Z3
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Defines
Public Member Functions | Protected Member Functions | Package Functions | Static Package Functions
Expr Class Reference
+ Inheritance diagram for Expr:

Public Member Functions

Expr simplify () throws Z3Exception
Expr simplify (Params p) throws Z3Exception
FuncDecl getFuncDecl () throws Z3Exception
Z3_lbool getBoolValue () throws Z3Exception
int getNumArgs () throws Z3Exception
Expr[] getArgs () throws Z3Exception
void update (Expr[] args) throws Z3Exception
Expr substitute (Expr[] from, Expr[] to) throws Z3Exception
Expr substitute (Expr from, Expr to) throws Z3Exception
Expr substituteVars (Expr[] to) throws Z3Exception
Expr translate (Context ctx) throws Z3Exception
String toString ()
boolean isNumeral () throws Z3Exception
boolean isWellSorted () throws Z3Exception
Sort getSort () throws Z3Exception
boolean isConst () throws Z3Exception
boolean isIntNum () throws Z3Exception
boolean isRatNum () throws Z3Exception
boolean isAlgebraicNumber () throws Z3Exception
boolean isBool () throws Z3Exception
boolean isTrue () throws Z3Exception
boolean isFalse () throws Z3Exception
boolean isEq () throws Z3Exception
boolean isDistinct () throws Z3Exception
boolean isITE () throws Z3Exception
boolean isAnd () throws Z3Exception
boolean isOr () throws Z3Exception
boolean isIff () throws Z3Exception
boolean isXor () throws Z3Exception
boolean isNot () throws Z3Exception
boolean isImplies () throws Z3Exception
boolean isInt () throws Z3Exception
boolean isReal () throws Z3Exception
boolean isArithmeticNumeral () throws Z3Exception
boolean isLE () throws Z3Exception
boolean isGE () throws Z3Exception
boolean isLT () throws Z3Exception
boolean isGT () throws Z3Exception
boolean isAdd () throws Z3Exception
boolean isSub () throws Z3Exception
boolean isUMinus () throws Z3Exception
boolean isMul () throws Z3Exception
boolean isDiv () throws Z3Exception
boolean isIDiv () throws Z3Exception
boolean isRemainder () throws Z3Exception
boolean isModulus () throws Z3Exception
boolean isIntToReal () throws Z3Exception
boolean isRealToInt () throws Z3Exception
boolean isRealIsInt () throws Z3Exception
boolean isArray () throws Z3Exception
boolean isStore () throws Z3Exception
boolean isSelect () throws Z3Exception
boolean isConstantArray () throws Z3Exception
boolean isDefaultArray () throws Z3Exception
boolean isArrayMap () throws Z3Exception
boolean isAsArray () throws Z3Exception
boolean isSetUnion () throws Z3Exception
boolean isSetIntersect () throws Z3Exception
boolean isSetDifference () throws Z3Exception
boolean isSetComplement () throws Z3Exception
boolean isSetSubset () throws Z3Exception
boolean isBV () throws Z3Exception
boolean isBVNumeral () throws Z3Exception
boolean isBVBitOne () throws Z3Exception
boolean isBVBitZero () throws Z3Exception
boolean isBVUMinus () throws Z3Exception
boolean isBVAdd () throws Z3Exception
boolean isBVSub () throws Z3Exception
boolean isBVMul () throws Z3Exception
boolean isBVSDiv () throws Z3Exception
boolean isBVUDiv () throws Z3Exception
boolean isBVSRem () throws Z3Exception
boolean isBVURem () throws Z3Exception
boolean isBVSMod () throws Z3Exception
boolean isBVULE () throws Z3Exception
boolean isBVSLE () throws Z3Exception
boolean isBVUGE () throws Z3Exception
boolean isBVSGE () throws Z3Exception
boolean isBVULT () throws Z3Exception
boolean isBVSLT () throws Z3Exception
boolean isBVUGT () throws Z3Exception
boolean isBVSGT () throws Z3Exception
boolean isBVAND () throws Z3Exception
boolean isBVOR () throws Z3Exception
boolean isBVNOT () throws Z3Exception
boolean isBVXOR () throws Z3Exception
