

ZABBIX

www.zabbix.com

Building your first Python module for ZLM-Cython

Using zlm-cython with ease...

ZABBIX

www.zabbix.com

AGENDA

What you shall know before you begin.

Locations

Building a module

Testing a module

Using a module

What's next ?

ZABBIX

www.zabbix.com

What you shall know before you begin.

Apparently, you shall know the Python. You shall know it well enough, to be
able to write a short and fast snippets of the code. You shall be proficient with
all libraries tools and protocols involved in your project. For example: if you
are monitoring REDIS(1) storage, you shall be familiar not only with Python
itself, but with Python module which you will use to access REDIS, and with
REDIS itself.

(1) REDIS – high-performance in-memory data structure store, used as database,
cache and message broker. http://redis.io

While you beginning to developing you module, you shall be also familiar
with all “common-sense” Python performance programming techniques. I am
recommending to look at the book “High Performance Python” by Ian
Ozsvald.

You shall be also proficient in the area of System Administration and
Systems Management well enough, so you can understand the impact of
the execution of your code to the target hosts and applications. You must
be comfortable when dealing with such hosts, operating systems and all
applications involved.

ZABBIX

www.zabbix.com

What you shall know before you begin.

And of course, you must have “hands-on” experience on how to use OS shell
and OS commands, how to edit text files, how to use source-code version
control tools used by developers in your organization, how your code will be
integrating with configuration management, build and deployment tools.

And this is not the end. You shall be able to create “secure” code. This
means, that you code must pass check, performed by your security team.
You must be familiar with all local guidelines and requirements related to
application security.

Systems and Application Architect shall know about your software development
and deployment activities.

You must know how to document your code. And actually do that
Documentation

And the last, but not least. You shall know how to test your code for a bugs and
a performance issues.

ZABBIX

www.zabbix.com

What you shall know before you begin.

Well … You are not just in IT-monitoring anymore. You are becoming
Software Developer and must think and act like one.

ZABBIX

www.zabbix.com

Locations

Open your Zabbix configuration file (1) and locate variable LoadModulePath

Verify, that you are loading zlm_python.so module is loaded. Look for variable
LoadModule=zlm_python.so

Your module files and all other directory and files will be relative
to the location, defined by this variable.

Please locate directory pymodules, which shall be subdirectory of the
directory defined in LoadModulePath .

Verify location of your log files as defined by LogFile.

(1) zabbix_server.conf or zabbix_agentd.conf.

If this directory do not exists, please create it and assign ownersyhip to user
cefined in variable User. It is probably a good idea to set user sticky bit for this
directory.

ZABBIX

www.zabbix.com

Building a module

With text editor of your
choice, please create file
called ZBX_test.py and
define three simple
functions.

Please note:
Default function of the module
Is main()

This function return Integer

This function return Float

This function return String

ZABBIX

www.zabbix.com

Building a module

We support only those three data types: Integer, String and a Float. ZLM-
Python will automatically convert Python value to a Zabbix value.

What you return from the function, will be passed directly to Zabbix

All exceptions will be properly handled. We will talk about exceptions in a
little while.

You can refer individual functions inside the module from the Zabbix as:

Module name.Function name. Default function name is “main”

The first parameter, passed to a function by ZLM-Python is “context”, usually
referred by variable name “ctx”. This object is used to pass data between
different process and will be explained in more details later on.

ZABBIX

www.zabbix.com

Testing a module

Before you will try to query the metric through Zabbix Agent or Zabbix Server, you shall
Test a metric through zabbix_agentd -t <metric name>

Testing this metric

ZLM-Python initializing

ZLM-Python loading
configuration

ZLM-Python pre-load
our test module

ZBX_test.this_is_int() returns 42.
It is “unsigned Integer”. SUCCESS !

ZABBIX

www.zabbix.com

Testing a module

What if something goes wrong ? What yo will see from zabbix_agentd -t <metric name> ?

Let's create a metric collection function, which will do nothing, but throw
a Python exception.

