
 

 

 

 

 

One-Way Ping (OWAMP): An Internet2 
Cookbook 

 



Disclosure/Disclaimer 
 
This material is based in part on work supported by the National Science Foundation 
(NSF) under Grant No. ANI-0314723. Any opinions, findings and conclusions or 
recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the NSF. 
 
This document was developed to be used in conjunction with an Internet2 Network 
Performance Workshop; for more information on these workshops (upcoming and past), 
see: http://www.internet2.edu/performance/npw/index.html.  
 



One-Way Ping (OWAMP) is heavily used in perfSONAR measurement infrastructure 
and within the Internet2 Network Observatory. More information on this tool can be 
found at http://e2epi.internet2.edu/owamp/. 
 
This cookbook has two parts: an Overview of the tool, with examples of its usefulness, 
and an Installation Guide, that walks you through setting up One-Way Ping (owampd) 
servers at your location. 
 

An Overview of OWAMP 

What Is It?  
OWAMP is a sample implementation of the One-Way Active Measurement Protocol 
(OWAMP) being developed by the Internet Engineering Task Force’s (IETF’s) IPPM 
Working Group for latency and delay measurements. (Following the fine tradition of 
FTP, the application has been named after the protocol.) Information on the version of the 
protocol that OWAMP, the application, currently implements can be found at: 
http://www.rfc-editor.org/rfc/rfc4656.txt. 

Motivation 
The main motivation for developing OWAMP was to find problems in the network: 
 

• Congestion usually happens in one direction first… 
• Routing (asymmetric, or just changes) 
• SNMP polling intervals mask high queue levels that active probes can show 

 
There have been many implementations of One-Way delay over the years (Surveyor, 
Ripe, etc.). The largest barrier to adoption has been interoperability of these 
implementations. The solution to these kinds of problems is to develop implementations 
that conform to accepted standards. This effort is our attempt to do that. 

Methodology 
OWAMP relies on the fact that time sources are much easier to come by than they once 
were. This makes it possible for one-way latency measurements to be collected across a 
broad mesh of network paths. Additionally, the open source nature of this implementation 
makes it possible for one-way metrics to become as common as round-trip metrics (from 
tools like ping). 
 
Congestion typically only happens in one direction of a given network path. One-way 
metrics are the most straightforward way to isolate these effects. Active measurements 
such as one-way latency measurements from end-to-end are arguably one of the best 
ways to determine if a given application will work because the diagnostic tool is basically 
performing as close to the same actions as the real application. 



Control Protocol 
The client makes requests for tests with a server. The protocol has: 
 

• Support for authentication and authorization 
• Ability to configure tests 
• Receiver end-point controlled port numbers 
• Extremely configurable send schedule 
• Configurable packet sizes 
• Ability to start/stop tests 
• Ability to retrieve results 
• Provisions for dealing with partial session results 

Test Protocol 
Packets can be open, authenticated, or encrypted. The protocol is effectively a packet 
format. 

Sample Implementation 
The OWAMP applications are: 

• owampd daemon 
• owping client 

Functions and Features 
There are different functions and features for the client and daemon. 

Client (owping) 
The command line arguments were made as similar to ping as possible. 
 

• owping client requests One-Way Delay (OWD) tests from an OWAMP server 
• Client can be sender or receiver 
• Communication can be “open”, “authenticated”, or “encrypted” 
• Supports the setup of many tests concurrently 
• Supports the buffering of results on the server for later retrieval 

Daemon (owampd) 
owampd is a standard accept/fork style Unix daemon: 
 

• Accepts requests for OWD tests 
• Responds with accepted/denied 
• Tests are formally started with a StartSessions message from the client. 
• Runs tests 
• Sessions with packets received at the server are buffered for later retrieval 



Resource Allocation 
The parent owampd keeps track of current resource utilization needed to implement 
policy. Each connection is ‘classified’ (authentication) and each classification is 
associated with a set of hierarchical limits that are used to make policy decisions 
(authorization): 
 

• Bandwidth (bandwidth) 
• Session buffer (disk) 
• Data retention (delete_on_fetch) 
• Connection policy (allow_open_mode) 

 
There is no time-dependent dimension to resource allocation in owampd. It currently 
treats all allocations as immediate but, since it has a complete schedule as part of the 
request, there is no reason this could not be added in the future. 