boolean isBVNAND () throws Z3Exception
boolean isBVNOR () throws Z3Exception
boolean isBVXNOR () throws Z3Exception
boolean isBVConcat () throws Z3Exception
boolean isBVSignExtension () throws Z3Exception
boolean isBVZeroExtension () throws Z3Exception
boolean isBVExtract () throws Z3Exception
boolean isBVRepeat () throws Z3Exception
boolean isBVReduceOR () throws Z3Exception
boolean isBVReduceAND () throws Z3Exception
boolean isBVComp () throws Z3Exception
boolean isBVShiftLeft () throws Z3Exception
boolean isBVShiftRightLogical () throws Z3Exception
boolean isBVShiftRightArithmetic () throws Z3Exception
boolean isBVRotateLeft () throws Z3Exception
boolean isBVRotateRight () throws Z3Exception
boolean isBVRotateLeftExtended () throws Z3Exception
boolean isBVRotateRightExtended () throws Z3Exception
boolean isIntToBV () throws Z3Exception
boolean isBVToInt () throws Z3Exception
boolean isBVCarry () throws Z3Exception
boolean isBVXOR3 () throws Z3Exception
boolean isLabel () throws Z3Exception
boolean isLabelLit () throws Z3Exception
boolean isOEQ () throws Z3Exception
boolean isProofTrue () throws Z3Exception
boolean isProofAsserted () throws Z3Exception
boolean isProofGoal () throws Z3Exception
boolean isProofModusPonens () throws Z3Exception
boolean isProofReflexivity () throws Z3Exception
boolean isProofSymmetry () throws Z3Exception
boolean isProofTransitivity () throws Z3Exception
boolean isProofTransitivityStar () throws Z3Exception
boolean isProofMonotonicity () throws Z3Exception
boolean isProofQuantIntro () throws Z3Exception
boolean isProofDistributivity () throws Z3Exception
boolean isProofAndElimination () throws Z3Exception
boolean isProofOrElimination () throws Z3Exception
boolean isProofRewrite () throws Z3Exception
boolean isProofRewriteStar () throws Z3Exception
boolean isProofPullQuant () throws Z3Exception
boolean isProofPullQuantStar () throws Z3Exception
boolean isProofPushQuant () throws Z3Exception
boolean isProofElimUnusedVars () throws Z3Exception
boolean isProofDER () throws Z3Exception
boolean isProofQuantInst () throws Z3Exception
boolean isProofHypothesis () throws Z3Exception
boolean isProofLemma () throws Z3Exception
boolean isProofUnitResolution () throws Z3Exception
boolean isProofIFFTrue () throws Z3Exception
boolean isProofIFFFalse () throws Z3Exception
boolean isProofCommutativity () throws Z3Exception
boolean isProofDefAxiom () throws Z3Exception
boolean isProofDefIntro () throws Z3Exception
boolean isProofApplyDef () throws Z3Exception
boolean isProofIFFOEQ () throws Z3Exception
boolean isProofNNFPos () throws Z3Exception
boolean isProofNNFNeg () throws Z3Exception
boolean isProofNNFStar () throws Z3Exception
boolean isProofCNFStar () throws Z3Exception
boolean isProofSkolemize () throws Z3Exception
boolean isProofModusPonensOEQ () throws Z3Exception
boolean isProofTheoryLemma () throws Z3Exception
boolean isRelation () throws Z3Exception
boolean isRelationStore () throws Z3Exception
boolean isEmptyRelation () throws Z3Exception
boolean isIsEmptyRelation () throws Z3Exception
boolean isRelationalJoin () throws Z3Exception
boolean isRelationUnion () throws Z3Exception
boolean isRelationWiden () throws Z3Exception
boolean isRelationProject () throws Z3Exception
boolean isRelationFilter () throws Z3Exception
boolean isRelationNegationFilter () throws Z3Exception
boolean isRelationRename () throws Z3Exception
boolean isRelationComplement () throws Z3Exception
boolean isRelationSelect () throws Z3Exception
boolean isRelationClone () throws Z3Exception
boolean isFiniteDomain () throws Z3Exception
boolean isFiniteDomainLT () throws Z3Exception
int getIndex () throws Z3Exception

