | i bt k. a. These are usually located in/ usr /| ocal / | i b.
When locating the right header and libraries files, double check to make sure the files are the cor-
rect version and form a matching pair. SWIG works with the following Tcl/ Tk releases.

Tel 7.3, Tk 3.6
Tcl 7.4, Tk 4.0
Tcl 7.5, Tk 4.1
Tcl 7.6, Tk 4.2
Tcl 8.0a2, Tk 8.0a2

Do not mix versions. Although the code might compile if you do, it will usually core dump mys-
teriously. By default, SWIG looks for the header files “t cl . h” and “t k. h”, but your installed
version of Tcl/Tk may use slightly different names such as “t cl 7. 5. h” and “t k4. 1. h”. If you
need to use different header files, you can use the - ht cl and - ht k options as in :

swig -tcl -htcl tcl7.5.h -htk tk4.1. h exanple.i

If you are installing Tcl/Tk yourself, it is often easier to set up a symbolic links between t cl . h
and the header files for the latest installed version. You might also be able to make symbolic
links to the correct files in your working directory.

Compiling a dynamic module (Unix)

To compile a dynamically loadable module, you will need to compile your SWIG extension into
a shared library. This usually looks something like the following (shown for Linux).

uni x > swig -tcl exanple.i
uni x > gcc -fpic exanpl e_wap.c exanple.c -I/usr/local/include
uni X > gcc -shared exanpl e. 0 exanpl e_wrap. o -o exanpl e. so # Li nux

Unfortunately, the process of building of building shared libraries varies on every single
machine. SWIG will try to guess when you run configure, but it isn’t always successful. It’s
always a good idea to read the man pages on the compiler/linker to find out more information.

Using a dynamic module
To use a dynamic module, you will need to load it using the Tcl load command as follows :

| oad ./exanpl e.so exanpl e

The first argument is the name of the shared library while the second argument is the name of
the module (the same as what you specified with the %modul e directive). As alternative, you can
turn your module into a Tcl package. See the section on configuration management at the end of
this chapter for details.

Static linking

If your machine does not support dynamic loading or you’ve tried to use it without success, you
can build new versions of t cl sh (the Tcl shell) or wi sh (Tcl/Tk shell) with your extensions
added. To do this, use SWIG’s % ncl ude directive as follows :

%vodul e nynodul e
. declarations ...

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 217

% ncl ude tcl sh.i // Support code for rebuilding tclsh
To rebuild tclsh, you will need to compile as follows :

unix > swig -tcl exanple.i
uni x > gcc exanpl e_wap.c exanple.c -l1/usr/local/include -L/usr/local/lib -ltcl -ldl \
-Ilm-0 ny_tclsh

Alternatively, you can use SWIG’s - | option to add the tclsh.i library file without modifying the
interface file. For example:

unix > swig -tcl -ltclsh.i exanple.i
uni X > gcc exanple_wap.c exanple.c -l1/usr/local/include -L/usr/local/lib -ltcl -1dl \
-Ilm-0 ny_tclsh

The -1 dI option will be required if your Tcl/Tk supports dynamic loading. On some machines
(most notably Solaris),it will also be necessary to add - | socket -1 nsl tothe compile line. This
will produce a new version of t cl sh that is identical to the old one, but with your extensions
added.

If you are using Tk, you will want to rebuild the wi sh executable instead. This can be done as
follows :

%rodul e nynodul e
. declarations ...

% ncl ude wi sh. i /1 Support code for rebuilding wsh

The compilation process is similar as before, but now looks like this :

unix > swig -tcl exanple.i
uni X > gcc exanpl e_wap.c exanple.c -l1/usr/local/include -L/usr/local/lib -lItk -ltcl \
-1 X211 -1dl -Im-0 ny_wi sh

In this case you will end up with a new version of the wi sh executable with your extensions
added. Make sure you include -1t k,-1tcl,and -1 X11 in the order shown.

Compilation problems

Tcl is one of the easiest languages to compile extensions for. The Tcl header files should work
without problems under C and C++. Perhaps the only tricky task is that of compiling dynami-
cally loadable modules for C++. If your C++ code has static constructors, it is unlikely to work at
all. In this case, you will need to build new versions of the t cl sh or wi sh executables instead.
You may also need to link against the |i bgcc. a, i bg++. a, and li bst dc++. a libraries
(assuming g++).

Setting a package prefix

To avoid namespace problems, you can instruct SWIG to append a package prefix to all of your
functions and variables. This is done using the -prefix option as follows :

swig -tcl -prefix Foo exanpl e.i

If you have a function “bar ” in the SWIG file, the prefix option will append the prefix to the

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 218

name when creating a command and call it “Foo_bar .

Using [incr Tcl] namespaces

Alternatively, you can have SWIG install your module into an [incr Tcl] namespace by specifying
the - nanespace option :

swi g -tcl -namespace exanple.i

By default, the name of the namespace will be the same as the module name, but you can over-
ride it using the - pr ef i x option.

When the - nanespace option is used, the resulting wrapper code can be compiled under both
Tcl and [incr Tcl]. When compiling under Tcl, the namespace will turn into a package prefix such
as in Foo_bar. When running under [incr Tcl], it will be something like Foo: : bar .

Building Tcl/Tk Extensions under Windows 95/NT

Building a SWIG extension to Tcl/Tk under Windows 95/NT is roughly similar to the process
used with Unix. Normally, you will want to produce a DLL that can be loaded into tclsh or
wish. This section covers the process of using SWIG with Microsoft Visual C++ 4.x although the
procedure may be similar with other compilers.

Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked
as a custom build option. The process roughly follows these steps :

= Open up a new workspace and use the AppWizard to select a DLL project.

= Add both the SWIG interface file (the .i file), any supporting C files, and the name of the
wrapper file that will be created by SWIG (ie. exanpl e_wr ap. ¢). Note: If using C++,
choose a different suffix for the wrapper file such as exanpl e_wr ap. cxx. Don’t worry if
the wrapper file doesn’t exist yet--Developer studio will keep a reference to it around.

= Select the SWIG interface file and go to the settings menu. Under settings, select the
“Custom Build” option.

« Enter “SWIG” in the description field.

e Enter“swig -tcl -0 $(ProjDir)\$(InputNane)_wr ap.c $(InputPath)”in
the “Build command(s) field”

e Enter “$(Proj Di r)\ $(1 nput Nane) _wr ap. c” in the “Output files(s) field”.

= Next, select the settings for the entire project and go to “C++:Preprocessor”. Add the
include directories for your Tcl installation under “Additional include directories”.

= Finally, select the settings for the entire project and go to “Link Options”. Add the Tcl
library file to your link libraries. For example “t cl 80. | i b”. Also, set the name of the
output file to match the name of your Tcl module (ie. example.dll).

= Build your project.

Now, assuming all went well, SWIG will be automatically invoked when you build your project.
Any changes made to the interface file will result in SWIG being automatically invoked to pro-
duce a new version of the wrapper file. To run your new Tcl extension, simply run t ¢l sh or
w sh and use the | oad command. For example :

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl

219

MBDCOB > tcl sh80
% | oad exanpl e. dl |
%fact 4

24

%

Using NMAKE

Alternatively, SWIG extensions can be built by writing a Makefile for NMAKE. To do this, make
sure the environment variables for MSVC++ are available and the MSVC++ tools are in your

path.

Now, just write a short Makefile like this :

Makefile for building vari ous SWG generated extensi ons

SRCS = exanple.c

| FILE = exanpl e

| NTERFACE = $(IFILE). i
VWRAPFI LE = $(I1FILE) wap.c

Location of the Visual C++ tools (32 bit assuned)

TOALS = c:\nsdev

TARCGET = exanpl e.dl |

cC = $(TOALS)\ bin\cl . exe
LI NK = $(TOLS)\ bi n\l i nk. exe
| NCLUDE32 = -1$(TOOLS)\i ncl ude
MACH NE = | X86

C Library needed to build a DLL

DLLI BC = nsvert.lib oldnanes.lib

Wndows libraries that are apparently needed

WNLI B = kernel 32.1ib advapi 32.1ib user32.1ib gdi32.1ib comdl g32.1i b

wi nspool . lib

Libraries common to all DLLs
LI BS = $(DLLIBO $(WNLIB)

Linker options
LCPT = -debug: full -debugtype: cv / NCDEFAULTLI B / RELEASE / NCLOXO /
MACH NE: $(MACH NE) -entry:_D | Mai nCRTSt art up@2 -dl |

C conpiler flags

CFLAGS =/Z7 /A /c /nol ogo

TCL_INCLUDES = -ld:\tcl8.0a2\generic -1d:\tcl8.0a2\w n
TCLLIB = d:\tcl 8. 0a2\win\tcl 80.1ib

tcl::

\oo\swig -tel -0 $(WRAPFI LE) $(| NTERFACE)
$(OO) $(CFLAGS) $(TCL_I NCLUDES) $(SRCS) $(WRAPFI LE)
set LIB=$(TOCLS)\Iib

$(LINK) $(LCPT) -out:exanple.dl | $(LIBS) $(TCLLIB) exanpl e. obj exanpl e_wr ap. obj

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 220

To build the extension, run NMAKE (you may need to run vcvars32 first). This is a pretty mini-
mal Makefile, but hopefully its enough to get you started. With a little practice, you’ll be mak-
ing lots of Tcl extensions.

Basic Tcl Interface

Functions

C functions are turned into new Tcl commands with the same usage as the C function. Default/
optional arguments are also allowed. An interface file like this :

%rodul e exanpl e
int foo(int a);
doubl e bar (double, double b = 3.0);

Will be used in Tcl like this ;

set a [foo 2]
set b [bar 3.5 -1.5]
set b [bar 3.5] # Note : default argument is used

There isn’t much more to say...this is pretty straightforward.

Global variables

For global variables, things are a little more complicated. For the following C datatypes, SWIG
will use Tcl’s variable linking mechanism to provide direct access :

int, unsigned int,
doubl e,
char *,

When used in an interface file and script, it will operate as follows :

I/ exanpl e.
%rodul e exanpl e

doubl e My/_vari abl e;

Tcl script
puts $M/_vari abl e # Qutput value of C global variable
set M/_variable 5.5 # Change the val ue

For all other C datatypes, SWIG will generate a pair of set/get functions. For example :

/1 exanple.i
short M/_short;

will be accessed in Tcl as follows :
puts [M/_short_get] # Get value of global variable

M/_short_set 5.5 # Set value of global variable

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 221

While not the most elegant solution, this is the only solution for now. Tcl’s hormal variable link-
ing mechanism operates directly on a variables and would not work correctly on datatypes other
than the 3 basic datatypes supported by Tcl (i nt , doubl e, and char *).