Architecture 

 
Figure 1: Control Flow 

 

Overview 
OWAMP is a typical client-server application. The owping client contacts the owampd 
daemon on the peer host to request a specific test. The request includes an indication of 
the complete send schedule as well as parameters to indicate packet characteristics. 
owampd is responsible for accepting or denying the request. 
 



owampd has been developed as a classic accept/fork daemon. The master daemon 
process listens for new network connections and also manages the resources for all child 
owampd processes. When a connection comes in, owampd forks a child process to handle 
the requests from that connection.  
 
The child process handles all encryption and communication issues with the client, as 
well as all static resource limits. Static resource limits are those not dependent upon what 
is currently happening on the node. For example, the request broker can easily determine 
if the given client is allowed to do open mode (unauthenticated) tests without talking to 
the master daemon.  
 
Once the request broker process determines the request is valid, it makes a request to the 
master daemon for the resources and time period requested by the client. If the master 
daemon has the resources available it grants the request. 
 
Once a given test session is accepted, the client and server both fork off One-Way Delay 
(OWD) Test Endpoint children to run that test. A single control connection can spawn off 
any number of test sessions. However, once pending test sessions are started by the start 
session message all sessions must be completed before more sessions can be requested 
using the same control connection. Additionally, the test sessions need to be completed 
before data can be retrieved using the same control connection. Of course, a client could 
open another control connection to the peer to start additional sessions, or to request 
intermediate results from any of the active sessions. 

Test Endpoints 
The OWD Test Endpoint processes are implemented using identical code on both the 
server and the client. The OWD Test Endpoint processes send and receive packets 
according to the agreed upon schedule. OWD Test Endpoint processes exit and return the 
exit status of the test to the Control parent process when the test sessions are complete. 
Test sessions are declared complete by both sides of the test a specified timeout period 
after the last packet is sent. The client can then fetch the results for the send test sessions 
that are buffered by the server. (The client will already have the results for receive 
sessions since the client receives those packets.) The server can be configured to delete 
the buffered data when the data is fetched the first time, or it can be buffered indefinitely 
and cleaned by an external process.  

General Requirements 
Getting a good stable NTP configuration is the most challenging task for obtaining good 
owamp results. You need: 
 

• NTP (ntpd) synchronized clock on the local system 
• Specific configuration requirements as specified in the NTP cookbook 

Operational Concerns 
Concerns include time and firewalls; time issues include:  
 



• NTP issues predominate the problems 
• Determining an accurate timestamp “error” is in many ways more difficult than 

getting a “very good” timestamp 
• Working as an “open” server requires a UTC time source (For predefined test 

peers, other options are available) 
 
Firewall issues include:  
 

• TCP ports need to be opened for control communication 
• UDP ports need to be opened for test traffic 

 
There is a trade-off decision that needs to be made here. System administrators like to 
have a single port-range defined for applications so the traffic generated by those 
applications can be classified. However, using a well-known predefined port range would 
also allow network hardware vendors to also classify the test traffic. This would allow 
vendors to prioritize test traffic to make their hardware look better. Therefore, because 
using a single predefined port range would be problematic, owampd allows the installer, 
as a compromise position, to define a specific port range for test sessions that are 
received on the host. 

Policy Issues 
The policy issues can best be grouped into two categories. First, it is important to ensure 
that an owampd server is a good network citizen, that it does not use more local host and 
network resources than it should, and the integrity of the owampd server and the data 
produced is protected (see Security Considerations, below). And second, controls need to 
be in place to allow the available resources to be partitioned among the valid users of the 
server (see Resource Consumption, below). 

Security Considerations 
You need to be concerned about not becoming a 3rd-party Denial of Service (DoS) source 
or a DoS target; other areas to take into consideration are resource consumption, memory 
(primary and secondary), and network bandwidth. 

