Source code for filterpy.memory.fading_memory
# -*- coding: utf-8 -*-
"""Copyright 2014 Roger R Labbe Jr.
filterpy library.
http://github.com/rlabbe/filterpy
Documentation at:
https://filterpy.readthedocs.org
Supporting book at:
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the readme.MD file
for more information.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from numpy import dot
[docs]class FadingMemoryFilter(object):
def __init__(self, x0, dt, order, beta):
""" Creates a fading memory filter of order 0, 1, or 2.
**Parameters**
x0 : 1D np.array or scalar
Initial value for the filter state. Each value can be a scalar
or a np.array.
You can use a scalar for x0. If order > 0, then 0.0 is assumed
for the higher order terms.
x[0] is the value being tracked
x[1] is the first derivative (for order 1 and 2 filters)
x[2] is the second derivative (for order 2 filters)
dt : scalar
timestep
order : int
order of the filter. Defines the order of the system
0 - assumes system of form x = a_0 + a_1*t
1 - assumes system of form x = a_0 +a_1*t + a_2*t^2
2 - assumes system of form x = a_0 +a_1*t + a_2*t^2 + a_3*t^3
beta : float
filter gain parameter.
**Members**
self.x : np.array
State of the filter.
x[0] is the value being tracked
x[1] is the derivative of x[0] (order 1 and 2 only)
x[2] is the 2nd derivative of x[0] (order 2 only)
This is always an np.array, even for order 0 where you can
initialize x0 with a scalar.
self.P : np.array
The diagonal of the covariance matrix. Assumes that variance
is one; multiply by sigma^2 to get the actual variances.
This is a constant and will not vary as the filter runs.
self.e : np.array
The truncation error of the filter. Each term must be multiplied
by the a_1, a_2, or a_3 of the polynomial for the system.
For example, if the filter is order 2, then multiply all terms
of self.e by a_3 to get the actual error. Multipy by a_2 for order
1, and a_1 for order 0.
"""
assert order >= 0
assert order <= 2
if np.isscalar(x0):
self.x = np.zeros(order+1)
self.x[0] = x0
else:
self.x = np.copy(x0)
self.dt = dt
self.order = order
self.beta = beta
if order == 0:
self.P = np.array([(1-beta)/(1+beta)], dtype=float)
self.e = np.array([dt * beta / (1-beta)], dtype=float)
elif order == 1:
p11 = (1-beta) * (1+4*beta+5*beta**2) / (1+beta)**3
p22 = 2*(1-beta)**3 / (1+beta)**3
self.P = np.array([p11, p22], dtype=float)
e = 2*dt*2 * (beta / (1-beta))**2
de = dt*((1+3*beta)/(1-beta))
self.e = np.array ([e, de], dtype=float)
else:
p11 = (1-beta)*((1+6*beta + 16*beta**2 + 24*beta**3 + 19*beta**4) /
(1+beta)**5)
p22 = (1-beta)**3 * ((13+50*beta + 49*beta**2) /
(2*(1+beta)**5 * dt**2))
p33 = 6*(1-beta)**5 / ((1+beta)**5 * dt**4)
self.P = np.array([p11, p22, p33], dtype=float)
e = 6*dt**3*(beta/(1-beta))**3
de = dt**2 * (2 + 5*beta + 11*beta**2) / (1-beta)**2
dde = 6*dt*(1+2*beta)/(1-beta)
self.e = np.array ([e, de, dde], dtype=float)
def update(self, z):
""" update the filter with measurement z. z must be the same type
(or treatable as the same type) as self.x[0].
"""
if self.order == 0:
G = 1 - self.beta
self.x = self.x + dot(G,(z-self.x))
elif self.order == 1:
G = 1 - self.beta**2
H = (1-self.beta)**2
x = self.x[0]
dx = self.x[1]
dxdt = dot(dx, self.dt)
residual = z - (x+dxdt)
self.x[0] = x + dxdt + G*residual
self.x[1] = dx + (H / self.dt)*residual
#print(self.x)
else: # order == 2
G = 1-self.beta**3
H = 1.5*(1+self.beta)*(1-self.beta)**2
K = 0.5*(1-self.beta)**3
x = self.x[0]
dx = self.x[1]
ddx = self.x[2]
dxdt = dot(dx, self.dt)
T2 = self.dt**2.
residual = z -(x + dxdt +0.5*ddx*T2)
self.x[0] = x + dxdt + 0.5*ddx*T2 + G*residual
self.x[1] = dx + ddx*self.dt + (H/self.dt)*residual
self.x[2] = ddx + (2*K/(self.dt**2))*residual