Constants

Constants are created as read-only variables. For odd datatypes (not supported by the variable
linking mechanism), SWIG generates a string representation of the constant and use it instead
(you shouldn’t notice this however since everything is already a string in Tcl). It is never neces-
sary to use a special “get” function with constants. Unlike Tcl variables, constants can contain
pointers, structure addresses, function pointers, etc...

Pointers
Pointers to C/C++ objects are represented as character strings such as the following :

_100f 8e2_Vector_p

A NULL pointer is represented by the string “NULL”. NULL pointers can also be explicitly cre-
ated as follows :

0 Vector_p

In Tcl 8.0, pointers are represented using a new type of Tcl object, but the string representation is
the same (and is interchangable). As a general, direct manipulation of pointer values is discour-
aged.

Structures
SWIG generates a basic low-level interface to C structures. For example :

struct Vector {
doubl e Xx,vY, z;

b
gets mapped into the following collection of C functions :

doubl e Vector_x_get (Vector *obj)
doubl e Vector_x_set(Vector *obj, double x)
doubl e Vector _y get(Vector *obj)
doubl e Vector_y set(Vector *obj, double y)
doubl e Vector_z_get (Vector *obj)
doubl e Vector_z_set(Vector *obj, double z)

These functions are then used in the resulting Tcl interface. For example :

v is a Vector that got created somehow

% Vector _x_get $v

3.5

% Vector_x_set $v 7.8 # Change x conponent

Similar access is provided for unions and the data members of C++ classes.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl

222

C++ Classes

C++ classes are handled by building a set of low level accessor functions. Consider the following

class :

class List {

publ i c:
List();
~Li st();
int search(char *iten);
void insert(char *iten);
voi d rermove(char *iten);
char *get(int n);
int |ength;

static void print(List *I);

}s

When wrapped by SWIG, the following functions are created :

Li st
voi d
int
voi d
voi d
char
int
int
voi d

*new List();

del ete_ List(List *I);

Li st_search(List *I, char *iten);
List_insert(List *I, char *iten);
Li st_renmove(List *I, char *itenj;
*List_get(List *I, int n);

Li st _length_get (List *I);
List_length_set(List *I, int n);
List_print(List *I);

Within Tcl, we can use the functions as follows :

% set |

[new Li st]

%List_insert $I Ae
%List_insert $I Stout
%List_insert $I Lager
%List_print $I

Lager
St out

Ae

%puts [List_|ength get $I]

3

% puts 3l
~1008560_List_p

%

C++ objects are really just pointers (which are represented as strings). Member functions and
data are accessed by simply passing a pointer into a collection of accessor functions that take the
pointer as the first argument.

While somewhat primitive, the low-level SWIG interface provides direct and flexible access to
almost any C++ object. As it turns out, it is possible to do some rather amazing things with this
interface as will be shown in some of the later examples. SWIG 1.1 also generates an object ori-

ented interface that can be used in addition to the basic interface just described here.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 223

The object oriented interface

With SWIG 1.1, a new object oriented interface to C structures and C++ classes is supported. This
interface supplements the low-level SWIG interface already defined--in fact, both can be used
simultaneously. To illustrate this interface, consider our previous Li st class:

class List {

publ i c:
List();
~List();
int search(char *itenj;
void insert(char *iten);
voi d rermove(char *iten);
char *get(int n);
int |ength;

static void print(List *I);

}

Using the object oriented interface requires no additional modifications or recompilation of the
SWIG module (the functions are just used differently).

Creating new objects

The name of the class becomes a new command for creating an object. There are 5 methods for
creating an object (MyQbj ect is the name of the corresponding C++ class)

[P

M/Chj ect o # Oreates a new object ‘o

M/Chj ect o -this $objptr # Turn a pointer to an existing Gt+ object into a
Tcl object ‘o

M/Chj ect -this $objptr # Turn the pointer $objptr into a Tcl “object”

O eate a new object and pick a name for it. A handl e
will be returned and is the same as the pointer val ue.

M/Chj ect -args args

H*

M/ Qoj ect The same as M/(hj ect -args, but for constructors that

take no argunents.

H

Thus, for our List class, we can create new List objects as follows :

List | # Ceate a new list |

set listptr [new List] # Oreate a new List using low level interface

List 12 -this $listptr # Turn it into a List object naned ‘12’

set |13 [List] # Oreate a new list. The name of the list is in $I3
List -this $listptr # Turn $listptr into a Tcl object of the same nane

Now assuming you’re not completely confused at this point, the best way to think of this is that
there are really two different ways of representing an object. One approach is to simply use the
pointer value as the name of an object. For example :

_100e8f8_List_p

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 224

The second approach is to allow you to pick a name for an object such as “foo”. The different
types of constructors are really just mechanism for using either approach.

Invoking member functions

Member functions are invoked using the name of the object followed by the method name and
any arguments. For example :

% Li st |

%I insert “Bob”
%] insert “Mary”
%1 search “Dave”
0

%-. ..

Or if you let SWIG generate the name of the object... (this is the pointer model)

%set | [List]

% $l insert “Bob” # Note $l contains the name of the object
%$l insert “Mary”

% $I search “Dave”

0

%

Deleting objects

Since objects are created by adding new Tcl commands, they can be deleted by simply renaming
them. For example :

%rename | ““ # Destroy list object ‘I’

SWIG will automatically call the corresponding C/C++ destructor, with one caveat--SWIG will
not destroy an object if you created it from an already existing pointer (if you called the construc-
tor using the -this option). Since the pointer already existed when you created the Tcl object, Tcl
doesn’t own the object so it would probably be a bad idea to destroy it.

Accessing member data

Member data of an object can be accessed using the cget method. The approach is quite similar
to that used in [incr Tcl] and other Tcl extensions. For example :

%] cget -length # CGet the length of the Iist
13

The cget method currently only allows retrieval of one member at a time. Extracting multiple
members will require repeated calls.

The member -t hi s contains the pointer to the object that is compatible with other SWIG func-
tions. Thus, the following call would be legal

% Li st | # Ceate a new |list object
%I insert M ke
%List_print [I cget -this] # Print it out using | owlevel function

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl

225

Changing member data
To change the value of member data, the conf i gur e method can be used. For example :

%1 configure -length 10 # Change length to 10 (probably not a good idea, but

possible).
In a structure such as the following :

struct Vector {
doubl e x, vy, z;

b
you can change the value of all or some of the members as follows :

%v configure -x 3.5 -y 2 -z -1.0

The order of attributes does not matter.

Relationship with pointers

The object oriented interface is mostly compatible with all of the functions that accept pointer

values as arguments. Here are a couple of things to keep in mind :

= |If you explicitly gave a name to an object, the pointer value can be retrieved using the

‘cget -t hi s’ method. The pointer value is what you should give to other SWIG gener-

ated functions if necessary.

< If you let SWIG generate the name of an object for you, then the name of the object is the

same as the pointer value. This is the preferred approach.

= If you have a pointer value but it’s not a Tcl object, you can turn it into one by calling the

constructor with the ‘- t hi s’ option.

Here is a script that illustrates how these things work :

Exanple 1 : Wsing a named obj ect

List | # Oeate a new |list
| insert Dave # Call sone mnet hods
| insert Jane

| insert Pat

List_print [I cget -this] # Call a static method (which requires the pointer val ue)

Exanple 2: Let SWG pi ck a nane

set | [List] # Create a new list
$l insert Dave # Call sone net hods
$l insert Jane

$l insert Pat

List_print $I # Call static method (nanme of object is same as pointer)

Exanpl e 3: Already existing object

set | [new List] # Create a raw obj ect using | owlevel interface
List_insert $l Dave # Call sone nethods (using |owlevel functions)
List -this $I # Turn it into a Tcl object instead

$l insert Jane

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 226

$l insert Part
List_print $l # Call static nmethod (uses pointer value as before).

Performance concerns and disabling the object oriented interface

The object oriented interface is mainly provided for ease of programming at the expense of intro-
ducing more overhead and increased code size (C code that is). If you are concerned about these
issues use the basic SWIG interface instead. It provides direct access and is much faster. As it
turns out, it is possible to build an object oriented interface directly in Tcl as well--an example
we’ll return to a little later.

To disable the object oriented interface, run SWIG with the - noobj ect option. This will strip
out all of the extra code and produce only the low-level interface.

About the examples

The next few sections cover Tcl examples of varying complexity. These are primarily designed to
illustrate how SWIG can be used to integrate C/C++ and Tcl in a variety of ways. Some of the
things that will be covered are :

= Controlling C programs with Tcl

= Building C data structures in Tcl.

Use of C objects with Tk

Wrapping a C library (OpenGL in this case)

= Accessing arrays and other common data structures
= Using Tcl to build new Tcl interfaces to C programs.
= Modifying SWIG’s handling of datatypes.

= And a bunch of other cool stuff.

Binary trees in Tcl

In this example, we show Tcl can be used to manipulate binary trees implemented in C. This will
involve accessing C data structures and functions.

C files
We will build trees using the following C header file :
/* tree.h */

typedef struct Node Node;
struct Node {

char *Kkey;

char *val ue;

Node *left;

Node *right;
b
typedef struct Tree {

Node *head; /* Starting node */

Node *Z; /* Endi ng node (at |eaves) */
} Tree;

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl

227

extern Node *new Node(char *key, char *val ue);
extern Tree *new Tree();

The C functions to create new nodes and trees are as follows :

/* File :

tree.c */

#i ncl ude <string. h>
#include “tree. h”
Node *new Node(char *key, char *val ue) {

b

Node *n;

n = (Node *) mall oc(sizeof (Node));

n->key = (char *) nalloc(strlen(key)+1);
n->value = (char *) malloc(strlen(val ue)+1);
strcpy(n->key, key) ;

strcpy(n->val ue, val ue) ;

n->left = 0;

n->right = 0;

return n;

Tree *new Tree() {

}

Tree *t;

t = (Tree *) mall oc(sizeof(Tree));
t->head = new Node(““,” _head__");
t->z = new Node(“_end_",”__end_");

t->head->right = t->z;
t->z->left = t->z;
t->z->right = t->z;
return t;

Making a quick a dirty Tcl module

To make a quick Tcl module with these functions, we can do the following :

/] file : tree.i
%rodul e tree
%

#incl ude “tree. h”

%

% nclude tree.h

To build the module, run SWIG as follows and compile the resulting output :

%swig -tcl -ltclsh.i tree.i

%gcc tree.c tree_wap.c -l/usr/local/include -L/usr/local/lib -ltcl

[/ Just grab header file since it’s fairly sinple

-Ilm-0 ny_tclsh

We can now try out the module interactively by just running the new ‘ny_t cl sh’ executable.

uni x > ny_tclsh

% set t [new Tree]