DoS Source 
A compromised owampd server could be used to send packets toward others. The 
implementation ensures that sessions cannot be directed to random hosts in 
unauthenticated mode. (Only toward the OWAMP-control client.) Reasonable bandwidth 
limits and AES (Advanced Encryption Standard) encryption based on well-protected 
pass-phrases should limit this risk. 

DoS Target 
Packets directed toward an owampd server can/will affect the precision of the valid test 
traffic. Someone might try to affect data plots by targeting hosts that do one-way 
measurements. 



Resource Consumption 
owampd has policy controls to allocate resources to appropriate users. This is done by 
classifying each new incoming request either by IP/netmask or using a known pass-
phrase. Each classification is associated with a set of resource limits. 

Policy Recommendations 
On the Internet2 Network, we attempt to be open until we can’t. We recommend that new 
users restrict overall bandwidth to something relatively small (most OWAMP sessions do 
not require much) and limit “open” tests to ensure they do not interfere with the precision 
of other tests. 

Methodological Errors 
Our tests indicate a methodological error of 73 µsec for the following hardware: 
 

• Intel SCB2 motherboard 
• 2x512 MB ECC registered RAM 
• Intel PRO/100+ integrated NIC 

 
This error was determined using: 
 

• Two systems connected via cross-over cable 
• Two concurrent sessions between the systems (send, recv) 
• 10 packets/second 
• 95% confidence level (RFC 2679) 
• Old version of OWAMP; the tool should be even better now. 

 
Error is specific to this hardware and intensity level. Basically, you should expect your 
results to be valid within 100 µsec’s of the error reported. (The error reported represents 
the NTP error, but does not include the methodological error.)  

Availability 
The tool, as well as the source code, is available at: 
http://e2epi.internet2.edu/owamp/download.html. 
 
Email-based discussion lists are available; go to the http://e2epi.internet2.edu/owamp/ 
web site and click:  

• owamp-users – General discussion on the OWAMP tool 
• owamp-announce – Announcements on new features/releases 

Publicly-Accessible Servers 
Below is a list of publicly accessible servers as of the summer of 2006. Note that this is 
not a complete list and more are being added when they become available. (A more up-
to-date list can be derived by looking at http://e2epi.internet2.edu/pipes/pmp/pmp-
dir.html.) Several institutions also run private servers.  
 



Institution / Network  Location Information Page  
APAN Japan APAN PMP Info  
DANTE/GEANT Europe GEANT PMP Info  
ESnet US Nationwide  ESnet PMP Info  
Hawai'i GigaPoP/University of Hawai'i  Honolulu, HA  Hawai'i PMP Info  
Internet2 / Abilene  US Nationwide  Abilene PMP Info  
KISTI/KREONet2 Korea KISTI PMP Info  
MIT / Haystack Observatory Westford, MA Haystack PMP Info  
NC-ITEC Raleigh, NC  NC-ITEC PMP Info  
NOAA Boulder Laboratories Boulder, CO  NOAA PMP Info  
NORDUnet  Sweden NORDUnet PMP Info  
Ohio State University  Columbus, OH  OSU PMP Info 
RNP Measurement WG/RNP2  Brazil RNP PMP Info  
Southern Crossroads GigaPoP (SoX)  Atlanta, GA  SoX PMP Info  
Swedish University Network  Sweden  Sunet PMP Info  
Swiss Education and Research Network Switzerland  SWITCH PMP Info  
TWAREN Hsinchu, Taiwan TWAREN PMP Info  
 

Figure 2: Publicly Accessible owampd Servers 
 

perfSONAR Project 
The focus of this effort is to develop an end-to-end measurement infrastructure capable of 
finding network problems. perfSONAR enables the publishing of performance data as 
well as the discovery of measurement points. Internet2 staff and partners have been 
working on a specific implementation of the perfSONAR protocols. For more 
information please see: http://www.internet2.edu/performance/pS-PS/. perfSONAR-PS 
(the specific implementation of perfSONAR that Internet2 is working on) leverages the 
tools used by this project, which include the Bandwidth Test Controller (BWCTL – 
manages throughput tests), OWAMP (one-way latency), and NDT (last mile issues). 
Each of these tools has a cookbook similar to this one. They can all be accessed through 
http://e2epi.internet2.edu/library-list.html.  
 