Protected Member Functions

 Expr (Context ctx)
 Expr (Context ctx, long obj) throws Z3Exception

Package Functions

boolean IsBVSDiv0 () throws Z3Exception
boolean IsBVUDiv0 () throws Z3Exception
boolean IsBVSRem0 () throws Z3Exception
boolean IsBVURem0 () throws Z3Exception
boolean IsBVSMod0 () throws Z3Exception
void checkNativeObject (long obj) throws Z3Exception

Static Package Functions

static Expr create (Context ctx, FuncDecl f, Expr...arguments) throws Z3Exception
static Expr create (Context ctx, long obj) throws Z3Exception

Detailed Description

Expressions are terms.

Definition at line 30 of file Expr.java.


Constructor & Destructor Documentation

Expr ( Context  ctx) [inline, protected]

Constructor for Expr

Definition at line 1738 of file Expr.java.

Referenced by Expr.create().

        {
                super(ctx);
                {
                }
        }
Expr ( Context  ctx,
long  obj 
) throws Z3Exception [inline, protected]

Constructor for Expr

Definition at line 1748 of file Expr.java.

        {
                super(ctx, obj);
                {
                }
        }

Member Function Documentation

void checkNativeObject ( long  obj) throws Z3Exception [inline, package]

Reimplemented from Z3Object.

Reimplemented in Quantifier.

Definition at line 1755 of file Expr.java.

        {
                if (!Native.isApp(getContext().nCtx(), obj) && 
                    Native.getAstKind(getContext().nCtx(), obj) != Z3_ast_kind.Z3_VAR_AST.toInt() &&
                    Native.getAstKind(getContext().nCtx(), obj) != Z3_ast_kind.Z3_QUANTIFIER_AST.toInt())
                    throw new Z3Exception("Underlying object is not a term");
                super.checkNativeObject(obj);
        }
static Expr create ( Context  ctx,
FuncDecl  f,
Expr...  arguments 
) throws Z3Exception [inline, static, package]
static Expr create ( Context  ctx,
long  obj 
) throws Z3Exception [inline, static, package]

Reimplemented from AST.

Definition at line 1772 of file Expr.java.

        {
                Z3_ast_kind k = Z3_ast_kind.fromInt(Native.getAstKind(ctx.nCtx(), obj));
                if (k == Z3_ast_kind.Z3_QUANTIFIER_AST)
                        return new Quantifier(ctx, obj);
                long s = Native.getSort(ctx.nCtx(), obj);
                Z3_sort_kind sk = Z3_sort_kind
                                .fromInt(Native.getSortKind(ctx.nCtx(), s));

                if (Native.isAlgebraicNumber(ctx.nCtx(), obj)) // is this a numeral ast?
                        return new AlgebraicNum(ctx, obj);

                if (Native.isNumeralAst(ctx.nCtx(), obj))
                {
                        switch (sk)
                        {
                        case Z3_INT_SORT:
                                return new IntNum(ctx, obj);
                        case Z3_REAL_SORT:
                                return new RatNum(ctx, obj);
                        case Z3_BV_SORT:
                                return new BitVecNum(ctx, obj);
                        default: ;
                        }
                }

                switch (sk)
                {
                case Z3_BOOL_SORT:
                        return new BoolExpr(ctx, obj);
                case Z3_INT_SORT:
                        return new IntExpr(ctx, obj);
                case Z3_REAL_SORT:
                        return new RealExpr(ctx, obj);
                case Z3_BV_SORT:
                        return new BitVecExpr(ctx, obj);
                case Z3_ARRAY_SORT:
                        return new ArrayExpr(ctx, obj);
                case Z3_DATATYPE_SORT:
                        return new DatatypeExpr(ctx, obj);
                default: ;
                }

                return new Expr(ctx, obj);
        }
Expr [] getArgs ( ) throws Z3Exception [inline]

The arguments of the expression.

Definition at line 90 of file Expr.java.

Referenced by FuncInterp.toString().