8053198 Tree p

%set n [Tree_head_get $t] # Get first node

_80531a8_Node_p

% puts [Node_val ue_get $n] # Get its value
head

% Node -this $n

Version 1.1, June 23, 1997

eate a new tree

SWIG Users Guide SWIG and Tcl

228

% $n cget -val ue
__head

Building a C data structure in Tcl

Atenative method for getting val ue

Given our simple Tcl interface, it is easy to write Tcl functions for building up a C binary tree. For

example :

Insert an iteminto a tree

proc insert_tree {tree key val ue} {

set tree_head [Tree_head_get $tree]

set tree_z [Tree_z_get $tree]

set p $tree_head

set x [Node_right get $tree_head]

whi | e {[Node_key_get $x]
set p $x

“ _end_"} {

if {$key < [Node _key get $x]} {
set x [Node | eft_get $x]

A

set x [Node_right _get $x]

}
}

set x [new Node $key $val ue]
if {$key < [Node key get $p]} {

Node | eft _set $p $x

J
Node_right _set $p $x
}

Node_| eft _set $x $tree_z

Node_right_set $x $tree_z

}

Search tree and return all

proc search_tree {tree key} {

set tree_head [Tree_head_get $tree]

set tree_z [Tree_z_get $tree]

set found {}

set x [Node_right_get $tree_head]

whi l e {[Node_key _get $x]

I'="_end_"} {

if {[Node_key_get $x] == $key} {
| append found [Node_val ue_get $x]

}
if {$key < [Node_key_get $x]} {

set x [Node_| eft_get $x]

A

set x [Node_right_get $x]

}
}

return $found

}

While written in Tcl, these functions are building up a real C binary tree data structure that could
be passed into other C function. For example, we could write a function that globs an entire
directory and builds a tree structure as follows :

Insert all of the files in pathname into a binary tree

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 229

proc build_dir_tree {tree pathname} {
set error [catch {set filelist [glob -noconplain $pathname/*]}]
if {$error == 0} {
foreach f $filelist {
if {[fileisdirectory $f] == 1} {
insert_tree $tree [file tail $f] $f
if {[file type $f] = "link"} {build_dir_tree $tree $f}

A
insert_tree $tree [file tail $f] $f
}

}

We can test out our function interactively as follows :

% source tree.tcl

% set t [new Tree] # Create a newtree

~80533c8_Tree_ p

%bui ld_dir_tree $t /hone/ beazl ey/ SWGE SWGL. 1

% search_tree $t tcl

/ home/ beazl ey/ SWGE SWGL. 1/ Exanpl es/tcl /hone/ beazl ey/ SWG SWGL. 1/swig_lib/tcl
%

Implementing methods in C

While our Tcl methods may be fine for small problems, it may be faster to reimplement the insert
and search methods in C :

void insert_tree(Tree *t, char *key, char *val ue) {

Node *p;

Node *x;

p = t->head;

X = t->head->right;
while (x '=1t->z) {

p =X
if (strcnp(key, x->key) < 0)
x = x->left;
el se
X = X->right;
}
x = new_Node(key, val ue) ;
if (strcnp(key, p->key) < 0)
p->left = x;
el se
p->right = x;
x->left = t->z;
x->right = t->z;

}

To use this function in Tcl, simply put a declaration into the filetree. hortree.i.
When reimplemented in C, the underlying Tcl script may not notice the difference. For example,

our directory subroutine would not care if i nsert _tree had been written in Tcl or C. Of
course, by writing this function C, we will get significantly better performance.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 230

Building an object oriented C interface

So far our tree example has been using the basic SWIG interface. With a little work in the inter-
face file, we can improve the interface a little bit.

%rodul e tree
%
#i nclude "tree. h"
%
% ncl ude tree. h
%
/* Function to count up Nodes */
static int count_nodes(Node *n, Node *end) {
if (n==-end) return 0O;
return l+count _nodes(n->l eft, end) +count _nodes(n->ri ght, end);
}
%

/] Attach sone new nethods to the Tree structure

%ddnet hods Tree {
void insert(char *key, char *value) {
insert_tree(self, key, val ue);
}
char *search(char *key) {
return search_tree(self, key);
}
char *findnext(char *key) {
return find_next(self,key);
}
int count() {
return count_nodes(sel f->head->right, sel f->z);
}

Tree(); /1l This is just another name for new Tree

}

The %addmnet hods directive can be used to attach methods to existing structures and classes. In
this case, we are attaching some methods to the Tr ee structure. Each of the methods are simply
various C functions we have written for accessing trees. This type of interface file comes in par-
ticularly handy when using the Tcl object oriented interface. For example, we can rewrite our
directory globber as follows :

proc build_dir_tree {tree pathname} {
set error [catch {set filelist [glob -noconplain $pathname/*]}]
if {$error == 0} {
foreach f $filelist {
if {[file isdirectory $f] == 1} {
$tree insert [file tail $f] $f # Note new cal | i ng net hod
if {[file type $f] I'="link"} {build_dir_tree $tree $f}
A
$tree insert [file tail $f] $f
}

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 231

}

Now using it :
% source tree.tc
% Tree t # Create a new Tree obj ect
_8054610_Tree_p
%build dir_tree t /home/ beazl ey/ SWGE SWGL. 1
%t count
1770
%t search glaux.i
/ hone/ beazl ey/ SW G SWGL. 1/ Exanpl es/ GQoen@./ gl aux. i
%t search typenaps
/ home/ beazl ey/ SWGE SWGL. 1/ Exanpl es/ per | 5/ t ypemaps
%t findnext typemaps
/ horre/ beazl ey/ SWE SW GL. 1/ Exanpl es/ pyt hon/ t ypemaps
%t findnext typenmaps
/ hone/ beazl ey/ SWGE SWGL. 1/ Exanpl es/ tcl / t ypenaps
%t findnext typenaps
None
%

With a little extra work, we’ve managed to turn an ordinary C structure into a class-like object in
Tcl.

Building C/C++ data structures with Tk

Given the direct access to C/C++ objects provided by SWIG, it can be possible to use Tk to inter-
actively build a variety of interesting data structures. To do this, it is usually useful to maintain
a mapping between canvas items and an underlying C data structure. This is done using asso-
ciative arrays to map C pointers to canvas items and canvas items back to pointers.

Suppose that we have a C program for manipulating directed graphs and that we wanted to pro-
vide a Tk interface for building graphs using a ball-and-stick model such as the following :

More Edges | Clear | Quit J@ ConnectivityQ Shortest path to node : [0

The SWIG interface file for this might look something like this :

%rodul e graph
%

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 232

#i ncl ude “graph. h”

%

/* Get a node’s nunber */

int Get Num(Node *n) ; /* Get a node’ s nunber */
Adj Li st *Get Adj (Node *n);; /* Get a node’ s adj acency list */
Adj Li st *Get Next (Adj Li st *I); [* Get next node in adj. list */
Node *CGet Node(Adj Li st *1); /* Get node fromadj. |ist */
Node *new_node() ; /* Make a new node */

voi d AddLi nk(Node *v1, Node *v2); /* Add an edge */
.. etc ...

The interface file manipulates Node and Adj Li st structures. The precise implementation of
these doesn’t matter here--in fact SWIG doesn’t even need it. Within a Tcl/Tk script however, we
can keep track of these objects as follows :

Make a new node and put it on the canvas
proc nkNode {x y} {
gl obal nodeX nodeY nodeP nodeMap nodeli st edgeFirst edgeSecond
set new [.c create oval [expr $x-15] [expr $y-15] \
[expr $x+15] [expr $y+15] -outline bl ack \
-fill white -tags node]
set newnode [new _node] ; # Make a new C Node
set nnum [Get Num $newnode] ;# Get our node's nunber
set id[.c create text [expr $x-4] [expr $y+10] \
-text $nnum -anchor sw -tags nodei d]

set nodeX($new) $x ;# Save coords of canvas item
set nodeY($new) Py

set nodeP($new) $newnode ;# Save C pointer

set nodeMap($newnode) $new ;# Map pointer to Tk wi dget

set edgeFirst($new) {}

set edgeSecond($new) {}

| append nodeLi st $new ;# Keep a list of all C
1# Pointers we've nade

}

Make a new edge between two nodes and put an arrow on the canvas
proc nkEdge {first second newt {
gl obal nodeP edgeFirst edgeSecond
set edge [nkArrow $first $second] ;# Make an arrow
| append edgeFirst ($first) $edge ;# Save infornation
| append edgeSecond($second) $edge
if {$new == 1} {
Now add an edge within our C data structure
AddLi nk $nodeP($first) $nodeP($second) ;# Add link to Cstructure

}
}

In these functions, the array nodeP() allows us to associate a particular canvas item with a C
object. When manipulating the graph, this makes it easy to move from the Tcl world to C. A
second array, nodeMap() allows us to go the other way--mapping C pointers to canvas items. A
list nodeLi st keeps track of all of the nodes we’ve created just in case we want to examine all of
the nodes. For example, suppose a C function added more edges to the graph. To reflect the new
state of the graph, we would want to add more edges to the Tk canvas. This might be accom-
plished as follows :

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 233

Look at the C data structure and update the canvas
proc nkEdges {} {
gl obal nodeX nodeY nodeP nodeMap nodelLi st edgeFirst edgeSecond
unset edgeFirst
unset edgeSecond
.C delete arc # Edges have been tagged with arc (not shown)

foreach node $nodelLi st { ;# clear old lists
set edgeFi rst($node) {}
set edgeSecond($node) {}

}
foreach node $nodeLi st { ;# G through all of the nodes
set v $nodeP($node) ;# Get the node pointer
set vl [GetAdj $v] ;# Cet its adjacency |ist
while {$vl = "NULL"} {
set v2 [Get Node $v1] ;# Get node pointer
set w $nodeMap($v2) ;# Get canvas item
nkEdge $node $w O ;# Make an edge between them
set vl [Get Next $vi] ;# Get next node
}
}

This function merely scans through all of the nodes and walks down the adjacency list of each
one. The nodeMap() array maps C pointers onto the corresponding canvas items. We use this
to construct edges on the canvas using the nkEdge function.