Installation Guide: Establishing an owampd Server 
This section contains information on installation and configuration. More information on 
the tool can be found at: http://e2epi.internet2.edu/owamp/. 

Components 
Everything is contained in a single downloadable tar file. The file is stored on the 
Internet2 web site at: http://e2epi.internet2.edu/owamp/download.html.   

Supported Systems 
• FreeBSD 4.x, 5.x, 6.0 (64-bit) 
• Linux 2.4, 2.6 (64-bit) 
• Solaris 10.x 
• MacOS X 10.4.5 
• (Most recent versions of UNIX should work) 

Requirements and Recommendations 
This section covers the hardware requirements, software requirements, and recommended 
settings. 

Hardware Requirements 
• Stable System Clock 

 Temperature controlled environment 
 No power management of CPU 

• No strict requirements for CPU, Memory, Bus speed 
• More tasking schedules will require more capable hardware 

 
A stable system clock is the most important feature. On Abilene, we used: an Intel SCB2 
motherboard in the following configuration:  
 

• 2 x 1.266 GHz PIII, 512 KB L2 cache, 133 MHz FSB 
• 2 x 512 MB ECC registered RAM (one/slot to enable interleaving) 
• 2 x Seagate 18 GB SCSI (ST318406LC) Inter Ethernet Pro  
• 10/100+ (i82555) (on-motherboard) 

 
We used systems configured like this to support a minimum of 44 concurrent streams of 
10 packets/second (990 Mbps TCP flows) on a system co-located with each Abilene PoP. 
The 44 concurrent streams represent intra-Abilene testing. The Abilene measurement 
hosts performed tests with hosts on external networks are participating in additional 
streams. The specific system requirements are highly dependent upon the specific 
network tests. Higher intensity schedules will require more capable hardware.  

Software and System Requirements 
One-way latency measurements are most meaningful if the clocks on the two involved 
systems are synchronized. (Some things, like jitter, are meaningful even without 



synchronization.) OWAMP relies on NTP (ntpd) to synchronize the system clocks 
needed to provide the high accuracy timing between systems. The clocks must be stable 
for OWAMP to be accurate; therefore NTP must be configured with stability and 
resilience in mind. (For more details, see the NTP cookbook at: 
http://e2epi.internet2.edu/library-list.html). OWAMP uses NTP-specific system calls, if 
they are available. 
 
If you are working with firewalls, you will need to open the appropriate ports for 
communication and testing: 
 

• TCP/861  (Control communication) 
• UDP/ephemeral (Settable using testports configuration in owampd.conf) 

 
To do this using iptables, the additional arguments would look something like: 

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 
861 -j ACCEPT 
-A RH-Firewall-1-INPUT -p udp -j ACCEPT 
 

* WARNING: The second command here enables ALL UDP traffic. If that is worrisome 
for you then use the ‘testports’ option in the owampd.conf file and open only that range 
for receiving here. (You MUST still enable all ports for sending in order to test with other 
systems. Each system gets to select the range it is willing to ‘receive’.) 
 

Recommended Settings 
On the Internet2 Network, we attempt to be as open as we can, until we can’t anymore. 
We suggest: 
 

• Limit bandwidth 
• Limit disk space available for buffering 
• Allow a modest amount of anonymous testing 
• If you use pass-phrases to allow more intense tests, protect them! 

General Security Concerns 
As discussed earlier in this manual, the biggest issue for the Internet2 Network is: No 
DoS attacks! The general approach is: 1) do no harm (we don’t want machines to be a 
source of DoS attacks but we would like them to be as available as possible and as useful 
as possible for debugging) and 2) avoid being an attractive nuisance (obscurity lessens 
usefulness but do harden the machines themselves). 
 
Regarding hardening machines: don’t run anything you don’t have to. Keep up to date 
with security patches. Perhaps run a local firewall (on the machine) if it makes sense.  
But see if it affects your measurement results and realize that, by default, OWAMP will 
want to use the “ephemeral” UDP ports for testing (to a rough approximation, all those 
over 1024, but it varies by OS). Consider restricting logins, and where logins can occur 
from. If you’re really good, audit programs on the machine.  



