![]() |
Eigen
3.3.3
|
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> 00005 // 00006 // This Source Code Form is subject to the terms of the Mozilla 00007 // Public License v. 2.0. If a copy of the MPL was not distributed 00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00009 00010 #ifndef EIGEN_SCALING_H 00011 #define EIGEN_SCALING_H 00012 00013 namespace Eigen { 00014 00032 template<typename _Scalar> 00033 class UniformScaling 00034 { 00035 public: 00037 typedef _Scalar Scalar; 00038 00039 protected: 00040 00041 Scalar m_factor; 00042 00043 public: 00044 00046 UniformScaling() {} 00048 explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} 00049 00050 inline const Scalar& factor() const { return m_factor; } 00051 inline Scalar& factor() { return m_factor; } 00052 00054 inline UniformScaling operator* (const UniformScaling& other) const 00055 { return UniformScaling(m_factor * other.factor()); } 00056 00058 template<int Dim> 00059 inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; 00060 00062 template<int Dim, int Mode, int Options> 00063 inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const 00064 { 00065 Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t; 00066 res.prescale(factor()); 00067 return res; 00068 } 00069 00071 // TODO returns an expression 00072 template<typename Derived> 00073 inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const 00074 { return other * m_factor; } 00075 00076 template<typename Derived,int Dim> 00077 inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const 00078 { return r.toRotationMatrix() * m_factor; } 00079 00081 inline UniformScaling inverse() const 00082 { return UniformScaling(Scalar(1)/m_factor); } 00083 00089 template<typename NewScalarType> 00090 inline UniformScaling<NewScalarType> cast() const 00091 { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } 00092 00094 template<typename OtherScalarType> 00095 inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) 00096 { m_factor = Scalar(other.factor()); } 00097 00102 bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const 00103 { return internal::isApprox(m_factor, other.factor(), prec); } 00104 00105 }; 00106 00109 00113 // NOTE this operator is defiend in MatrixBase and not as a friend function 00114 // of UniformScaling to fix an internal crash of Intel's ICC 00115 template<typename Derived,typename Scalar> 00116 EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product) 00117 operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s) 00118 { return matrix.derived() * s.factor(); } 00119 00121 inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } 00123 inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } 00125 template<typename RealScalar> 00126 inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) 00127 { return UniformScaling<std::complex<RealScalar> >(s); } 00128 00130 template<typename Scalar> 00131 inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy) 00132 { return DiagonalMatrix<Scalar,2>(sx, sy); } 00134 template<typename Scalar> 00135 inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) 00136 { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } 00137 00141 template<typename Derived> 00142 inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) 00143 { return coeffs.asDiagonal(); } 00144 00146 typedef DiagonalMatrix<float, 2> AlignedScaling2f; 00148 typedef DiagonalMatrix<double,2> AlignedScaling2d; 00150 typedef DiagonalMatrix<float, 3> AlignedScaling3f; 00152 typedef DiagonalMatrix<double,3> AlignedScaling3d; 00154 00155 template<typename Scalar> 00156 template<int Dim> 00157 inline Transform<Scalar,Dim,Affine> 00158 UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const 00159 { 00160 Transform<Scalar,Dim,Affine> res; 00161 res.matrix().setZero(); 00162 res.linear().diagonal().fill(factor()); 00163 res.translation() = factor() * t.vector(); 00164 res(Dim,Dim) = Scalar(1); 00165 return res; 00166 } 00167 00168 } // end namespace Eigen 00169 00170 #endif // EIGEN_SCALING_H