Accessing arrays

In some cases, C functions may involve arrays and other objects. In these instances, you may

have to write helper functions to provide access. For example, suppose you have a C function
like this :

/! Add vector at+b -> c
voi d vector_add(doubl e *a, double *b, double *c, int size);

SWIG is quite literal in its interpretation of doubl e *--it is a pointer to a doubl e. To provide
access, a few helper functions can be written such as the following :

/1 SWG hel per functions for doubl e arrays
%nline %
doubl e *new doubl e(int size) {
return (double *) nalloc(size*si zeof (doubl e));

}

voi d del et e_doubl e(doubl e *a) {
free a;

}

doubl e get _doubl e(doubl e *a, int index) {
return afindex];

}

voi d set_doubl e(doubl e *a, int index, double val) {
alindex] = val;

}

%

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 234

Using our C functions might work like this :

Tcl code to create sone arrays and add them

set a [new _doubl e 200]
set b [new doubl e 200]
set ¢ [new doubl e 200]

Fill a and b with sone val ues

for {set i O} {$i < 200} {incr i 1} {
set _double $a $i 0.0
set _double $b $i $i

}

Add themand store result in c
vector_add $a $b $c 200

The functions get _doubl e and set _doubl e can be used to access individual elements of an
array. To convert from Tcl lists to C arrays, one could write a few functions in Tcl such as the fol-
lowing :

Tcl Procedure to turn alist into a Carray
proc Tcl2Array {1} {
set len [Ilength $I]
set a [new _doubl e $I en]
set i O
foreach item$l {
set_double $a $i $item
incr i 1
}

return $a

}

Tcl Procedure to turn a Carray into a Tcl List
proc Array2Tcl {a size} {
set | {}
for {set i 0} {$i < size} {incr i 1} {
| append $I [get_doubl e $a $i]
}

return $l

}

While not optimal, one could use these to turn a Tcl list into a C representation. The C represen-
tation could be used repeatedly in a variety of C functions without having to repeatedly convert
from strings (Of course, if the Tcl list changed one would want to update the C version). Like-
wise, it is relatively simple to go back from C into Tcl. This is not the only way to manage
arrays--typemaps can be used as well. The SWIG library file ‘array. i * also contains a variety
of pre-written helper functions for managing different kinds of arrays.

Building a simple OpenGL module

In this example, we consider building a SWIG module out of the OpenGL graphics library. The
OpenGL library consists of several hundred functions for building complex 3D images. By
wrapping this library, we will be able to play with it interactively from a Tcl interpreter.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 235

Required files

To build an OpenGL module, you will need to have some variant of OpenGL installed on your
machine. If unavailable, the Mesa graphics library is an OpenGL clone that runs on most
machines that support X11. We will use the “GL/gl.h”, “GL/glu.h”, and the GL Auxilliary
libraries.

Wrapping gl.h
The first step is to build an interface from the gl.h file. To do this, follow these steps :

e Copythefilegl . htoafilegl .i which will become the interface.

= Editthegl . i file by taking out unneeded C preprocessor directives and any other clutter
that you find.

= Put the following code at the beginning of the gl . i file

/1 gl.i : SWGfile for pen@&
%odul e gl

%

#include <@./gl . h>

%

. Rest of edited gl.h file here ...

A critical part of this first step is making sure you have the proper set of typedefs in the gl . i
file. The first part of the file should include definitions such as the following :

typedef unsigned int Genum

t ypedef unsi gned char Q.bool ean;
typedef unsigned int Qbitfield,
typedef signed char Qbyte;
typedef short Gshort;

typedef int Qint;

typedef int Gsizei;

typedef unsigned char Q.ubyte;

t ypedef unsi gned short Q.ushort;
typedef unsigned int Quint;
typedef float G.float;

typedef float G.clanpf;

t ypedef doubl e Q.doubl e;

typedef doubl e G.cl anpd;

t ypedef voi d Qvoi d;

Wrapping glu.h

Next we write a module for the glu library. The procedure is essentially identical to gl . h--that
is, we’ll copy the header file and edit it slightly. In this case, gl u. h contains a few functions
involving function pointers and arrays. These may generate errors or warnings. As a result, we
can simply edit those declarations out. Fortunately, there aren’t many declarations like this. If
access is required later, the problem can often be fixed with typemaps and helper functions. The
final gl u. i file will look something like this :

%rodul e glu

%
#i ncl ude <@./ gl u. h>

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 236

%
rest of edited glu.h file here ...

Given these two files, we have a fairly complete OpenGL package. Unfortunately, we still don’t
have any mechanism for opening a GL window and creating images. To to this, we can wrap
the OpenGL auxilliary library which contains functions to open windows and draw various
kinds of objects (while not the most powerful approach, it is the simplest to implement and
works on most machines).

Wrapping the aux library

Wrapping the aux library follows exactly the same procedure as before. You will create a file
gl aux. i such as the following :

// File :glaux.i
%rodul e gl aux

%

#i ncl ude “gl aux. h”

%

Rest of edited glaux.h file ...

A few helper functions

Finally, to make our library a little easier to use, we need to have a few functions to handle arrays
since quite a few OpenGL calls use them as arguments. Small 4 element arrays are particularly
useful so we’ll create a few helper functions in a file called hel p. i .

/1l help.i : Qoen@ hel per functions

%nline %
G float *newfv4(Q@float a, Gfloat b, Afloat ¢, Afloat d) {
QAfloat *f;
f = (Afloat *) nalloc(4*sizeof (GAfloat));
f[0] =a; f[1] =b; f[2] =¢c; f[3] =d;
return f;

void setfv4(Qfloat *fv, Gfloat a, Gfloat b, Gfloat ¢, Gfloat d) {
fv[0] =a; fv[1l] =Db; fv[2] =c; fv[3] = 0,
}

%
%ane(del fv4) void free(void *);

An OpenGL package

Whew, we’re almost done now. The last thing to do is to package up all of our interface files into
a single file called opengl . i .

/1
/1 opengl .i. SWG Interface file for QpenG
%odul e opengl

% ncl ude gl .i /1 The main & functions

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 237

% ncl ude glu.i /1 The Q.U library
% ncl ude gl aux. i /1 The aux library
% ncl ude hel p. i /1 Qur hel per functions

To build the module, we can simply run SWIG as follows :
unix > swig -tcl opengl.i # Build a dynanicly | oaded extension
or
unix > swig -tcl -Iwish.i opengl.i # Build a statically |inked w sh executable

Compile the file opengl _wr ap. ¢ with your C compiler and link with Tcl, Tk, and OpenGL to
create the final module.

Using the OpenGL module
The module is now used by writing a Tcl script such as the following :

| oad ./opengl.so

aux! ni t D spl ayMbde [expr {$AUX SINGLE | $AUX RGBA | $AUX _DEPTH]
auxl nitPosition 0 0 500 500

aux!| ni t Wndow "Li t - Sphere"

set up material properties

set mat_specular [newfv4 1.0 1.0 1.0
set mat_shininess [newfv4 50.0 0 0 O]
set light_position [newfv4 1.0 1.0 1.0 0.0]

1.0]

gl Material fv $A_FRONT $Q._SPECULAR $nat _specul ar

gl Material fv $G_FRONT $G_SH N NESS $mat _shi ni ness
gl Lightfv $Q_LI GHTO $Q._PCSI TICN $li ght _position
gl Enabl e $QG._LI GHTI NG

gl Enabl e $G._LI GHTO

gl Dept hFunc $G._LEQUAL

gl Enabl e $G._DEPTH TEST

Set up view

glQearColor 0000
glColor3f 1.0 1.0 1.0

gl Matri xMbde $G._PRQIECTI ON
gl Loadl dentity
glGtho-11-11-11

gl Matri xMbde $G._MODELMI EW
gl Loadl dentity

Draw it

gldear $&_COLCR BUFFER BI T
gl dear $G@_DEPTH BUFFER BI T
auxSol i dSphere 0.5

dean up
del f v4 $mat _specul ar

del fv4 $mat _shi ni ness
del fv4 $light_position

In our interpreted interface, it is possible to interactively change parameters and see the effects of

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 238

various OpenGL functions. This a great way to figure out what various functions do and to try
different things without having to recompile and run after each change.

Problems with the OpenGL interface
While the OpenGL interface we have generated is fully usable, it is not without problems.

< OpenGL constants are installed as global variables. As a result, it is necessary to use the
global keyword when writing Tcl subroutines. For example :

proc clear_screan { } {
gl obal G_OOLCR BUFFER BI T, G._DEPTH BUFFER BI T
gldear $G_COLCR BUFFER BI T
gl d ear $G_DEPTH BUFFER BI T

}

< Arrays need to be accessed via helper functions such as our newf v4() function. This
approach certainly works and its easy enough to implement, but it may be preferable to
call certain OpenGL functions with a Tcl list instead. For example :

gl Material fv $G_FRONT $Q_SPECULAR {1.0 1.0 1.0 1.0}

While these are only minor annoyances, it turns out that you can address both problems using
SWIG typemaps (which are discussed shortly).

Exception handling

The %&xcept directive can be used to create a user-definable exception handler in charge of con-
verting exceptions in your C/C++ program into Tcl exceptions. The chapter on exception han-
dling contains more details, but suppose you extended the array example into a C++ class like
the following :

cl ass RangeError {}; /1 Used for an exception

cl ass Doubl eArray {
private:
int n;
doubl e *ptr;
publ i c:
I/ Oeate a new array of fixed size
Doubl eArray(int size) {
ptr = new doubl e[si ze] ;
n = size;
}
/1 Destroy an array
~Doubl eArray() {
del ete ptr;
}
/1l Return the length of the array
int length() {
return n;

}

Il Get an itemfromthe array and perform bounds checki ng.
doubl e getiten(int i) {

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 239

if ((i >>0) & (i < n))
return ptr[i];

el se
throw RangeError();

}
/] Set an itemin the array and perform bounds checki ng.
void setiten(int i, double val) {
if ((i >=0) & (i < n))
ptr[i] = val;
el se {
throw RangeError();
}
}

}

The functions associated with this class can throw a C++ range exception for an out-of-bounds
array access. We can catch this in our Tcl extension by specifying the following in an interface
file:

Y%except (tcl) {

try {
$functi on /1l Cets substituted by actual function call

}
catch (RangeError) {
interp->result = “Array index out-of -bounds”;
return TCL_ERRCR
}
}

orin Tcl 8.0

%except (tcl 8) {

try {
$function /1l Gets substituted by actual function call

}

catch (RangeError) {
Tcl _SetStringQoj (tcl _result,"Array index out-of-bounds”);
return TCL_ERRCR

}
}

When the C++ class throws a RangeEr r or exception, our wrapper functions will catch it, turn it
into a Tcl exception, and allow a graceful death as opposed to just having some sort of mysteri-
ous program crash. We are not limited to C++ exception handling. Please see the chapter on
exception handling for more details on other possibilities, including a method for language-inde-
pendent exception handling..

Typemaps

This section describes how SWIG’s treatment of various C/C++ datatypes can be remapped
using the % ypemap directive. While not required, this section assumes some familiarity with
Tcl’'s C APL. The reader is advised to consult a Tcl book. A glance at the chapter on SWIG
typemaps will also be useful.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 240

What is a typemap?