OWAMP Security Concerns 
These are the resources that are at risk directly from the use of OWAMP (issues the 
configuration must solve.) 
 

• Limit the bandwidth that can be consumed 
• Limit the memory/disk that can be consumed on the test host 

Building the OWAMP Programs 
To unpack, build, and install OWAMP, first grab the latest tarball at 
http://e2epi.internet2.edu/owamp/download.html, unpack the tar file, and use the 
provided configure script and make to create and install the executables: 
 

% gzip -cd owamp-$VERS.tar.gz | tar xf - 
% cd owamp-$VERS 
% ./configure --prefix=/ami 

# --prefix is only needed if you don't like the default 
# (/usr/local on most systems) 

% make 
% make install  

 
This does not install configuration files. 

Partitioning Resources 
To protect resources you must decide how many of those resources you are willing to 
have this activity use, and who you want to use it. 
 

• Decide upon the complete amount of resources it is acceptable for the test host to 
consume 

• Decide how to allocate those resources among users 
• How much disk space can be dedicated? Per group? 
• How much bandwidth total? Per group? 
• Keep system load in mind as well as network. The data accuracy will suffer if the 

system is too loaded. 

Resources Allocated Using Hierarchical Limitclasses 
OWAMP allows hierarchical limitclasses to be defined so available resources can be 
partitioned in a hierarchical model. 
 

• Users are grouped into hierarchical limitclasses 
• One parent-less class is allowed, it defines the total amount of resources available 
• When limitclasses are defined, limits of the one and only parent are inherited 
• When consumable resources are requested, the limits of the limitclass and all 

parent limitclasses must be satisfied (memory/bandwidth) 
 
An example of hierarchically organized limitclasses would be: 



 
Root Complete set of resources 

available 
NOC Super-user limits 
Peer Extended limits for peer NOC 

tests 
Normal Reasonable limits for end users 
Open Conservative limits for anyone 
Hostile Used to “jail” hostile users 

 
 
You will define the hierarchy in a way that makes sense for the particular groups of users 
you have. (It is of course possible to define a flat space where all groups are direct 
children of the “root” group if your groups of users are completely unrelated.) Another 
probable hierarchy would be defined by creating sub-limitclasses from “normal” for users 
from other domains. 

Classifying Connections 
This was kept as simple as possible for now. There is no DNS matching of any kind. 
There are two methods used to classify connections. 
 

IP/netmask 
• The IP address of the client is matched against a list of IP/netmask specified 

subnets and assigned to a limitclass based on the address of the client 
• The most specific matching mask wins in the matching algorithm 

 
This does not need to be a “real” sub-net from a routing perspective. The netmask here is 
only a way of expressing a range of addresses. 

Username and pass-phrase 
• Client specifies a username, the server must already know the associated pass-

phrase 
• The pass-phrase is used to generate an AES symmetric session key (Client and 

Server use a password-based key derivation function to independently compute 
the session key) 

 
The pass-phrases are the long-term secret that must be protected to ensure OWAMP 
authentication remains secure. The protocol itself never passes the pass-phrases in the 
clear.  



Configuring the owampd Server 
The basic procedure to configure owampd is to create an owampd.conf and, optionally, 
an owampd.limits file and an owampd.pfs file. These files need to be installed in the 
same directory that is specified with the -c option to owampd. The recommended 
directory is /ami/etc. (The etc directory below your install root.) There are examples of 
these files in the owamp-$VERS/conf subdirectory of the distribution.  

Configure owampd.conf 
The owampd.conf file is the configuration file for the owampd daemon. It is used to 
configure the basic operation of the server.  For example, what addresses and ports it 
should listen on, where it should send error messages, and where it should save files. 
 
The example owampd.conf file from the conf subdirectory of the distribution is fairly 
well annotated to explain all the available options and the owampd.conf manual page 
http://e2epi.internet2.edu/owamp/owampd.conf.man.html also describes all the available 
configuration options. 
 
