"""
R objects as Python objects.
The module is structured around the singleton r of class R,
that represents an embedded R.
License: GPLv3.0 (although a dual license can be worked out)
"""
import os, sys
import array
import itertools
from datetime import datetime
import rpy2.rinterface as rinterface
import rpy2.rlike.container as rlc
from rpy2.robjects.robject import RObjectMixin, RObject
from rpy2.robjects.vectors import (BoolVector,
IntVector,
FloatVector,
ComplexVector,
StrVector,
FactorVector,
Vector,
ListVector,
DateVector,
POSIXct,
POSIXlt,
Array,
Matrix,
DataFrame)
from rpy2.robjects.functions import Function, SignatureTranslatedFunction
from rpy2.robjects.environments import Environment
from rpy2.robjects.methods import RS4
from . import conversion
from rpy2.rinterface import (Sexp,
SexpVector,
SexpClosure,
SexpEnvironment,
SexpS4,
StrSexpVector,
SexpExtPtr)
_globalenv = rinterface.globalenv
# missing values
from rpy2.rinterface import (NA_Real,
NA_Integer,
NA_Logical,
NA_Character,
NA_Complex,
NULL)
if sys.version_info[0] == 2:
py3str = unicode
py3bytes = str
import itertools
zip = itertools.izip
else:
long = int
py3str = str
py3bytes = bytes
_rparse = rinterface.baseenv['parse']
_reval = rinterface.baseenv['eval']
def reval(string, envir = _globalenv):
""" Evaluate a string as R code
- string: a string
- envir: an environment in which the environment should take place
(default: R's global environment)
"""
p = rinterface.parse(string)
res = _reval(p, envir = envir)
return res
default_converter = conversion.Converter('base empty converter')
@default_converter.ri2ro.register(RObject)
def _(obj):
return obj
def sexpvector_to_ro(obj):
try:
rcls = obj.do_slot("class")
except LookupError as le:
rcls = [None]
if 'data.frame' in rcls:
res = vectors.DataFrame(obj)
return res
try:
dim = obj.do_slot("dim")
if len(dim) == 2:
res = vectors.Matrix(obj)
else:
res = vectors.Array(obj)
except LookupError as le:
if obj.typeof == rinterface.INTSXP:
if 'factor' in rcls:
res = vectors.FactorVector(obj)
else:
res = vectors.IntVector(obj)
elif obj.typeof == rinterface.REALSXP:
if obj.rclass[0] == 'POSIXct':
res = vectors.POSIXct(obj)
else:
res = vectors.FloatVector(obj)
elif obj.typeof == rinterface.LGLSXP:
res = vectors.BoolVector(obj)
elif obj.typeof == rinterface.STRSXP:
res = vectors.StrVector(obj)
elif obj.typeof == rinterface.VECSXP:
res = vectors.ListVector(obj)
elif obj.typeof == rinterface.LANGSXP and 'formula' in rcls:
res = Formula(obj)
else:
res = vectors.Vector(obj)
return res
default_converter.ri2ro.register(SexpVector, sexpvector_to_ro)
TYPEORDER = {bool: (0, BoolVector),
int: (1, IntVector),
float: (2, FloatVector),
complex: (3, ComplexVector),
str: (4, StrVector)}
def sequence_to_vector(lst):
curr_typeorder = -1
for i, elt in enumerate(lst):
cls = type(elt)
if cls in TYPEORDER:
if TYPEORDER[cls][0] > curr_typeorder:
curr_typeorder, curr_type = TYPEORDER[cls]
else:
raise ValueError('The element %i in the list has a type that cannot be handled.' % i)
res = curr_type(lst)
return res
@default_converter.ri2ro.register(SexpClosure)
def _(obj):
return SignatureTranslatedFunction(obj)
@default_converter.ri2ro.register(SexpEnvironment)
def _(obj):
return Environment(obj)
@default_converter.ri2ro.register(SexpS4)
def _(obj):
return RS4(obj)
@default_converter.ri2ro.register(SexpExtPtr)
def _(obj):
return obj
@default_converter.ri2ro.register(object)
def _(obj):
return RObject(obj)
@default_converter.ri2ro.register(type(NULL))
def _(obj):
return obj
def default_py2ri(o):
""" Convert an arbitrary Python object to a
:class:`rpy2.rinterface.Sexp` object.
Creates an R object with the content of the Python object,
wich means data copying.