A typemap is mechanism by which SWIG’s processing of a particular C datatype can be
changed. A simple typemap might look like this :

%rodul e exanpl e

% ypemap(tcl,in) int {
$target = (int) atoi($source);
printf(“Received an integer : %l\n", $target);
}

extern int fact(int n);

Typemaps require a language name, method name, datatype, and conversion code. For Tcl,
“tcl” should be used as the language name. For Tcl 8.0, “tcl8” should be used if you are using the
native object interface. The “in” method in this example refers to an input argument of a func-
tion. The datatype ‘int’ tells SWIG that we are remapping integers. The supplied code is used to
convert from a Tcl string to the corresponding C datatype. Within the supporting C code, the
variable $sour ce contains the source data (a string in this case) and $t ar get contains the des-
tination of a conversion (a C local variable).

When the example is compiled into a Tcl module, it will operate as follows :

%fact 6

Received an integer : 6
720

%

A full discussion of typemaps can be found in the main SWIG users reference. We will primarily
be concerned with Tcl typemaps here.

Tcl typemaps
The following typemap methods are available to Tcl modules :

% ypemap(tcl,in) Converts a string to input function arguments
% ypemap(tcl, out) Converts return value of a C function to a string
% ypemap(tcl, freearqg) Cleans up a function argument (if necessary)

% ypemap(tcl, argout) Output argument processing

% ypemap(tcl, ret) Cleanup of function return values

% ypemap(tcl, const) Creation of Tcl constants

% ypemap(menberin) Setting of C++ member data

% ypemap(menber out) Return of C++ member data

% ypemap(tcl, check) Check value of function arguments.

Typemap variables
The following variables may be used within the C code used in a typemap:

$source Source value of a conversion
$t ar get Target of conversion (where the result should be stored)
$type C datatype being remapped

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 241

$mangl e Mangled version of data (used for pointer type-checking)
$val ue Value of a constant (const typemap only)
$arg Original function argument (usually a string)

Name based type conversion

Typemaps are based both on the datatype and an optional name attached to a datatype. For
example :

%rodul e foo

// This typemap will be applied to all char ** function argunents
% ypemap(tcl,in) char ** { ... }

// This typemap is applied only to char ** arguments naned ‘argv’
% ypemap(tcl,in) char **argv { ... }

In this example, two typemaps are applied to the char ** datatype. However, the second
typemap will only be applied to arguments named ‘ar gv’. A named typemap will always over-
ride an unnamed typemap.

Due to the name-based nature of typemaps, it is important to note that typemaps are indepen-
dent of typedef declarations. For example :

% ypemap(tcl, in) double {
. get a double ...

voi d foo(doubl e); I/ Uses the above typenap
t ypedef doubl e Real ;
voi d bar(Real); // Does not use the above typemap (double != Real)

To get around this problem, the %appl y directive can be used as follows :

% ypemap(tcl,in) double {
. get a double ...

voi d foo(double);

t ypedef doubl e Real; /1 Uses typemap
%pply double { Real }; /1 Applies all “double” typemaps to Real .
voi d bar(Real); // Now uses the same typemap.

Converting a Tcl list to a char **

A common problem in many C programs is the processing of command line arguments, which
are usually passed in an array of NULL terminated strings. The following SWIG interface file
allows a Tcl list to be used asa char ** object.

%odul e ar gv

// This tells SWGto treat char ** as a special case
% ypemap(tcl,in) char ** {
int tenpc;
if (Tcl _SplitlList(interp, $source, & enpc, &target) == TOL_ERROR)
return TCL_ERRCR

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 242

/1 This gives SWG sone cleanup code that will get called after the function call
% ypenap(tcl,freearg) char ** {
free((char *) $source);

}
// Return a char ** as a Tcl |ist
% ypemap(tcl,out) char ** {
int i =0;
while ($sourcel[i]) {
Tcl _AppendH erent (i nterp, $sourceli]);
i ++;
}
}
/1 Now a few test functions
%nline %
int print_args(char **argv) {
int i =0;
while (argv[i]) {
printf("argv[%] = %\n", i,argv[i]);
i ++;
} .
return i;
}

/!l Returns a char ** |ist

char **get_args() {
static char *val ues[]
return &val ues[0];

{ "Dave", "Mke", "Susan", "John", "Mchelle", 0};

}

/1 A global variable
char *args[] ={ "123", "54", "-2", "0", "NULL", O };

%

% ncl ude tclsh.i
When compiled, we can use our functions as follows :

% print_args {John Quido Larry}

argv[0] = John
argv[1] = Quido
argv[2] = Larry
3

% put s [get_args]

Dave M ke Susan John M chelle
% puts [args_get]

123 54 -2 0 NULL

%

Perhaps the only tricky part of this example is the implicit memory allocation that is performed
by the Tcl _Spl it Li st function. To prevent a memory leak, we can use the SWIG “freearg”
typemap to clean up the argument value after the function call is made. In this case, we simply
free up the memory that Tcl _Spl it Li st allocated for us.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 243

Remapping constants

By default, SWIG installs C constants as Tcl read-only variables. Unfortunately, this has the
undesirable side effect that constants need to be declared as “global” when used in subroutines.
For example :

proc clearscreen { } {
global G__CO.CR BUFFER BI T
gldear $G_OCOCR BUFFER BI T

}

If you have hundreds of functions however, this quickly gets annoying. Here’s a fix using hash
tables and SWIG typemaps :

// Declare sone Tcl hash tabl e variabl es

0,
R
static Tcl _HashTabl e const Tabl e; /* Hash tabl e */
static int *Swi gconst ; /* Tenporary variable */
static Tcl _HashEntry *entryPtr; /* Hash entry */
static int dumy; /* dummy val ue */
0,
A

// Initialize the hash table (This goes in the initialization function)

%nit %
Tcl _I ni t HashTabl e(&onst Tabl e, TCL_STRI NG _KEYS) ;
%

/1 A Typemap for creating constant val ues
/1 $source = the val ue of the constant
/1 $target = the nane of the constant

% ypemap(tcl,const) int, unsigned int, |long, unsigned |ong {

entryPtr = Tcl _Creat eHashEnt ry(&const Tabl e, " $t arget ", &lummy) ;

swigconst = (int *) nalloc(sizeof(int));

*swi gconst = $sour ce;

Tcl _Set HashVal ue(entryPtr, swi gconst);

/* Make it so constants can al so be used as variables */

Tcl _LinkVar (interp,"$target”, (char *) swigconst, TCL_LINK INT | TCL_LINK READ O\LY);
b

/1 Now change integer handling to | ook for nanes in addition to val ues
% ypemap(tcl,in) int, unsigned int, long, unsigned |long {
Tcl _HashEntry *entryPtr;
entryPtr = Tcl _Fi ndHashEnt ry(&onst Tabl e, $sour ce) ;
if (entryPtr) {
$target = ($type) (*((int *) Tcl_GetHashVal ue(entryPtr)));
} else {
$target = ($type) atoi ($source);
}
}

In our Tcl code, we can now access constants by name without using the “global” keyword as
follows :

proc clearscreen { } {
gdear G_CORBUFFER BIT

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 244

Returning values in arguments

The “argout” typemap can be used to return a value originating from a function argument. For
example :

/1 A typenmap defining howto return an argument by appending it to the result
% ypemap(tcl, argout) doubl e *outval ue {

char dtenp[TCL_DOUBLE_SPACE] ;

Tcl _Print Doubl e(i nt erp, *($sour ce), dt enp) ;

Tcl _AppendE! enent (i nterp, dtenp);
}

/1 Atypemap telling SWGto ignore an argunent for input

/1 However, we still need to pass a pointer to the C function

% ypenmap(tcl,ignore) double *outval ue {
static doubl e tenp; /* A tenporary hol ding place */
$target = &t enp;

}

/1 Now a function returning two val ues

int nmypowdoubl e a, double b, double *outval ue) {
if ((a<0) || (b<0)) return -1,
*out val ue = pow(a, b);
return O;

}s

When wrapped, SWIG matches the ar gout typemap to the “doubl e *out val ue” argument.
The “ignore” typemap tells SWIG to simply ignore this argument when generating wrapper
code. As a result, a Tcl function using these typemaps will work like this :

% nypow 2 3 # Returns two val ues, a status value and the result
08
%

An alternative approach to this is to return values in a Tcl variable as follows :

% ypenmap(tcl, argout) doubl e *outval ue {
char tenp[TOL_DOUBLE_SPACE] ;
Tcl _Pri nt Doubl e(i nterp, *($source), dt enp) ;
Tcl _Set Var (i nterp, $arg, tenp, 0);
}
% ypenap(tcl,in) double *outval ue {
static doubl e tenp;
$target = & enp;
}

Our Tcl script can now do the following :

% set status [nypow 2 3 a]
% puts $status

0

% puts $a

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 245

8.0

%
Here, we have passed the name of a Tcl variable to our C wrapper function which then places
the return value in that variable. This is now very close to the way in which a C function calling
this function would work.

Mapping C structures into Tcl Lists
Suppose you have a C structure like this :

typedef struct {

char 1ogin[16]; /* Login ID */

i nt ui d; /* User ID */

int gid; /* Goup ID */

char nane[32]; /* User name */

char hone[256] ; /* Hone directory */
} Wser;

By default, SWIG will simply treat all occurrences of “User ” as a pointer. Thus, functions like
this :

extern voi d add_user (User u);
extern User *|ookup_user(char *nare);

will work, but they will be weird. In fact, they may not work at all unless you write helper func-
tions to create users and extract data. A typemap can be used to fix this problem however. For
example :

// This works for both "User" and "User *"
% ypemap(tcl,in) User * {
int tenpc;
char **tenpa;
static User tenp;
if (Tcl _SplitlList(interp, $source, & enpc, & enpa) == TAQL_ERROR) return TOL_ERRCR
if (tenmpc !'=5) {
free((char *) tenpa);
interp->result = "Not a valid User record";
return TCQL_ERRCR

}
/* Split out the different fields */

strncpy(tenp.|ogin,tenpa[0], 16);
tenp.uid = atoi (tenpa[1l]);
tenp.gid = atoi (tenpa[2]);
strncpy(tenp. nane, tenpa[3], 32);
strncpy(tenp. hone, t enpal 4] , 256) ;
$target = &t enp;
free((char *) tenpa);

}

/1 Describe how we want to return a user record
% ypemap(tcl,out) UWser * {
char tenp[20];
if ($source) {
Tcl _AppendE erent (i nt er p, $sour ce- >l ogi n) ;
sprintf(tenp,"%l", $sour ce- >ui d);
Tcl _AppendEl enent (i nterp, tenp);
sprintf(tenp,"%l", $source->gid);

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 246

Tcl _AppendE! erent (i nterp, tenp);
Tcl _AppendH erent (i nt er p, $sour ce- >narre)
Tcl _AppendH erent (i nt er p, $sour ce- >hone) ;

}
}

These function marshall Tcl lists to and from our User data structure. This allows a more natural
implementation that we can use as follows :

% add_user {beazl ey 500 500 “Dave Beazl ey” “/hone/ beazl ey”}
% | ookup_user beazl ey
beazl ey 500 500 {Dave Beazl ey} /hone/ beazl ey

This is a much cleaner interface (although at the cost of some performance). The only caution |
offer is that the pointer view of the world is pervasive throughout SWIG. Remapping complex
datatypes like this will usually work, but every now and then you might find that it breaks. For
example, if we needed to manipulate arrays of Users (also mapped as a “User *”), the
typemaps defined here would break down and something else would be needed. Changing the
representation in this manner may also break the object-oriented interface.

