
Writing bibliographic tools with
pybliographer

Frédéric Gobry

August 18, 2007

Contents

1 Introduction 2
1.1 Basic concepts . 2

1.1.1 The database schema . 3
1.1.2 Taxonomies . 3
1.1.3 Result sets . 4
1.1.4 Views . 4

1.2 Manipulating data . 4
1.2.1 Loading and saving . 4
1.2.2 Using the registry . 5
1.2.3 Updating records . 5
1.2.4 Sorting . 6
1.2.5 Searching . 6

1.3 Importing and exporting . 7
1.4 Citation formatting . 7
1.5 Querying external databases . 9
1.6 Adapting to another schema . 9

2 Extending pybliographer 11
2.1 Specializing a parser . 11
2.2 Writing an external query engine 11

1

Chapter 1

Introduction

pybliographer is a developer-oriented framework for manipulating bibliogra-
phic data. It is written in python1, and uses extensively the dynamic nature of
this language.

pybliographer does not try to define another standard format for bibliogra-
phic data, nor does it solely rely on a single existing standards. Standards are
important in order to allow for interoperability and durability. Unfortunately,
real-world data often contain mistakes (sometimes systematic mistakes due to
a misunderstanding of the meaning of a field), or reflect certain local conven-
tions which are not part of a standard. pybliographer is on the pragmatic side
of considering these issues as part of its business: most of the parsing and pro-
cessing tasks it performs can be easily overridden and specialized in order to
fit the code to the data, and not the other way around.

1.1 Basic concepts

pybliographer deals with sets of Records, stored in a so-called Database.
This database can be actually implemented on top of different systems. Three
are available today:

• in-memory: useful when the data is converted from one format to an-
other and doesn’t need to be stored in pybliographer .

• file: as a single XML file, using a custom XML dialect, suitable for small
to medium databases (thousands of records).

• Berkeley DB2: this is a very efficient database system, suitable for larger
databases. In this case the limitations are due to some pybliographer
design decisions, and should be reached after a million records or so.

Each record represents an elementary object you want to describe, and has
a number of attributes. For instance, if you are describing a book, one attribute
will be its title, another its ISBN, etc. Each of these attributes can contain one or
more values, all of the same type. To continue the description of our book, we

1see http://python.org/
2see http://www.sleepycat.com/

2

http://python.org/
http://www.sleepycat.com/

probably have the author attribute, which contains as many Person values as
there are authors for the book. All the values of a given attribute are of the
same type.

In some cases, simply having this flat key/value model to describe an object
is not enough. pybliographer allows every value of every attribute to provide a
set of qualifiers. These qualifiers are also attributes which can hold one or more
values. If my book, or information about the book, is available via the internet,
I can provide a link attribute, but for each of the actual URLs provided, I might
wish to add a description qualifier, which will indicate, say, if the URL points
to the editor’s website, or to a review, etc.

This nesting of objects is best described in figure 1.1.

Figure 1.1: Objects manipulated in pybliographer

pybliographer comes with a set of defined attribute types, like Person,
Text, Date, ID (see the Pyblio.Attribute module for a complete list), and
can be extended to support your own types.

1.1.1 The database schema

Even though attributes are typed, the data model described above is quite flex-
ible. In order for pybliographer to help you checking that your records are
properly typed, it needs to know the database schema you are using. This
schema, usually stored in an XML file with the extension .sip, simply lists
the known attributes with their type and the qualifiers it allows for its values.
Some .sip files are distributed with pybliographer , and can be seen in the
Pyblio.RIP directory.

In addition to validation information, the schema contains human-readable
description of the different fields, possibly in several languages, so that it can
be automatically extracted by user interfaces to provide up-to-date informa-
tion.