When called, this function will throw an AttributeError exception and pass the
parameter string.

Raise an Exception
AttributeError

… and here is parameter

ZABBIX

www.zabbix.com

Testing a module

What if something goes wrong ? What yo will see from zabbix_agentd -t <metric name> ?

Call that metric

Looks okay, so far

Oy ! Our metric threw
a traceback and become

NOTSUPPORTED

And here goes Python traceback, to help us
to troubleshoot the problem.

ZABBIX

www.zabbix.com

Testing a module

When you metric functions exit successfully and generate proper
output, you can move to the next test: collecting data through
zabbix_agentd (if your metric collector designed to run from
zabbix_agentd)

If your zabbix_agentd -t <metricname> is core-dumped,
CONGRATULATIONS ! You've found a bug in ZLM-python.
Yes, there are bugs and I will try to fix them as soon as I can.
Please report this bug to

https://github.com/vulogov/zlm-cython/issues

Please include as much information as possible.

https://github.com/vulogov/zlm-cython/issues

ZABBIX

www.zabbix.com

Testing a module

Try to query your new metric keys (if you are loading the module
inside Zabbix Agent)

Here, we are calling
default function

Calling function which
returns Integer, getting

Integer

Calling function which
returns Float, getting

Float

Calling function which
returns String, getting

String

ZABBIX

www.zabbix.com

Testing a module

The previous attempt was successful, but what if we get an error ? Collect this metric

Item will become a
NOTSUPPORTED

And here goes Python traceback, to help us
to troubleshoot the problem.

ZABBIX

www.zabbix.com

Using a module

Now, let's create a Zabbix Item, for the
function that returns Integer

Name for the metric

Collecting from zabbix_agendCalling ZLM-python

Module: ZBX_test
Function: this_is_int()

Type of the Zabbix Item shall
match to the type of the data
returned from metric function

ZABBIX

www.zabbix.com

Using a module

Now, let's create a Zabbix Item, for the
function that returns float

Name for the metric

Collecting from zabbix_agendCalling ZLM-python

Module: ZBX_test
Function: this_is_float()

Type of the Zabbix Item shall
match to the type of the data
returned from metric function

ZABBIX

www.zabbix.com

Using a module

Now, let's create a Zabbix Item, for the
function that returns string

Name for the metric

Collecting from zabbix_agendCalling ZLM-python

Module: ZBX_test
Function: this_is_float()

Type of the Zabbix Item shall
match to the type of the data
returned from metric function

ZABBIX

www.zabbix.com

Using a module

Now, let's create a Zabbix Item, for the
function that returns float and ZLM-Python
is executed on Zabbix Server

Name for the metric

Collecting on zabbix_server
Calling ZLM-python

Module: ZBX_test
Function: this_is_float()

Type of the Zabbix Item shall
match to the type of the data
returned from metric function

ZABBIX

www.zabbix.com

Using a module

ZLM-python will help you to troubleshoot you metric collectors by properly passing
information about exceptions back to Zabbix. If your metric throw an exception, the
Item will become “Not supported” and you can get the information about traceback
right from the frontend by clicking on the red icon.

Display the information
about an exception

ZABBIX

www.zabbix.com

What's next ?

Passing parameters from Zabbix to Python functions

Non-positional parameters

You can use ether positional or non-positional parameters.
Please note, all parameters are passed as strings. You shall
do the proper type sanitation and conversion inside your
module.

ZABBIX

www.zabbix.com

What's next ?

Using the ZLM-python Context object

Proxy for the context object
 of the ZLM-Cython core

ZLM-python context object allow you to save some data to the
global dictionary and pass it between Zabbix threads. If you
assign some variable to the context in one thread, like
ctx.name = “Value”, you can refer to it later on using this
notation: ctx.name . Context is global and we do support all
Python picklable data types.

ZABBIX

www.zabbix.com

Q/A ?

Вопросы ?

質問
Jautāt ?

Fragen ? Interroger ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