Useful functions

The following tables provide some functions that may be useful in writing Tcl typemaps. Both
Tcl 7.x and Tcl 8.x are covered. For Tcl 7.x, everything is a string so the interface is relatively sim-
ple. For Tcl 8, everything is now a Tcl object so a more precise set of functions is required. Given
the alpha-release status of Tcl 8, the functions described here may change in future releases.

Tcl 7.x Numerical Conversion Functions

int Tcl _Getlnt(Tcl _Interp *,char *, int *ip) | Converta string to an integer which
isstored ini p. Returns TCL_OK on
success, TCL_ERROR on failure.

int Tcl _GetDouble(Tcl Interp *, char *, Convert a string to a double which is
doubl e *dp) stored in *dp. Returns TCL_OK on
success, TCL_ERROR on failure.
Tcl _PrintDoubl e(Tcl _Interp *, double val, Creates a string with a double preci-
char *dest) sion value. The precision is deter-

mined by the value of the
tcl _precision variable.

Tcl 7.x String and List Manipulation Functions

void Tcl _SetResult(Tcl Interp *, char *str, Set the Tcl result string. st r is the

Tcl _FreeProc *freeProc) string and f r eePr oc is a procedure
to free the result. This is usually
TCL_STATIC, TCL_DYNAMIC,
TCL_VOLATILE.

void Tcl _AppendResult(Tcl _Interp *, Append string elements to the Tcl
char *str, char *str, ... (char *) NULL) | resultstring.

Version 1.1, June 23, 1997

SWIG Users Guide

SWIG and Tcl

247

Tcl 7.x String and List Manipulation Functions

voi d Tcl _AppendEl enent (Tcl _Interp *,
char *string)

Formats string as a Tcl list and
appends it to the result string.

int Tcl _SplitList(Tcl_Interp *, char *list,
int *argcPtr, char ***argvPtr)

Parses list as a Tcl list and creates an
array of strings. The number of ele-
ments is stored in *argcPtr. A
pointer to the string array is stored
in ***ar gvPt r. Returns TCL_OK
on success, TCL_ERROR if an error
occurred. The pointer value stored
in ar gvPt r must eventual be
passed to f r ee().

char *Tcl _Merge(int argc, char **argv)

The inverse of SplitList. Returns a
pointer to a Tcl list that has been
formed from the array ar gv. The
result is dynamically allocated and
must be passed to free by the caller.

Tcl 8.x Integer Conversion Functions

Tcl _Obj *Tcl _Newl nt Gbj (i nt Val ue)

Create a new integer object.

void Tcl _SetlntQbj (Tcl _Cbj *obj, int Val ue)

Set the value of an integer object

int Tcl _GetlntFrontbj (Tcl _Interp *,
Tcl _oj *obj, int *ip)

Get the integer value of an object
and return itin *i p. Returns
TCL_ERROR if the object is not an
integer.

Tcl 8.x Floating Point Conversion Functions

Tcl _Obj *Tcl _NewbDoubl ehj (doubl e val ue)

Create a new Tcl object containing a
double.

Tcl _Set Doubl eObj (Tcl _Obj *obj, doubl e val ue)

Set the value of a Tcl _bj ect .

i nt Tcl _Get Doubl eFronthj (Tcl _I nterp,
Tcl _nj *o, double *dp)

Get a double from a Tcl object. The
value is stored in *dp. Returns
TCL_OK on success, TCL_ERROR if
the conversion can’t be made.

Tcl 8.x String Conversion F

unctions

Tcl _Obj *Tcl _NewStringQhj (char *str,

int len)

Creates a new Tcl string object. st r
contains the ASCII string, | en con-
tains the number of bytes or -1 if the
string is NULL terminated.

Tcl _Set StringQObj (Tcl _Obj
int |en)

*obj, char *str,

Sets a Tcl object to a given string.
| en is the string length or -1 if the
string is NULL terminated.

Version 1.1, June 23, 1997

SWIG Users Guide

SWIG and Tcl

248

Tcl 8.x String Conversion Functions

char *Tcl _Get StringFronmObj (Tcl _Cbj *obj, Retrieves the string associated with
int *len) an object. The length is returned in
*| en;
Tcl _AppendToQbj (Tcl _Obj *obj, char *str, Appends the string st r to the given
int |en) Tcl Object. | en contains the number
of bytes of -1 if NULL terminated.
Tcl 8.x List Conversion Functions
Tcl _Obj *Tcl _Newli st Qbj (int objc, Creates a new Tcl List object. obj ¢
Tcl _Obj *objv) contains the element count and
obj v is an array of Tcl objects.
int Tcl _ListCbjAppendList(Tcl _Interp *, Appends the objects in el em
Tcl _Obj *listPtr, Li st Pt r to the list objectl i st Ptr.
Tcl _Obj *elenlistPtr) Returns TCL_ERROR if an error
occurred.
int Tcl _ListObj AppendEl ement (Tcl _Interp *, Appends element to the end of the
Tcl _oj *listPtr, list object| i st Pt r. Returns
Tcl _Obj *el enent) TCL_ERROR if an error occurred.
Will convert the object pointed to by
listPtr to a list if it isn’t one already.
int Tcl ListObjGetEl enents(Tcl _Interp *, Converst a Tcl List object into an
Tcl _Obj *listPtr, array of pointers to individual ele-
int *objchktr, ments. obj cPtr receives the list
Tcl _Ohj ***objvPtr) length and obj vPt r receives a
pointer to an array of Tcl_Obj point-
ers. Returns TCL_ERROR if the list
can not be converted.
int Tcl _ListCbjLength(Tcl _Interp *, Returns the length of a list in
Tcl _Obj *listPtr, i nt Pt r.If the objectis nota listor an
int *intPtr) error occurs, the function returns
TCL_ERROR.
int Tcl _ListObjlndex(Tcl_Interp *, Returns the pointer to object with
Tcl _oj *listPtr, given index in the list. Returns
int index, Tcl_Obj **objptr) | TCL_LERRORIiflistPtr isnota list
or the index is out of range. The
pointer is returned in obj ptr.
int Tcl _ListObjReplace(Tcl Interp *, Replaces objects ina list. first is
Tcl _Obj *listPtr, the first object to replace and count
int first, int count, is the total number of objects. obj ¢
int objc, Tcl_bj *objv) and obj v define a set of new objects
to insert into the list. If obj v is
NULL, no new objects will be added
and the function acts as a deletion
operation.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 249

Tcl 8.x Object Manipulation

Tcl _Obj *Tcl _NewObj () Create a new Tcl object

Tcl _Obj *Tcl _DuplicateQbj (Tcl _Obj *obj) Duplicate a Tcl object.

Tcl _I ncr Ref Count (Tcl _Qbj *obj) Increase the reference count on an
object.

Tcl _Decr Ref Count (Tcl _Cbj *obj) Decrement the reference count on an
object.

int Tcl _IsShared(Tcl_Qbj *obj) Tests to see if an object is shared.

Standard typemaps

The following typemaps show how to convert a few common kinds of objects between Tcl and C
(and to give a better idea of how typemaps work)

Function argument typemaps (Tcl 7.x)

int, % ypemap(tcl,in) int,short,long {
short, int tenp;
| ong if (Tcl _GetlInt(interp, $source, & enp) == TCL_ERROR)

return TCL_ERROR;
$target = ($type) tenp;

}
fl oat, % ypemap(tcl,in) double,float {
doubl e doubl e tenp;
i f (Tcl _Get Doubl e(interp, $source, & enp)
== TCL_ERROR)
return TCL_ ERROR;
$target = ($type) tenp;
}
char * % ypemap(tcl,in) char * {
$target = $source;
}
Function return typemaps (Tcl 7.x)
i nt, % ypemap(tcl,out) int, short, long {
short, sprintf($target,”% d”, (long) $source);
| ong, }
fl oat, % ypemap(tcl,out) float, double {
doubl e Tcl _Print Doubl e(i nterp, $source,interp->result);
}

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 250

Function return typemaps (Tcl 7.x)

char * % ypemap(tcl,out) char * {
Tcl _Set Resul t (i nterp, $source, TCL_VOLATI LE) ;
}
Function argument typemaps (Tcl 8.x)
i nt, % ypemap(tcl 8,in) int,short,long {
short, int tenp;
| ong if (Tcl _GetlntFronbj (interp, $source, & enp) ==
TCL_ERROR)
return TCL_ERROR;
$target = ($type) tenp;
}
fl oat, % ypemap(tcl 8,in) double,float {
doubl e doubl e tenp;
i f (Tcl _Get Doubl eFrontbj (i nterp, $source, & enp)
== TCL_ERROR)
return TCL_ ERROR;
$target = ($type) tenp;
}
char * % ypemap(tcl 8,in) char * {
int |en;
$target = Tcl _Get StringFromObj (i nterp, & en);
}
Function return typemaps (Tcl 8.x)
i nt, % ypemap(tcl 8,out) int, short, long {
short, Tcl _Set I nt Cbj ($t ar get, $source) ;
| ong, }
fl oat, % ypemap(tcl 8, out) float, double {
doubl e Tcl _Set Doubl eQbj ($t ar get, $sour ce) ;
}
char * % ypemap(tcl 8, out) char * {
Tcl _Set St ri ngQoj ($t ar get, $sour ce)
}

Pointer handling

SWIG pointers are mapped into Python strings containing the hexadecimal value and type. The
following functions can be used to create and read pointer values .

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 251

SWIG Pointer Conversion Functions (Tcl 7.x/8.x)

void SWG MakePtr(char *str, void *ptr, Makes a pointer string and saves it
char *type) in st r, which must be large enough
to hold the result. ptr contains the
void SW G Set PointerQhj (Tcl _Obj *objPtr, pointer value and t ype is the string
void *ptr, char *type) representation of the type.
char *SWG GetPtr(char *str, void **ptr, Attempts to read a pointer from the
char *type) string st r. ptr is the address of the

pointer to be created and t ype is the
expected type. Ift ype is NULL,
char *SW G _Get Poi nter Qbj (Tcl _Interp *interp, | thenany pointervalue will be
Tcl _Obj *obj Ptr, accepted. On success, this function
void **ptr, char *_t) returns NULL. On failure, it returns
the pointer to the invalid portion of
the pointer string.