1.1.2 Taxonomies

Taxonomies can be used as enumerated values, say for listing the possible types
of a document, or the language in which a text is written. They have however
the extra capability of being hierarchical: you can define subcategories of a
main category. For instance, imagine a doctype taxonomy with the following
values:

3

You can tag an article as Peer-reviewed, but you are not required to use
the leaf values in this tree. In the case you don’t know if a publication is re-
viewed or not, you can use the Article tag. Similarly, if you search for all the
Published documents, you will retrieve all those that have the Published
tag, but also those that are articles (either peer-reviewed or not), books,...

pybliographer uses the Pyblio.Attribute.Txo object to represent a log-
ical value in a given taxonomy. A record can be tagged with this Txo object by
adding a Pyblio.Schema.TxoItem value in the corresponding attribute.

Taxonomies are declared in a database schema, and thus cannot change
unless you change the schema itself.

1.1.3 Result sets

Result sets are used to manipulate an explicit list of records, among all the
records kept in a database. They are returned from queries on the database, and
can be manipulated by the user. Result sets are somewhat like mathematical
sets, as you cannot put duplicate values in them, and they have no default
ordering of their elements. You can create result sets via the rs attribute of your
database, which is an instance of the Pyblio.Store.ResultSetStore.

A special result set is available as Pyblio.entries, and contains at every
time all the records of the database.

1.1.4 Views

We have seen that result sets are not ordered. However, in many cases, one
needs to provide the records in a specific order. To do so, you can create a view
on top of a result set. This view is created by calling the view method of the
result set, with an order parameter being the description of the sort order you
wish to have. The module Pyblio.Sort provides elementary constructs to
build such a description.

Once the view is created, modifying the corresponding result set leads to
updating the view accordingly.

1.2 Manipulating data

This section describes some simple operations you can perform on some subset
of a pybliographer database.

1.2.1 Loading and saving

The first thing you need to do is of course actually having a database available.
The following code does the job:

4

from Pyblio import Store, Schema

schema = Schema.Schema(’myschema.sip’)
store = Store.get(’file’)

db = store.dbcreate(’mydb.bip’, schema)

This example relies on the fact that you already have a schema at hand.
There are schemas available in the Pyblio.RIP directory. It the starts by read-
ing the schema. The next step is to select the actual physical store which will
hold your database. We choose to store it in a simple XML file, whose canoni-
cal extension is .bip. The last operation actually creates the database with the
specified schema.

Independently of the selected store, it is always possible to export a database
in the .sip format, by calling the db.xmlwrite(...) method of the database.
Such a file can then be reused later on by using store.dbimport(...) in-
stead of store..dbcreate(...).

When you have finished modifying your database, you can call db.save()
method to ensure that it is properly saved.

Caution: the bsddb store for instance is updated at every actual modifica-
tion, not only when you call the savemethod. Don’t rely on it to provide some
kind of rollback feature.

1.2.2 Using the registry

pybliographer has a mechanism to register known schemas, and specify which
import and export filters can properly work with each schema. This mecha-
nism can be used to create our database by asking for a specific schema, as
shown below:

from Pyblio import Store, Registry

Registry.load_default_settings()

schema = Registry.getSchema("org.pybliographer/bibtex/0.1")
store = Store.get(’file’)

db = store.dbcreate(’mydb.bip’, schema)

The registry must be first initialized. Then you can ask for a specific schema,
in that case a schema that supports BibTeX databases.

1.2.3 Updating records

The next example will loop over all the records in a database, and add a new
author to the list of authors.

from Pyblio import Attribute

for record in db.entries.itervalues():
person = Attribute.Person(last=u"Gobry",

5

first=u"Frédéric")

record.add(’author’, person)

db[record.key] = record

db.save()

We use the itervalues() iterator to loop over all the records stored in
the database. Then, we simply insert a new value in the author attribute. The
record.add(...) method takes care of creating the attribute if it does not
exist yet.

One thing not to forget is to store the record back in the database once the
modification is performed. Without this step, you might experience weird be-
havior where some modifications are not properly kept.

We finish by saving the database.

1.2.4 Sorting

To sort records, you create views (see section 1.1.4 on page 4). You can of course
create multiple views on top of a single result set. In order to sort the whole
database, simply create the view on database.entries instead of a result
set. If you want to sort your database by decreasing year and then by author,
you can use a view like that:

from Pyblio.Sort import OrderBy

view = db.entries.view(OrderBy(’year’, asc=False) &
OrderBy(’author’))

for record in view.itervalues():
do something with the record
...