Most installations will only need to modify the following options: 
 

datadir Directory that holds buffered data for test sessions received by the server 
vardir Directory where owampd.pid and owampd.info files will be stored 

user Specifies the uid the owampd process will run as 
group Specifies the gid the owampd process will run as 

  

Configure owampd.limits 
The owampd.limits file is used to define the policy configuration for the owampd 
program. It allows the system administrator to allocate the resources in a variety of ways. 
 
There are two parts to the policy configuration: 
 

Authentication 
Who is making the request? This can be very specific to an individual user 
or it can be more general in that the connection is coming from some 
particular network. 

 
Authorization 

Now that the connection has been generally identified, what will owampd 
allow it to do? 

 
The authentication is done by assigning a limitclass to each new connection as it comes 
in. Authorization is accomplished by using the set of limits each limitclass has associated 
with it. The limits assigned to the limitclasses are hierarchical, so a connection must pass 
the limit restrictions of the assigned limitclass as well as all parent classes. 
 



Within the owampd.limits file, assign lines are used to assign a limitclass to a given 
connection. Limit lines are used to define a limitclass and set the limits associated with 
that limitclass. The file is read sequentially, and it is not permitted to use a limitclass 
before it is defined using a limit line. 
 
An example of limitclass definition would be: 
 
# total available 
limit root with \ 
 disk=100M, \ 
 bandwidth=0, \ 
 delete_on_fetch=on, \ 
 allow_open_mode=off 
 
# Hostile 
limit hostile with parent=root, \ 
 disk=1, \ 
 bandwidth=1 
 
# NOC 
limit noc with parent=root, \ 
 allow_open_mode=on 
 
This example just shows three of the possible limitclasses from the hierarchy described 
above. The full set of configuration options available to limit a given limitclass are 
described in the owampd.limits(5) manual page 
(http://e2epi.internet2.edu/owamp/owampd.limits.man.html).  
 
The following example shows how you could use IP/netmask assignments to classify 
connections from specific hosts: 
 
# loopback 
assign net ::/127 noc 
assign net 127.0.0.1/32 noc 
# now nonexistent abilene nmslan (observatory systems) 
assign net 2001:468:0::/40 noc 
assign net 198.32.10.0/23 noc 
assign net 10.0.0.0/16 hostile 
 
This example shows how any connections to the server from the loopback interface can 
be assigned the limits associated with the noc limitclass. Additionally, the nmslan 
systems are assigned to the same limitclass. 
 
This example also illustrates how you can ensure that all connections from a given subnet 
are denied unless they are authenticated (See the 10.0.0.0/16 line). The hostile limitclass 
has allow_open_mode set to no. Therefore, open mode communications will not be 
accepted from this address range. However, users on this subnet can still attempt to use 
the username/pass-phrase method of authentication. (If no communication at all is wanted 
with a given subnet, that functionality is better provided with a firewall application.) 
  



Netmask assignments should not be trusted too heavily. Loopback is reasonable, and 
probably “local” networks, but great care should be taken before extending the model 
beyond that. 
 
The following example shows how you could use username assignments to classify 
connections from specific users: 
 
# network admins 
              assign user joe root 
              assign user jim root 
              assign user bob root 
 
# measurement geeks 
 assign user boote noc 
 
The owampd server needs to be able to authenticate that a given user is who they say they 
are. This is done using a shared pass-phrase. The username to pass-phrase association is 
made known to owampd using the owampd.pfs file described below. The user must have 
an entry in the owampd.pfs file to be used in the owampd.limits file. The owampd 
process will refuse to start if a user that is listed in the owampd.limits file does not have a 
pass-phrase associated in the owampd.pfs file. 

Configure owampd.pfs 
The owampd.pfs file is used to hold the identity/pass-phrase pairs needed for owampd to 
authenticate users. The format of this file is described in the pfstore(1) manual  page. The 
location of the owampd.pfs file is controlled by the -c option to owampd. 
 
owampd uses a symmetric AES key derived from the pass-phrase to implement the 
authentication. Therefore, the owping client must have access to the exact same pass-
phrase for authentication to work. (owping must be able to derive the same symmetric 
AES key.) For this mechanism to remain secure, it is important that the system 
administrator and end user ensure the pass-phrase is not compromised. 
 