        {
                int n = getNumArgs();
                Expr[] res = new Expr[n];
                for (int i = 0; i < n; i++)
                        res[i] = Expr.create(getContext(),
                                        Native.getAppArg(getContext().nCtx(), getNativeObject(), i));
                return res;
        }
Z3_lbool getBoolValue ( ) throws Z3Exception [inline]

Indicates whether the expression is the true or false expression or something else (Z3_L_UNDEF).

Definition at line 73 of file Expr.java.

        {
                return Z3_lbool.fromInt(Native.getBoolValue(getContext().nCtx(),
                                getNativeObject()));
        }
FuncDecl getFuncDecl ( ) throws Z3Exception [inline]

The function declaration of the function that is applied in this expression.

Definition at line 63 of file Expr.java.

Referenced by Expr.isAdd(), Expr.isAnd(), Expr.isArithmeticNumeral(), Expr.isArrayMap(), Expr.isAsArray(), Expr.isBVAdd(), Expr.isBVAND(), Expr.isBVBitOne(), Expr.isBVBitZero(), Expr.isBVCarry(), Expr.isBVComp(), Expr.isBVConcat(), Expr.isBVExtract(), Expr.isBVMul(), Expr.isBVNAND(), Expr.isBVNOR(), Expr.isBVNOT(), Expr.isBVNumeral(), Expr.isBVOR(), Expr.isBVReduceAND(), Expr.isBVReduceOR(), Expr.isBVRepeat(), Expr.isBVRotateLeft(), Expr.isBVRotateLeftExtended(), Expr.isBVRotateRight(), Expr.isBVRotateRightExtended(), Expr.isBVSDiv(), Expr.IsBVSDiv0(), Expr.isBVSGE(), Expr.isBVSGT(), Expr.isBVShiftLeft(), Expr.isBVShiftRightArithmetic(), Expr.isBVShiftRightLogical(), Expr.isBVSignExtension(), Expr.isBVSLE(), Expr.isBVSLT(), Expr.isBVSMod(), Expr.IsBVSMod0(), Expr.isBVSRem(), Expr.IsBVSRem0(), Expr.isBVSub(), Expr.isBVToInt(), Expr.isBVUDiv(), Expr.IsBVUDiv0(), Expr.isBVUGE(), Expr.isBVUGT(), Expr.isBVULE(), Expr.isBVULT(), Expr.isBVUMinus(), Expr.isBVURem(), Expr.IsBVURem0(), Expr.isBVXNOR(), Expr.isBVXOR(), Expr.isBVXOR3(), Expr.isBVZeroExtension(), Expr.isConst(), Expr.isConstantArray(), Expr.isDefaultArray(), Expr.isDistinct(), Expr.isDiv(), Expr.isEmptyRelation(), Expr.isEq(), Expr.isFalse(), Expr.isFiniteDomainLT(), Expr.isGE(), Expr.isGT(), Expr.isIDiv(), Expr.isIff(), Expr.isImplies(), Expr.isIntToBV(), Expr.isIntToReal(), Expr.isIsEmptyRelation(), Expr.isITE(), Expr.isLabel(), Expr.isLabelLit(), Expr.isLE(), Expr.isLT(), Expr.isModulus(), Expr.isMul(), Expr.isNot(), Expr.isOEQ(), Expr.isOr(), Expr.isProofAndElimination(), Expr.isProofApplyDef(), Expr.isProofAsserted(), Expr.isProofCNFStar(), Expr.isProofCommutativity(), Expr.isProofDefAxiom(), Expr.isProofDefIntro(), Expr.isProofDER(), Expr.isProofDistributivity(), Expr.isProofElimUnusedVars(), Expr.isProofGoal(), Expr.isProofHypothesis(), Expr.isProofIFFFalse(), Expr.isProofIFFOEQ(), Expr.isProofIFFTrue(), Expr.isProofLemma(), Expr.isProofModusPonens(), Expr.isProofModusPonensOEQ(), Expr.isProofMonotonicity(), Expr.isProofNNFNeg(), Expr.isProofNNFPos(), Expr.isProofNNFStar(), Expr.isProofOrElimination(), Expr.isProofPullQuant(), Expr.isProofPullQuantStar(), Expr.isProofPushQuant(), Expr.isProofQuantInst(), Expr.isProofQuantIntro(), Expr.isProofReflexivity(), Expr.isProofRewrite(), Expr.isProofRewriteStar(), Expr.isProofSkolemize(), Expr.isProofSymmetry(), Expr.isProofTheoryLemma(), Expr.isProofTransitivity(), Expr.isProofTransitivityStar(), Expr.isProofTrue(), Expr.isProofUnitResolution(), Expr.isRealIsInt(), Expr.isRealToInt(), Expr.isRelationalJoin(), Expr.isRelationClone(), Expr.isRelationComplement(), Expr.isRelationFilter(), Expr.isRelationNegationFilter(), Expr.isRelationProject(), Expr.isRelationRename(), Expr.isRelationSelect(), Expr.isRelationStore(), Expr.isRelationUnion(), Expr.isRelationWiden(), Expr.isRemainder(), Expr.isSelect(), Expr.isSetComplement(), Expr.isSetDifference(), Expr.isSetIntersect(), Expr.isSetSubset(), Expr.isSetUnion(), Expr.isStore(), Expr.isSub(), Expr.isTrue(), Expr.isUMinus(), and Expr.isXor().