So, sorting constraints can be arbitrarily chained with the & operator,and
each constraint can be either ascending (the default), or descending. This defines
a very simple Domain Specific Language, or DSL for short. Such languages
also appear in other part of pybliographer (searching, citation formatting), as
they are a convenient way to describe complex abstraction without having to
reinvent a complete environment.

1.2.5 Searching

To search, you call the database.query(...) method. The method takes a
query specification as argument, which is constructed with the help of another
DSL, similar to the one used for sorting. You have access to a certain number
of primitive queries, which are then linked together with the usual boolean
operators, as in the following example:

from Pyblio import Query

6

article = db.txo[’doctype’].byname(’article’)

result = db.query(˜ Query.Txo(’doctype’, article) &
Query.AnyWord(’laziness’))

We first get the taxonomy item corresponding to articles, and we then com-
pose the following query: get all the documents that are not articles, and which
contain the word laziness in any attribute.

1.3 Importing and exporting

As pybliographer is not bound to a single data schema, importing and ex-
porting from specific formats (like MARC, BibTeX, Dublin Core,...) cannot be
achieved once for all. In order to avoid the need to recreate a BibTeX parser
for every database schema invented, pybliographer makes a clear separation
between syntactic parsers, located in Pyblio.Parsers.Syntactic and se-
mantic parsers, in Pyblio.Parsers.Semantic. A syntactic parser is only in
charge of analyzing or generating a file format, without any assumption re-
garding the meaning of the fields it reads. These syntactic parsers are then
reused by the semantic code, which relates the meaning of the fields to the
corresponding database.

In addition, the parsers are written so that the handling of separate fields
can be easily overridden in a subclass. This makes it possible to extend them
or take some local specificities into account (if you need to massage data that
contains systematic errors, this proves very useful).

The following example assumes you have created a BibTeX-compatible database,
as explained in the section 1.2.2 on page 5. It will then open a proper BibTeX
file, and merge it into the current database. The list of imported references is
returned as a result set.

from Pyblio.Parsers.Semantic import BibTeX

parser = BibTeX.Reader()

rs = parser.parse(open(’example.bib’), db)

1.4 Citation formatting

The painful part of writing citation formatting code is to take into account in-
complete records (sometimes you don’t know the volume or the pages, or you
only know one of the two,...) without multiplying explicit checks that would
quickly be boring. In addition, it is important to make it easy to factor out com-
mon operations, like formatting a list of authors, so that you can reuse them in
different contexts.

pybliographer provides a domain specific language that addresses these prob-
lems. A domain specific language (or DSL for short) is a language specifically
intended to solve a given problem, but which is usually built up from a more
general language. In our case, it means that pybliographer provides a set of

7

classes, functions and constructs that are highly specialized to make the busi-
ness of writing the citation code easy. The beauty of the idea is that, in case of
a missing feature in this DSL, you still have all the power of python at your
fingertips.

In any case, this DSL is not intended as a complete formatting language, so
you cannot use it to lay out your citations in a full blown HTML web page for
instance. However, once a citation is built up from a record, the specific part of
putting it in a larger context is comparatively easy.

Back to practice. You can define some citation fragments like this:

from Pyblio.Format import People, all, one

authors = People.lastFirst(all(’author’))
title = one(’title’) | u’(no title)’

In this example, the authors variable is build up by taking all the val-
ues in the author field (all(’author’)), and by passing them through the
lastFirst function, which will format them as Last Name, First Name. The
Person module contains other formatting variants for person names if you
want to use initials for instance.

The title variable is built by taking the first value of the title field (via the
one operator), and in case it does not exist, by using the string no title instead.
This | alternative operator can be used everywhere to express a fallback value
where a definition can be invalid.

You can then group the authors and the title together, possibly while adding
some typographic style information in the process:

from Pyblio.Format import B

citation = join(’, ’)[B[title], authors]

The join operator will take the parts between square braces and bind them
together with the text specified in parameter, a comma in that case. When one
of the composing parts is not available, it is simply ignored, unless no part is
available, in which case the whole expression is invalid (which can be trapped
by using the | operator). In the example, the title is enclosed in a bold B tag.

