![]() |
Eigen
3.3.3
|
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
This is defined in the Geometry module.
#include <Eigen/Geometry>
_Scalar | the scalar type, i.e., the type of the coefficients. |
The following two typedefs are provided for convenience:
AngleAxisf
for float
AngleAxisd
for double
Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily mimic Euler-angles. Here is an example:
Matrix3f m; m = AngleAxisf(0.25*M_PI, Vector3f::UnitX()) * AngleAxisf(0.5*M_PI, Vector3f::UnitY()) * AngleAxisf(0.33*M_PI, Vector3f::UnitZ()); cout << m << endl << "is unitary: " << m.isUnitary() << endl;
Output:
1.19e-07 0 1 0.969 -0.249 0 0.249 0.969 1.19e-07 is unitary: 1
Public Types | |
typedef _Scalar | Scalar |
Public Member Functions | |
Scalar | angle () const |
Scalar & | angle () |
AngleAxis () | |
template<typename Derived > | |
AngleAxis (const Scalar &angle, const MatrixBase< Derived > &axis) | |
template<typename QuatDerived > | |
AngleAxis (const QuaternionBase< QuatDerived > &q) | |
template<typename Derived > | |
AngleAxis (const MatrixBase< Derived > &m) | |
template<typename OtherScalarType > | |
AngleAxis (const AngleAxis< OtherScalarType > &other) | |
const Vector3 & | axis () const |
Vector3 & | axis () |
template<typename NewScalarType > | |
internal::cast_return_type < AngleAxis, AngleAxis < NewScalarType > >::type | cast () const |
template<typename Derived > | |
AngleAxis & | fromRotationMatrix (const MatrixBase< Derived > &m) |
Sets *this from a 3x3 rotation matrix. | |
AngleAxis | inverse () const |
bool | isApprox (const AngleAxis &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const |
QuaternionType | operator* (const AngleAxis &other) const |
QuaternionType | operator* (const QuaternionType &other) const |
template<class QuatDerived > | |
AngleAxis & | operator= (const QuaternionBase< QuatDerived > &q) |
template<typename Derived > | |
AngleAxis & | operator= (const MatrixBase< Derived > &m) |
Matrix3 | toRotationMatrix (void) const |
Friends | |
QuaternionType | operator* (const QuaternionType &a, const AngleAxis &b) |
typedef _Scalar Eigen::AngleAxis< _Scalar >::Scalar |
the scalar type of the coefficients
Reimplemented from Eigen::RotationBase< AngleAxis< _Scalar >, 3 >.
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | ) | [inline] |
Default constructor without initialization.
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const Scalar & | angle, |
const MatrixBase< Derived > & | axis | ||
) | [inline] |
Constructs and initialize the angle-axis rotation from an angle in radian and an axis which must be normalized.
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const QuaternionBase< QuatDerived > & | q | ) | [inline, explicit] |
Constructs and initialize the angle-axis rotation from a quaternion q. This function implicitly normalizes the quaternion q.
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const MatrixBase< Derived > & | m | ) | [inline, explicit] |
Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix.
Eigen::AngleAxis< _Scalar >::AngleAxis | ( | const AngleAxis< OtherScalarType > & | other | ) | [inline, explicit] |
Copy constructor with scalar type conversion
Scalar Eigen::AngleAxis< _Scalar >::angle | ( | ) | const [inline] |
Scalar& Eigen::AngleAxis< _Scalar >::angle | ( | ) | [inline] |
const Vector3& Eigen::AngleAxis< _Scalar >::axis | ( | ) | const [inline] |
Vector3& Eigen::AngleAxis< _Scalar >::axis | ( | ) | [inline] |
internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type Eigen::AngleAxis< _Scalar >::cast | ( | ) | const [inline] |
*this
with scalar type casted to NewScalarType Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
AngleAxis Eigen::AngleAxis< _Scalar >::inverse | ( | ) | const [inline] |
Reimplemented from Eigen::RotationBase< AngleAxis< _Scalar >, 3 >.
bool Eigen::AngleAxis< _Scalar >::isApprox | ( | const AngleAxis< _Scalar > & | other, |
const typename NumTraits< Scalar >::Real & | prec = NumTraits<Scalar>::dummy_precision() |
||
) | const [inline] |
true
if *this
is approximately equal to other, within the precision determined by prec.QuaternionType Eigen::AngleAxis< _Scalar >::operator* | ( | const AngleAxis< _Scalar > & | other | ) | const [inline] |
Concatenates two rotations
QuaternionType Eigen::AngleAxis< _Scalar >::operator* | ( | const QuaternionType & | other | ) | const [inline] |
Concatenates two rotations
AngleAxis< Scalar > & Eigen::AngleAxis< Scalar >::operator= | ( | const QuaternionBase< QuatDerived > & | q | ) |
Set *this
from a unit quaternion.
The resulting axis is normalized, and the computed angle is in the [0,pi] range.
This function implicitly normalizes the quaternion q.
AngleAxis< Scalar > & Eigen::AngleAxis< Scalar >::operator= | ( | const MatrixBase< Derived > & | mat | ) |
Set *this
from a 3x3 rotation matrix mat.
AngleAxis< Scalar >::Matrix3 Eigen::AngleAxis< Scalar >::toRotationMatrix | ( | void | ) | const |
Constructs and
Reimplemented from Eigen::RotationBase< AngleAxis< _Scalar >, 3 >.
QuaternionType operator* | ( | const QuaternionType & | a, |
const AngleAxis< _Scalar > & | b | ||
) | [friend] |
Concatenates two rotations