# -*- coding: utf-8 -*-
"""Copyright 2014 Roger R Labbe Jr.
filterpy library.
http://github.com/rlabbe/filterpy
Documentation at:
https://filterpy.readthedocs.org
Supporting book at:
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the readme.MD file
for more information.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from scipy.linalg import inv
from numpy import dot, zeros, eye, outer
from numpy.random import multivariate_normal
from filterpy.common import dot3
[docs]class EnsembleKalmanFilter(object):
""" This implements the ensemble Kalman filter (EnKF). The EnKF uses
an ensemble of hundreds to thousands of state vectors that are randomly
sampled around the estimate, and adds perturbations at each update and
predict step. It is useful for extremely large systems such as found
in hydrophysics. As such, this class is admittedly a toy as it is far
too slow with large N.
There are many versions of this sort of this filter. This formulation is
due to Crassidis and Junkins [1]. It works with both linear and nonlinear
systems.
**References**
- [1] John L Crassidis and John L. Junkins. "Optimal Estimation of
Dynamic Systems. CRC Press, second edition. 2012. pp, 257-9.
"""
[docs] def __init__(self, x, P, dim_z, dt, N, hx, fx):
""" Create a Kalman filter. You are responsible for setting the
various state variables to reasonable values; the defaults below will
not give you a functional filter.
**Parameters**
x : np.array(dim_z)
state mean
P : np.array((dim_x, dim_x))
covariance of the state
dim_z : int
Number of of measurement inputs. For example, if the sensor
provides you with position in (x,y), dim_z would be 2.
dt : float
time step in seconds
N : int
number of sigma points (ensembles). Must be greater than 1.
hx : function hx(x)
Measurement function. May be linear or nonlinear - converts state
x into a measurement. Return must be an np.array of the same
dimensionality as the measurement vector.
fx : function fx(x, dt)
State transition function. May be linear or nonlinear. Projects
state x into the next time period. Returns the projected state x.
**Example**
.. code::
def hx(x):
return np.array([x[0]])
F = np.array([[1., 1.],
[0., 1.]])
def fx(x, dt):
return np.dot(F, x)
x = np.array([0., 1.])
P = np.eye(2) * 100.
dt = 0.1
f = EnKF(x=x, P=P, dim_z=1, dt=dt, N=8,
hx=hx, fx=fx)
std_noise = 3.
f.R *= std_noise**2
f.Q = Q_discrete_white_noise(2, dt, .01)
while True:
z = read_sensor()
f.predict()
f.update(np.asarray([z]))
"""
assert dim_z > 0
self.dim_x = len(x)
self.dim_z = dim_z
self.dt = dt
self.N = N
self.hx = hx
self.fx = fx
self.Q = eye(self.dim_x) # process uncertainty
self.R = eye(self.dim_z) # state uncertainty
self.mean = [0]*self.dim_x
self.initialize(x, P)
[docs] def initialize(self, x, P):
""" Initializes the filter with the specified mean and
covariance. Only need to call this if you are using the filter
to filter more than one set of data; this is called by __init__
**Parameters**
x : np.array(dim_z)
state mean
P : np.array((dim_x, dim_x))
covariance of the state
"""
assert x.ndim == 1
self.sigmas = multivariate_normal(mean=x, cov=P, size=self.N)
self.x = x
self.P = P
[docs] def update(self, z, R=None):
"""
Add a new measurement (z) to the kalman filter. If z is None, nothing
is changed.
**Parameters**
z : np.array
measurement for this update.
R : np.array, scalar, or None
Optionally provide R to override the measurement noise for this
one call, otherwise self.R will be used.
"""
if z is None:
return
if R is None:
R = self.R
if np.isscalar(R):
R = eye(self.dim_z) * R
N = self.N
dim_z = len(z)
sigmas_h = zeros((N, dim_z))
# transform sigma points into measurement space
for i in range(N):
sigmas_h[i] = self.hx(self.sigmas[i])
z_mean = np.mean(sigmas_h, axis=0)
P_zz = 0
for sigma in sigmas_h:
s = sigma - z_mean
P_zz += outer(s, s)
P_zz = P_zz / (N-1) + R
P_xz = 0
for i in range(N):
P_xz += outer(self.sigmas[i] - self.x, sigmas_h[i] - z_mean)
P_xz /= N-1
K = dot(P_xz, inv(P_zz))
e_r = multivariate_normal([0]*dim_z, R, N)
for i in range(N):
self.sigmas[i] += dot(K, z + e_r[i] - sigmas_h[i])
self.x = np.mean(self.sigmas, axis=0)
self.P = self.P - dot3(K, P_zz, K.T)
[docs] def predict(self):
""" Predict next position. """
N = self.N
for i, s in enumerate(self.sigmas):
self.sigmas[i] = self.fx(s, self.dt)
e = multivariate_normal(self.mean, self.Q, N)
self.sigmas += e
#self.x = np.mean(self.sigmas , axis=0)
P = 0
for s in self.sigmas:
sx = s - self.x
P += outer(sx, sx)
self.P = P / (N-1)