WFMath
1.0.2
|
00001 // segment.h (A line segment) 00002 // 00003 // The WorldForge Project 00004 // Copyright (C) 2000, 2001 The WorldForge Project 00005 // 00006 // This program is free software; you can redistribute it and/or modify 00007 // it under the terms of the GNU General Public License as published by 00008 // the Free Software Foundation; either version 2 of the License, or 00009 // (at your option) any later version. 00010 // 00011 // This program is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 // 00016 // You should have received a copy of the GNU General Public License 00017 // along with this program; if not, write to the Free Software 00018 // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 00019 // 00020 // For information about WorldForge and its authors, please contact 00021 // the Worldforge Web Site at http://www.worldforge.org. 00022 // 00023 00024 // Author: Ron Steinke 00025 00026 #ifndef WFMATH_SEGMENT_H 00027 #define WFMATH_SEGMENT_H 00028 00029 #include <wfmath/point.h> 00030 #include <wfmath/intersect_decls.h> 00031 00032 namespace WFMath { 00033 00034 template<int dim> 00035 std::ostream& operator<<(std::ostream& os, const Segment<dim>& s); 00036 template<int dim> 00037 std::istream& operator>>(std::istream& is, Segment<dim>& s); 00038 00040 00044 template<int dim = 3> 00045 class Segment 00046 { 00047 public: 00049 Segment() :m_p1(), m_p2() {} 00051 Segment(const Point<dim>& p1, const Point<dim>& p2) : m_p1(p1), m_p2(p2) {} 00053 Segment(const Segment& s) : m_p1(s.m_p1), m_p2(s.m_p2) {} 00054 00055 ~Segment() {} 00056 00057 friend std::ostream& operator<< <dim>(std::ostream& os, const Segment& s); 00058 friend std::istream& operator>> <dim>(std::istream& is, Segment& s); 00059 00060 Segment& operator=(const Segment& s) 00061 {m_p1 = s.m_p1; m_p2 = s.m_p2; return *this;} 00062 00063 bool isEqualTo(const Segment& s, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const; 00064 00065 bool operator==(const Segment& b) const {return isEqualTo(b);} 00066 bool operator!=(const Segment& b) const {return !isEqualTo(b);} 00067 00068 bool isValid() const {return m_p1.isValid() && m_p2.isValid();} 00069 00070 // Descriptive characteristics 00071 00072 size_t numCorners() const {return 2;} 00073 Point<dim> getCorner(size_t i) const {return i ? m_p2 : m_p1;} 00074 Point<dim> getCenter() const {return Midpoint(m_p1, m_p2);} 00075 00077 const Point<dim>& endpoint(const int i) const {return i ? m_p2 : m_p1;} 00079 Point<dim>& endpoint(const int i) {return i ? m_p2 : m_p1;} 00080 00081 // Movement functions 00082 00083 Segment& shift(const Vector<dim>& v) 00084 {m_p1 += v; m_p2 += v; return *this;} 00085 Segment& moveCornerTo(const Point<dim>& p, size_t corner); 00086 Segment& moveCenterTo(const Point<dim>& p) 00087 {return shift(p - getCenter());} 00088 00089 Segment& rotateCorner(const RotMatrix<dim>& m, size_t corner); 00090 Segment& rotateCenter(const RotMatrix<dim>& m) 00091 {rotatePoint(m, getCenter()); return *this;} 00092 Segment<dim>& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p) 00093 {m_p1.rotate(m, p); m_p2.rotate(m, p); return *this;} 00094 00095 // 3D rotation functions 00096 Segment& rotateCorner(const Quaternion& q, size_t corner); 00097 Segment& rotateCenter(const Quaternion& q); 00098 Segment& rotatePoint(const Quaternion& q, const Point<dim>& p); 00099 00100 // Intersection functions 00101 00102 AxisBox<dim> boundingBox() const {return AxisBox<dim>(m_p1, m_p2);} 00103 Ball<dim> boundingSphere() const 00104 {return Ball<dim>(getCenter(), Distance(m_p1, m_p2) / 2);} 00105 Ball<dim> boundingSphereSloppy() const 00106 {return Ball<dim>(getCenter(), SloppyDistance(m_p1, m_p2) / 2);} 00107 00108 Segment toParentCoords(const Point<dim>& origin, 00109 const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const 00110 {return Segment(m_p1.toParentCoords(origin, rotation), 00111 m_p2.toParentCoords(origin, rotation));} 00112 Segment toParentCoords(const AxisBox<dim>& coords) const 00113 {return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));} 00114 Segment toParentCoords(const RotBox<dim>& coords) const 00115 {return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));} 00116 00117 // toLocal is just like toParent, expect we reverse the order of 00118 // translation and rotation and use the opposite sense of the rotation 00119 // matrix 00120 00121 Segment toLocalCoords(const Point<dim>& origin, 00122 const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const 00123 {return Segment(m_p1.toLocalCoords(origin, rotation), 00124 m_p2.toLocalCoords(origin, rotation));} 00125 Segment toLocalCoords(const AxisBox<dim>& coords) const 00126 {return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));} 00127 Segment toLocalCoords(const RotBox<dim>& coords) const 00128 {return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));} 00129 00130 // 3D only 00131 Segment toParentCoords(const Point<dim>& origin, 00132 const Quaternion& rotation) const; 00133 Segment toLocalCoords(const Point<dim>& origin, 00134 const Quaternion& rotation) const; 00135 00136 friend bool Intersect<dim>(const Segment& s, const Point<dim>& p, bool proper); 00137 friend bool Contains<dim>(const Point<dim>& p, const Segment& s, bool proper); 00138 00139 friend bool Intersect<dim>(const Segment& s, const AxisBox<dim>& b, bool proper); 00140 friend bool Contains<dim>(const AxisBox<dim>& b, const Segment& s, bool proper); 00141 00142 friend bool Intersect<dim>(const Segment& s, const Ball<dim>& b, bool proper); 00143 friend bool Contains<dim>(const Ball<dim>& b, const Segment& s, bool proper); 00144 00145 friend bool Intersect<dim>(const Segment& s1, const Segment& s2, bool proper); 00146 friend bool Contains<dim>(const Segment& s1, const Segment& s2, bool proper); 00147 00148 friend bool Intersect<dim>(const RotBox<dim>& r, const Segment& s, bool proper); 00149 friend bool Contains<dim>(const RotBox<dim>& r, const Segment& s, bool proper); 00150 friend bool Contains<dim>(const Segment& s, const RotBox<dim>& r, bool proper); 00151 00152 friend bool Intersect<dim>(const Polygon<dim>& r, const Segment& s, bool proper); 00153 friend bool Contains<dim>(const Polygon<dim>& p, const Segment& s, bool proper); 00154 friend bool Contains<dim>(const Segment& s, const Polygon<dim>& p, bool proper); 00155 00156 private: 00157 00158 Point<dim> m_p1, m_p2; 00159 }; 00160 00161 template<int dim> 00162 inline bool Segment<dim>::isEqualTo(const Segment<dim>& s, 00163 CoordType epsilon) const 00164 { 00165 return Equal(m_p1, s.m_p1, epsilon) 00166 && Equal(m_p2, s.m_p2, epsilon); 00167 } 00168 00169 } // namespace WFMath 00170 00171 #endif // WFMATH_SEGMENT_H