These functions can be used in typemaps as well. For example, the following typemap makes an
argument of “char *buf f er ” accept a pointer instead of a NULL-terminated ASCII string.

% ypemap(tcl,in) char *buffer {
if (SWG GetPtr($source, (void **) &target, “$mangle’)) {
Tcl _SetResult(interp,”Type error. Not a pointer”, TCL_STATIO);
return TCL_ERRCR

}

Note that the $mangl e variable generates the type string associated with the datatype used in
the typemap.

By now you hopefully have the idea that typemaps are a powerful mechanism for building more
specialized applications. While writing typemaps can be technical, many have already been
written for you. See the SWIG library reference for more information.

Configuration management with SWIG

After you start to work with Tcl for awhile, you suddenly realize that there are an unimaginable
number of extensions, tools, and other packages. To make matters worse, there are about 20 bil-
lion different versions of Tcl, not all of which are compatible with each extension (this is to make
life interesting of course).

While SWIG is certainly not a magical solution to the configuration management problem, it can
help out alot in a number of key areas :

= SWIG generated code can be used with all versions of Tcl/Tk newer than 7.3/3.6. This
includes the Tcl Netscape Plugin and Tcl 8.0a2.

= The SWIG library mechanism can be used to manage various code fragments and initial-
ization functions.

= SWIG generated code usually requires no modification so it is relatively easy to switch

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 252

between different Tcl versions as necessary or upgrade to a newer version when the time
comes (of course, the Sun Tcl/Tk team might have changed other things to keep you
occupied)

Writing a main program and Tcl_Applnit()

The traditional method of creating a new Tcl extension required a programmer to write a special
function called Tcl _Appl ni t () that would initialize your extension and start the Tcl inter-
preter. Atypical Tcl _Appl ni t () function looks like the following :

/* main.c */
#i ncl ude <tcl. h>

mai n(int argc, char *argv[]) {
Tcl _Mai n(argc, argv);
exit(0);

}

int Tcl _Applnit(Tcl _Interp *interp) {
if (Tel _Init(interp) == TQL_ERRCR) {
return TCL_ERRCR,
}

/* Initialize your extension */

if (Your_Init(interp) == TOQL_ERRCR) {
return TCL_ERRCR

}

tcl _RcFileName = “~/.nyapp.tcl”;
return TCL_CK
}

While relatively simple to write, there are tons of problems with doing this. First, each extension
that you use typically has their own Tcl _Appl ni t () function. This forces you to write a spe-
cial one to initialize everything by hand. Secondly, the process of writing a main program and
initializing the interpreter varies between different versions of Tcl and different platforms. For
example, in Tcl 7.4, the variable “t cl _RcFi | eNanme” is a C variable while in Tcl7.5 and newer
versions its a Tcl variable instead. Similarly, the Tcl _Appl ni t function written for a Unix
machine might not compile correctly on a Mac or Windows machine.

In SWIG, it is almost never necessary to write a Tcl _Appl ni t () function because this is now
done by SWIG library filessuch astcl sh.i orw sh.i. To give a better idea of what these
files do, here’s the code from the SWIG t cl sh. i file which is roughly comparable to the above
code

Il tclsh.i : SWGIlibrary file for rebuilding tclsh
%

/* A TA_Applnit() function that lets you build a new copy
* of tclsh.

* The macro SWG.init contains the nane of the initialization
* function in the wapper file.

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 253

#i f ndef SWG_RcFi | eNane
char *SWG RcFi |l eNane = "~/ . nyapprc";
#endi f

int Tcl _Applnit(Tcl _Interp *interp){

if (Tel _Init(interp) == TCL_ERRCR)
return TCL_ERRCR

/* Now initialize our functions */
if (SWG.init(interp) == TCL_ERROR
return TCL_ERRCR

#f TOL_MAJOR VERSION > 7 || TOL_MAJOR VERSI ON == 7 && TCL_ M NOR VERSION >= 5
Tcl _SetVar(interp,"tcl _rcFil eNane", SWG RcFi | eNane, TCL_Q.CBAL_QN\LY) ;

#el se
tcl _RcFil eName = SWG RcFi | eNane;
#endi f
return TQL_CK
}

#if TAL_MAOR VERSION > 7 || TAL_MAJCR VERSION == 7 &% TCL_M NOR VERSI ON >= 4
int main(int argc, char **argv) {

Tcl _Main(arge, argv, Tcl _Applnit);

return(0);

}

el se
extern int main();
#endi f

%

This file is essentially the same as a normal Tcl _Appl ni t () function except that it supports a
variety of Tcl versions. When included into an interface file, the symbol SW G i ni t contains the
actual name of the initialization function (This symbol is defined by SWIG when it creates the
wrapper code). Similarly, a startup file can be defined by simply defining the symbol
SW G_RcFi | eNane. Thus, a typical interface file might look like this :

%rodul e graph

%

#i ncl ude “graph. h”

#defi ne SWG RcFil eNane “graph.tcl”

%
% ncl ude tcl sh.i

. declarations ...
By including the t cl sh. i, you automatically get a Tcl _Appl ni t () function. A variety of
library files are also available. wi sh. i can be used to build a new wish executable, expect . i

contains the main program for Expect, andi sh.i,itclsh.i,iwish.i,anditkw sh.i con-
tain initializations for various incarnations of [incr Tcl].

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 254

Creating a new package initialization library

If a particular Tcl extension requires special initialization, you can create a special SWIG library
file to initialize it. For example, a library file to extend Expect looks like the following :

I/ expect.i : SWG Library file for Expect
%

/* main.c - main() and some | ogging routines for expect
Witten by: Don Libes, N ST, 2/6/90

Design and inplenentation of this programwas paid for by US. tax
dollars. Therefore it is public donain. However, the author and N ST
woul d appreciate credit if this programor parts of it are used.

*/

#i ncl ude "expect _cf.h"
#i ncl ude <stdio. h>

#i ncl ude | NCLUDE TCL

#i ncl ude "expect _tcl.h"

voi d

mai n(argc, argv)
int argc;

char *argv[];

int rc =0;
Tcl _Interp *interp = Tcl _Createlnterp();
int SWG.init(Tcl_Interp *);

if (Tel_Init(interp) == TQL_ERRCR) {
fprintf(stderr,"Tcl _Init failed: %\n",interp->result);
exit(1);

}

if (Exp_Init(interp) == TCL_ERRCR) {
fprintf(stderr,"Exp_Init failed: %\n",interp->result);

exit(1);

}

/* SWGinitialization. --- 2/11/96 */

if (SWG.init(interp) == TCL_ERRCR) {
fprintf(stderr,"SWGinitialization failed: 9%\n", interp->result);
exit(1);

}

exp_parse_argv(interp, argc, argv);
/* become interactive if requested or "nothing to do" */
if (exp_interactive)
(void) exp_interpreter(interp);
else if (exp_cndfile)
rc = exp_interpret_crmdfile(interp, exp_cmifile);
else if (exp_cndfil enarre)
rc = exp_interpret_cndfil ename(interp, exp_cndfil enane);

/* assert(exp_cndlinecnds !'= 0) */
exp_exit(interp,rc);

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 255

[* NOTREACHED* /

}
%

In the event that you need to write a new library file such as this, the process usually isn’t too dif-
ficult. Start by grabbing the original Tcl _Appl ni t () function for the package. Enclose itin a
%, % block. Now add a line that makes a call to SWG init(). This will automatically
resolve to the real initialization function when compiled.

Combining Tcl/Tk Extensions

A slightly different problem concerns the mixing of various extensions. Most extensions don’t
require any special initialization other than calling their initialization function. To do this, we
also use SWIG library mechanism. For example :

/] blt.i : SWGIlibrary file for initializing the BLT extension
%
#i fdef __cpl uspl us
extern “C {
#endi f
externint Bit_Init(Tcl _Interp *);
#i fdef __cpl uspl us
}
#endi f
%
%nit %
if (Bit_Init(interp) == TCL_ERRCR) {
return TCOL_ERRCR
}
%

[/ tix.i : SWGIlibrary file for initializing the Tix extension
%

#i fdef __cpl uspl us

extern “C {

#endi f

externint Tix_Init(Tcl _Interp *);

#i fdef __cpl uspl us

}

#endi f

%

%nit %

if (Tix_Init(interp) == TAL_ERRCR) {
return TCL_ERRCR

% }
Both files declare the proper initialization function (to be C++ friendly, this should be done using
extern “C’). Acall to the initialization function is then placed insidea % nit % ... %
block.

To use our library files and build a new version of wish, we might now do the following :

/1 nmywish.i : wish with a bunch of stuff added to it
% ncl ude wi sh.i

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 256

% nclude blt.i
% nclude tix.i

. additional declarations ...

Of course, the really cool part about all of this is that the file ‘mywi sh. i’ can itself, serve as a
library file. Thus, when building various versions of Tcl, we can place everything we want to
use a special file and use it in all of our other interface files :

/] interface.i
%vodul e nynodul e

% ncl ude nywi sh. i /1 Build our version of Tcl with extensions

. Cdeclarations ...
or we can grab it on the command line :

unix > swig -tcl -Inywish.i interface.i

Limitations to this approach

This interface generation approach is limited by the compatibility of each extension you use. If
any one extension is incompatible with the version of Tcl you are using, you may be out of luck.
It is also critical to pay careful attention to libraries and include files. An extension library com-
piled against an older version of Tcl may fail when linked with a newer version.

Dynamic loading

Newer versions of Tcl support dynamic loading. With dynamic loading, you compile each
extension into a separate module that can be loaded at run time. This simplifies a number of
compilation and extension building problems at the expense of creating new ones. Most notably,
the dynamic loading process varies widely between machines and is not even supported in some
cases. It also does not work well with C++ programs that use static constructors. Modules
linked with older versions of Tcl may not work with newer versions as well (although SWIG
only really uses the basic Tcl C interface). As a result, | usually find myself using both dynamic
and static linking as appropriate.

Turning a SWIG module into a Tcl Package.

Tcl 7.4 introduced the idea of an extension package. By default, SWIG does not create “pack-
ages”, but it is relatively easy to do. To make a C extension into a Tcl package, you need to pro-
vide a call to Tcl _PkgProvi de() inthe module initialization function. This can be done in
an interface file as follows :

%nit %
Tcl _PkgProvi de(i nterp, "exanpl e","0.0");
%
Where “example” is the name of the package and “0.0” is the version of the package.