Once the citation style is defined, it must be compiled on a specific database:

formatter = citation(db)

This operation checks that all the fields accessed are actually part of the
schema. It also pre-computes certain information, so that the actual formatting
of specific records can be faster.

Then, you can use the returned formatter and apply it to any number of
records from the corresponding database:

cited = formatter(record)

You still don’t get a definitive result, as you need to select the output format
for your citation. If you want it in HTML, you can do this last operation:

from Pyblio.Format import HTML

html = HTML.generate(cited)

8

Now, html contains a properly escaped HTML fragment which you can
use in your own context.

1.5 Querying external databases

pybliographer has a standard interface for querying external databases, like
PubMed or the Web of Science. These queries rely on the asynchronous twisted
library, which makes it possible to run such a query from a graphical interface
without blocking, and to interrupt it easily.

An example of such a query is described below.

from Pyblio.External import WOK

s = Registry.getSchema(’org.pybliographer/wok/0.1’)
db = Store.get(’file’).dbcreate(output, s)

wok = WOK.WOK(db)

d, rs = wok.search(query)

def success(total):
print "wok: successfully fetched %d records" % total
do something with the database?

d.addCallback(success).addErrback(failure)

reactor.run()

In this code, a query object wok is created, which will directly modify the
database passed in parameter. Then a actual query is registered by calling
wok.search. This returns two values: a deferred object, which is a twisted
abstraction. You can then plug a callback, in our case the success() function,
to be called when the search succeeds. The second value returned is a result
set, which will be filled with the entries retrieved by the query.

Note that so far the query did not run. To start it, you need to run twisted ’s
main loop, called the reactor. This function won’t exit unless you call reactor.stop()
somewhere. Please have a look at twisted ’s documentation3 to learn how to
make use of this powerful framework.

1.6 Adapting to another schema

In the preceding example, we fetched results from the Web of Science in a
database of type org.pybliographer/wok/0.1. This is a schema specially
crafted for records coming from this database, but usually this is not what you
expect to store in your own, say, BibTeX database. So what, do you need to
create another query engine specially for your database? Fortunately no, you
can use the adaptation mechanism to make this Web of Science database look
like a BibTeX database with a simple call like:

3see http://twistedmatrix.com/

9

http://twistedmatrix.com/

from Pyblio import Adapter

bibtex = Adapter.adapt_schema(
db, ’org.pybliographer/bibtex/0.1’)

When this call succeeds, you will get in return a new database called bibtex,
which will contain everything contained in db, but in the BibTeX schema.
Please note that your database is not duplicated, the bibtex database is just
some kind of overlay that behaves as a normal database, but uses the initial
content dynamically.

Unfortunately, these adapters objects that do the mapping do not come out
of thin air, and need to be registered in the system, via the usual .rip registry
mechanism.

10

Chapter 2

Extending pybliographer

2.1 Specializing a parser

Let’s say your BibTeX file uses a field called status that is not standard. You
need to create a new schema that declares it, and derive the base BibTeX parser
to provide an extra field handler:

class MyBibTeXReader(Semantic.BibTeX.Reader):
def do_status_field(self, key, value):

do things for the field "status"

Once this is done, you can register the new reader in a RIP file.
In some cases, it is necessary to perform cross-field checks and modifica-

tions. This can be achieved by using the following simple extension hooks:

Parser.record begin(self) is invoked at the beginning of each record.

Parser.record end(self) is invoked once all the fields of a record have
been parsed.

Parser.do default(self, field, value) will be invoked for unknown
fields.

2.2 Writing an external query engine

11

	Introduction
	Basic concepts
	The database schema
	Taxonomies
	Result sets
	Views

	Manipulating data
	Loading and saving
	Using the registry
	Updating records
	Sorting
	Searching

	Importing and exporting
	Citation formatting
	Querying external databases
	Adapting to another schema

	Extending pybliographer
	Specializing a parser
	Writing an external query engine