        {
                return new FuncDecl(getContext(), Native.getAppDecl(getContext().nCtx(),
                                getNativeObject()));
        }
int getIndex ( ) throws Z3Exception [inline]

The de-Burijn index of a bound variable. Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain the meaning of de-Bruijn indices by indicating the compilation process from non-de-Bruijn formulas to de-Bruijn format. abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0) abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi)) abs1(x, x, n) = b_n abs1(y, x, n) = y abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n)) abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1)) The last line is significant: the index of a bound variable is different depending on the scope in which it appears. The deeper x appears, the higher is its index.

Definition at line 1727 of file Expr.java.

        {
                if (!isVar())
                        throw new Z3Exception("Term is not a bound variable.");

                return Native.getIndexValue(getContext().nCtx(), getNativeObject());
        }
int getNumArgs ( ) throws Z3Exception [inline]

The number of arguments of the expression.

Definition at line 82 of file Expr.java.

Referenced by Expr.getArgs(), Expr.isConst(), and Expr.update().

        {
                return Native.getAppNumArgs(getContext().nCtx(), getNativeObject());
        }
Sort getSort ( ) throws Z3Exception [inline]

The Sort of the term.

Definition at line 206 of file Expr.java.

Referenced by BitVecExpr.getSortSize().

        {
                return Sort.create(getContext(),
                                Native.getSort(getContext().nCtx(), getNativeObject()));
        }
boolean isAdd ( ) throws Z3Exception [inline]

Indicates whether the term is addition (binary)

Definition at line 408 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ADD;
        }
boolean isAlgebraicNumber ( ) throws Z3Exception [inline]

Indicates whether the term is an algebraic number

Definition at line 239 of file Expr.java.

        {
                return Native.isAlgebraicNumber(getContext().nCtx(), getNativeObject());
        }
boolean isAnd ( ) throws Z3Exception [inline]

Indicates whether the term is an n-ary conjunction

Definition at line 298 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_AND;
        }
boolean isArithmeticNumeral ( ) throws Z3Exception [inline]

Indicates whether the term is an arithmetic numeral.

Definition at line 368 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ANUM;
        }
boolean isArray ( ) throws Z3Exception [inline]

Indicates whether the term is of an array sort.

Definition at line 497 of file Expr.java.

        {
                return (Native.isApp(getContext().nCtx(), getNativeObject()) && Z3_sort_kind
                                .fromInt(Native.getSortKind(getContext().nCtx(),
                                                Native.getSort(getContext().nCtx(), getNativeObject()))) == Z3_sort_kind.Z3_ARRAY_SORT);
        }
boolean isArrayMap ( ) throws Z3Exception [inline]

Indicates whether the term is an array map. It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.

Definition at line 545 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ARRAY_MAP;
        }
boolean isAsArray ( ) throws Z3Exception [inline]

Indicates whether the term is an as-array term. An as-array term is n array value that behaves as the function graph of the function passed as parameter.