Next, after building the SWIG generated module, you need to execute the “pkg_nkl ndex” com-
mand inside tclsh. For example :

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 257

uni x > tcl sh
% pkg_nkl ndex . exanpl e. so
% exi t

This creates a file “pkgl ndex. t cl ” with information about the package. To use your
package, you now need to move it to its own subdirectory which has the same name as the pack-
age. For example :

./ exanpl e/
pkgl ndex. tcl # The file created by pkg_nkl ndex
exanpl e. so # The SWG generated nodul e

Finally, assuming that you’re not entirely confused at this point, make sure that the example sub-
directory is visible from the directories contained in either the tcl _Ii brary or auto_path
variables. At this point you’'re ready to use the package as follows :

uni X > tcl sh

% package require exanpl e
%fact 4

24

%

If you’re working with an example in the current directory and this doesn’t work, do this
instead :

uni x > tclsh

% | append auto_path .

% package require exanpl e
%fact 4

24

As a final note, most SWIG examples do not yet use the package commands. For simple exten-
sions it may be easier just to use the | oad command instead.

Building new kinds of Tcl interfaces (in Tcl)

One of the most interesting aspects of Tcl and SWIG is that you can create entirely new kinds of
Tcl interfaces in Tcl using the low-level SWIG accessor functions. For example, suppose you
had a library of helper functions to access arrays :

/* File : array.i */
%rodul e array

%nline %
doubl e *new _doubl e(int size) {
return (double *) nalloc(size*si zeof (doubl e));

voi d del et e_doubl e(doubl e *a) {
free(a);

}

doubl e get _doubl e(doubl e *a, int index) {

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl

258

return afindex];

}

voi d set_doubl e(doubl e *a, int index, double val) {

alindex] = val;
}

int *new_int(int size) {

return (int *) malloc(size*sizeof(int));

void delete_int(int *a) {
free(a);

}

int get_int(int *a, int index) {
return afindex];

}

int set_int(int *a, int index, int val) {

alindex] = val;
}
%

While these could be called directly, we could also write a Tcl script like this :

proc Array {type size} {
set ptr [new $type $size]
set code {
set nethod [|index $args 0]

set parns [concat $ptr [lrange $args 1 end]]

swi tch $nethod {

get {return [eval "get_$type $parns"]}
set {return [eval "set_$type $parns"]}
delete {eval "delete $type $ptr; rename $ptr {}"}

}
}

Oreate a procedure

upl evel "proc $ptr args {set ptr $ptr; set type $type; $code}"

return $ptr

}

Our script allows easy array access as follows :

set a [Array doubl e 100]

for {set i 0} {$i < 100} {incr i 1} {
$a set $i 0.0

}

$a set 3 3.1455

set b [$a get 10]

set ia [Array int 50]

for {set i 0} {$i < 50} {incr i 1} {
$iaset $i O

}

$ia set 37

set ib [$ia get 10]

$a del ete
$ia delete

;# Oreate a doubl e [100]
;# Aear the array

;# Set an individual el enent
:# Retrieve an el enent

;# Oreate an int[50]
dear it
;# Set an individual elenment

;# CGet an individual elenent

;# Destroy a
;# Destroy ia

The cool thing about this approach is that it makes a common interface for two different types of

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 259

arrays. In fact, if we were to add more C datatypes to our wrapper file, the Tcl code would work
with those as well--without modification. If an unsupported datatype was requested, the Tcl
code would simply return with an error so there is very little danger of blowing something up
(although it is easily accomplished with an out of bounds array access).

Shadow classes

A similar approach can be applied to shadow classes. The following example is provided by
Erik Bierwagen and Paul Saxe. To use it, run SWIG with the - noobj ect option (which disables
the builtin object oriented interface). When running Tcl, simply source this file. Now, objects
can be used in a more or less natural fashion.

swig_c++. tcl

Provides a sinple object oriented interface using
SWGs low level interface.

#

proc new {obj ect Type handl e_r args} {
Oeates a new SWG obj ect of the given type,
returning a handle in the variable "handle_r".
#
Al so creates a procedure for the object and a trace on
the handl e variable that del etes the object when the
handl e varibale is overwitten or unset
upvar $handl e_r handl e

Z O eate the new obj ect
7;tval set handl e \[new $obj ect Type $args\]
z Set up the object procedure
ﬁr oc $handl e {cnd args} "eval ${objectType}_ \$cnd $handl e \ $ar gs"
z And the trace ...
ﬁpl evel trace variable $handl e_r uw "{del et eChj ect $obj ect Type $handl e} "
Z Return the handle so that 'new can be used as an argument to a procedure
7r#et urn $handl e
}
proc del et ehj ect {object Type handl e nane el ement op} {
Z Check that the object handl e has a reasonabl e form
#

if {![regexp {_[0-9a-f]*_(.+)_p} $handle]} {
error "del eteChject: not a valid object handl e: $handl e"
}
#
Renove the object procedure
#
catch {rename $handle {}}
#
Del ete the object
#

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 260

del et e_%$obj ect Type $handl e

}

proc delete {handle_r} {
#
A synonymfor unset that is nore faniliar to G-+ programrers
#

upl evel unset $handl e_r

}

To use this file, we simply source it and execute commands such as “new” and “delete” to
manipulate objects. For example :

[l list.i

%odul e Li st

%

#include "list.h"

%
/1 Very sinple Ct+ exanpl e

class List {
publi c:
List(); // Oeate a newlist
~List(); // Destroy a list
int search(char *val ue);
void insert(char *); // Insert anewiteminto the list
voi d renmove(char *); // Renove itemfromli st

char *get(int n); /] Get the nthitemin the |ist
int length; /1 The current length of the |ist
static void print(List *I); // Print out the contents of the |ist

}s

Now a Tcl script using the interface...

load ./list.so |list ; # Load the nodul e
source swig_c++. tcl ; # Source the object file
new List |

$l insert Dave
$l insert John
$l insert Quido
$l renove Dave
puts $l |ength_get

delete |

The cool thing about this example is that it works with any C++ object wrapped by SWIG and
requires no special compilation. Proof that a short, but clever Tcl script can be combined with
SWIG to do many interesting things.

Extending the Tcl Netscape Plugin

SWIG can be used to extend the Tcl Netscape plugin with C functions. As of this writing it has
only been tested with version 1.0 of the plugin on Solaris and Irix 6.2. It may work on other

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 261

machines as well. However, first a word of caution --- doing this might result in serious injury as
you can add just about any C function you want. Furthermore, it’s not portable (hey, we’re talk-
ing C code here). It seems like the best application of this would be creating a browser interface
to a highly specialized application. Any scripts that you would write would not work on other
machines unless they also installed the C extension code as well. Perhaps we should call this a

plugin-plugin...
To use the plugin, use the - pl ugi n option :
swig -tcl -plugin interface.i

This adds a “safe” initialization function compatible with the plugin (in reality, it just calls the
function SWIG already creates). You also need to put the following symbol in your interface file
for it to work :

%
#defi ne SAFE SWG
%

The folks at Sun are quite concerned about the security implications of this sort of extension and
originally wanted the user to modify the wrapper code by hand to “remind” them that they were
installing functions into a safe interpreter. However, having seen alot of SWIG generated wrap-
per code, | hated that idea (okay, so the output of SWIG is just a little messy). This is compro-
mise--you need to put that #defi ne into your C file someplace. You can also just make it a
compiler option if you would like.

The step-by-step process for making a plugin extension.
Making a plugin extension is relatively straightforward but you need to follow these steps :

= Make sure you have Tcl7.6/Tk4.2 installed on your machine. We’re going to need the
header files into order to compile the extension.

< Make sure you have the Netscape plugin properly installed.

e Run SWIG using the -t cl - pl ugi n’ options.

= Compile the extension using the Tcl 7.6/Tk4.2 header files, but linking against the plugin
itself. For example :

uni x > gcc -1/usr/local/include -c exanple.o interface wap.c
unix > Id -shared exanple.o interface_wap.o \
- L/ home/ beazl ey/ . net scape/ pl ugi ns/ | i btcl pl ugi n. so -o exanpl e. so

= Copy the shared object file to the ~/ . t cl pl ug/ t cl 7. 7 directory.

Using the plugin
To use the plugin, place the following line in your Tcl scripts :

load $tcl _|ibrary/exanpl e.so exanpl e

With luck, you will now be ready to run (at least that’s the theory).

Version 1.1, June 23, 1997

SWIG Users Guide SWIG and Tcl 262

Tcl8.0 features

SWIG 1.1 now supports Tcl 8.0. However, considering the beta release nature of Tcl 8.0, anything
presented here is subject to change. Currently only Tcl 8.0bl is supported. None of the alpha
releases are supported due to a change in the C API.

The Tcl 8.0 module uses the new Tcl 8.0 object interface whenever possible. Instead of using
strings, the object interface provides more direct access to objects in their native representation.
As a result, the performance is significantly better. The older Tcl SWIG module is also compat-
ible with Tcl 8.0, but since it uses strings it will be much slower than the new version.

In addition to using native Tcl objects, the Tcl8.0 manipulates pointers directly in in a special Tcl

object. On the surface it still looks like a string, but internally its represented a (value,type) pair.
This too, should offer somewhat better performance.

Version 1.1, June 23, 1997

	SWIG and Tcl
	Preliminaries
	Running SWIG
	Additional SWIG options
	Getting the right header files and libraries
	Compiling a dynamic module (Unix)
	Using a dynamic module
	Static linking
	Compilation problems
	Setting a package prefix
	Using [incr Tcl] namespaces

	Building Tcl/Tk Extensions under Windows 95/NT
	Running SWIG from Developer Studio
	Using NMAKE

	Basic Tcl Interface
	Functions
	Global variables
	Constants
	Pointers
	Structures
	C++ Classes

	The object oriented interface
	Creating new objects
	Invoking member functions
	Deleting objects
	Accessing member data
	Changing member data
	Relationship with pointers
	Performance concerns and disabling the object orie...

	About the examples
	Binary trees in Tcl
	C files
	Making a quick a dirty Tcl module
	Building a C data structure in Tcl
	Implementing methods in C
	Building an object oriented C interface

	Building C/C++ data structures with Tk
	Accessing arrays
	Building a simple OpenGL module
	Required files
	Wrapping gl.h
	Wrapping glu.h
	Wrapping the aux library
	A few helper functions
	An OpenGL package
	Using the OpenGL module
	Problems with the OpenGL interface

	Exception handling
	Typemaps
	What is a typemap?
	Tcl typemaps
	Typemap variables
	Name based type conversion
	Converting a Tcl list to a char **
	Remapping constants
	Returning values in arguments
	Mapping C structures into Tcl Lists
	Useful functions
	Standard typemaps
	Pointer handling

	Configuration management with SWIG
	Writing a main program and Tcl_AppInit()
	Creating a new package initialization library
	Combining Tcl/Tk Extensions
	Limitations to this approach
	Dynamic loading
	Turning a SWIG module into a Tcl Package.

	Building new kinds of Tcl interfaces (in Tcl)
	Shadow classes

	Extending the Tcl Netscape Plugin
	The step-by-step process for making a plugin exten...
	Using the plugin

	Tcl8.0 features