If the owping client is able to authenticate using the identity and AES key presented, 
owampd will use the directives found in the owampd.limits file to map policy restrictions 
to this connection. 

Username and AES Key Rules 
• Usernames are limited to 80 characters 
• AES key is a 128 bit session key 
• pass-phrase is not encrypted in the file (only hex-encoded), use UNIX 

permissions to protect it 
• Use pfstore to add/change pass-phrases into the pfs file 
• Client: application prompts user for pass phrase 

 



The normal UNIX protection method would be to run the daemon with specific user or 
group permissions that allow it to read the keys file, but limit the users that have access to 
it. An example pfs file might look like: 
 
joe a0167ac6101b360d2f4dd164abba2337 
bob 2dc36fc4807894cdfbe180b71d4a0f 
sam 3fc763fb270ce6ba6e928bd10d4984dc77d3 
 
This is simply a username associated with a hex encoded pass-phrase. By far the easiest 
way to create and maintain the owampd.pfs file is to use the pfstore application. 

PFSTORE 
This is similar to htpasswd (apache web server); you specify an identity to be added to a 
pfs file and are prompted for the passphrase. It is used to convert a passphrase into a 128-
bit hex value so the pass-phrase can be stored in a portable way across multiple 
architectures. For more information, see: 
http://e2epi.internet2.edu/owamp/pfstore.man.html. 
 
To create a new pfs file use the ‘-n’ option:  
 
% pfstore -n -f owampd.pfs demo 
 
Additional usernames can be added by omitting the ‘-n’: 
 
% pfstore -f owampd.pfs joe 
 
For more complete information, see 
http://e2epi.internet2.edu/owamp/owampd.pfs.man.html, 
http://e2epi.internet2.edu/owamp/pfstore.man.html, and 
http://e2epi.internet2.edu/owamp/owampd.limits.man.html. 

Running One-Way Latency Measurements using 
OWAMP 

Starting owampd 
Start the daemon in foreground mode during testing: 
 
% /ami/bin/owampd -c /ami/etc –Z 
 
Many of the command-line options are used to override the config file parameters. The ‘-
c’ option should always be used, unless the daemon is started from the config directory.  
For more information, see: http://e2epi.internet2.edu/owamp/owampd.man.html. 

Testing (owping) 
First, try a simple localhost test and watch the output from owampd. This is a good test 
because there are no clock difference issues to the localhost: 



 
% /ami/bin/owping localhost 
 
Running a test to localhost first helps verify a working configuration. Use the IP address 
for the interface instead of the localhost interface to test for host based firewall problems.  
 
Now, try a test to one of our hosts. (This host is only guaranteed to be available during a 
Network Performance Workshop – we tend to try new things on here from time to time.) 
 
% /ami/bin/owping owamp.internet2.edu (Internet2 test host) 
 
Now, try and test to other hosts. A good candidate would be a new deployment in one of 
your peer networks or alternatively something off of the global PMP list 
(http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html). 
 
%/ami/bin/owping otherhost 
 
For more information, see: http://e2epi.internet2.edu/owamp/owping.man.html. 
 
Once you have verified your install, it is recommended that you install an rc script that 
automatically starts owampd when the host is booted. You should not be using the –Z 
option of the daemon in general, but it is a very good debugging tool. 

Troubleshooting 
The most frequently seen problems are: 
 

1. No Control Connection 
a. No daemon running 
b. Firewall - open control port (861) 

2. Control connection denied 
a. Improper configuration 
b. Invalid credentials 

3. Control connection works, all test packets lost 
a. Firewall – open ephemeral UDP ports or use testports in owampd.conf to 

make owampd use a range of opened ports 
b. Clock offset – If the clock offset between two systems is more than 

timeout all packets will be declared lost. (See the –L option of owping for 
a definition of timeout.) Use a large value for –L to test this. (Larger than 
any possible clock differences between the systems.) 

4. Negative delay values for results 
a. Clock offset – Use NTP to see the clock differences between the systems 

if possible. 
 