:param o: object
:rtype: :class:`rpy2.rinterface.Sexp` (and subclasses)
"""
pass
@default_converter.py2ri.register(RObject)
def _(obj):
return rinterface.Sexp(obj)
@default_converter.py2ri.register(Sexp)
def _(obj):
return obj
@default_converter.py2ri.register(array.array)
def _(obj):
if obj.typecode in ('h', 'H', 'i', 'I'):
res = rinterface.SexpVector(obj, rinterface.INTSXP)
elif obj.typecode in ('f', 'd'):
res = rinterface.SexpVector(obj, rinterface.REALSXP)
else:
raise(ValueError("Nothing can be done for this array type at the moment."))
return res
@default_converter.py2ri.register(bool)
def _(obj):
return rinterface.SexpVector([obj, ], rinterface.LGLSXP)
def int2ri(obj):
# special case for NA_Logical
if obj is rinterface.NA_Logical:
res = rinterface.SexpVector([obj, ], rinterface.LGLSXP)
else:
res = rinterface.SexpVector([obj, ], rinterface.INTSXP)
return res
default_converter.py2ri.register(int, int2ri)
default_converter.py2ri.register(long, int2ri)
@default_converter.py2ri.register(float)
def _(obj):
return rinterface.SexpVector([obj, ], rinterface.REALSXP)
@default_converter.py2ri.register(py3bytes)
def _(obj):
return rinterface.SexpVector([obj, ], rinterface.STRSXP)
@default_converter.py2ri.register(py3str)
def _(obj):
return rinterface.SexpVector([obj, ], rinterface.STRSXP)
@default_converter.py2ri.register(list)
def _(obj):
return rinterface.ListSexpVector([conversion.py2ri(x) for x in obj])
@default_converter.py2ri.register(rlc.TaggedList)
def _(obj):
res = rinterface.ListSexpVector([conversion.py2ri(x) for x in obj])
res.do_slot_assign('names', rinterface.StrSexpVector(obj.tags))
return res
@default_converter.py2ri.register(complex)
def _(obj):
return rinterface.SexpVector([obj, ], rinterface.CPLXSXP)
@default_converter.py2ro.register(object)
def _(obj):
robj = conversion.py2ri(obj)
return conversion.ri2ro(robj)
@default_converter.ri2py.register(object)
def _(obj):
return conversion.ri2ro(obj)
def __init__(self, formula, environment = _globalenv):
if isinstance(formula, str):
inpackage = rinterface.baseenv["::"]
asformula = inpackage(rinterface.StrSexpVector(['stats', ]),
rinterface.StrSexpVector(['as.formula', ]))
formula = rinterface.SexpVector(rinterface.StrSexpVector([formula, ]))
robj = asformula(formula,
env = environment)
else:
robj = formula
super(Formula, self).__init__(robj)
def getenvironment(self):
""" Get the environment in which the formula is finding its symbols."""
res = self.do_slot(".Environment")
res = conversion.ri2ro(res)
return res
def setenvironment(self, val):
""" Set the environment in which a formula will find its symbols."""
if not isinstance(val, rinterface.SexpEnvironment):
raise ValueError("The environment must be an instance of" +
" rpy2.rinterface.Sexp.environment")
self.do_slot_assign(".Environment", val)
environment = property(getenvironment, setenvironment,
"R environment in which the formula will look for" +
" its variables.")
class R(object):
_instance = None
def __new__(cls):
if cls._instance is None:
rinterface.initr()
cls._instance = object.__new__(cls)
return cls._instance
def __getattribute__(self, attr):
try:
return super(R, self).__getattribute__(attr)
except AttributeError as ae:
orig_ae = str(ae)
try:
return self.__getitem__(attr)
except LookupError as le:
raise AttributeError(orig_ae)
def __getitem__(self, item):
res = _globalenv.get(item)
res = conversion.ri2ro(res)
if hasattr(res, '__rname__'):
res.__rname__ = item
return res
#FIXME: check that this is properly working
def __cleanup__(self):
rinterface.endEmbeddedR()
del(self)
def __str__(self):
s = super(R, self).__str__()
s += os.linesep
version = self["version"]
tmp = [n+': '+val[0] for n, val in zip(version.names, version)]
s += str.join(os.linesep, tmp)
return s
def __call__(self, string):
p = _rparse(text=StrSexpVector((string,)))
res = self.eval(p)
return conversion.ri2py(res)
r = R()
conversion.set_conversion(default_converter)
globalenv = conversion.converter.ri2ro(_globalenv)
baseenv = conversion.converter.ri2ro(rinterface.baseenv)
emptyenv = conversion.converter.ri2ro(rinterface.emptyenv)