Definition at line 555 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_AS_ARRAY;
        }
boolean isBool ( ) throws Z3Exception [inline]

Indicates whether the term has Boolean sort.

Definition at line 247 of file Expr.java.

        {
                return (isExpr() && Native.isEqSort(getContext().nCtx(),
                                Native.mkBoolSort(getContext().nCtx()),
                                Native.getSort(getContext().nCtx(), getNativeObject())));
        }
boolean isBV ( ) throws Z3Exception [inline]

Indicates whether the terms is of bit-vector sort.

Definition at line 603 of file Expr.java.

        {
                return Native.getSortKind(getContext().nCtx(),
                                Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_BV_SORT
                                .toInt();
        }
boolean isBVAdd ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector addition (binary)

Definition at line 645 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BADD;
        }
boolean isBVAND ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-wise AND

Definition at line 814 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BAND;
        }
boolean isBVBitOne ( ) throws Z3Exception [inline]

Indicates whether the term is a one-bit bit-vector with value one

Definition at line 621 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BIT1;
        }
boolean isBVBitZero ( ) throws Z3Exception [inline]

Indicates whether the term is a one-bit bit-vector with value zero

Definition at line 629 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BIT0;
        }
boolean isBVCarry ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector carry Compute the carry bit in a full-adder. The meaning is given by the equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))

Definition at line 1018 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_CARRY;
        }
boolean isBVComp ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector comparison

Definition at line 926 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BCOMP;
        }
boolean isBVConcat ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector concatenation (binary)

Definition at line 870 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_CONCAT;
        }
boolean isBVExtract ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector extraction

Definition at line 894 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EXTRACT;
        }
boolean isBVMul ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector multiplication (binary)

Definition at line 661 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BMUL;
        }
boolean isBVNAND ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-wise NAND

Definition at line 846 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNAND;
        }
boolean isBVNOR ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-wise NOR

Definition at line 854 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNOR;
        }
boolean isBVNOT ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-wise NOT

Definition at line 830 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNOT;
        }
boolean isBVNumeral ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector numeral

Definition at line 613 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNUM;
        }
boolean isBVOR ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-wise OR

Definition at line 822 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BOR;
        }
boolean isBVReduceAND ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector reduce AND

Definition at line 918 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BREDAND;
        }
boolean isBVReduceOR ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector reduce OR

Definition at line 910 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BREDOR;
        }
boolean isBVRepeat ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector repetition

Definition at line 902 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_REPEAT;
        }
boolean isBVRotateLeft ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector rotate left

Definition at line 958 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ROTATE_LEFT;
        }
boolean isBVRotateLeftExtended ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector rotate left (extended) Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.

Definition at line 976 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EXT_ROTATE_LEFT;
        }
boolean isBVRotateRight ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector rotate right

Definition at line 966 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ROTATE_RIGHT;
        }
boolean isBVRotateRightExtended ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector rotate right (extended) Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.

Definition at line 986 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EXT_ROTATE_RIGHT;
        }
boolean isBVSDiv ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector signed division (binary)

Definition at line 669 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSDIV;
        }
boolean IsBVSDiv0 ( ) throws Z3Exception [inline, package]

Indicates whether the term is a bit-vector signed division by zero

Definition at line 709 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSDIV0;
        }
boolean isBVSGE ( ) throws Z3Exception [inline]

Indicates whether the term is a signed bit-vector greater-than-or-equal

Definition at line 774 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SGEQ;
        }
boolean isBVSGT ( ) throws Z3Exception [inline]

Indicates whether the term is a signed bit-vector greater-than

Definition at line 806 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SGT;
        }
boolean isBVShiftLeft ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector shift left

Definition at line 934 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSHL;
        }
boolean isBVShiftRightArithmetic ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector arithmetic shift left

Definition at line 950 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BASHR;
        }
boolean isBVShiftRightLogical ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector logical shift right

Definition at line 942 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BLSHR;
        }
boolean isBVSignExtension ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector sign extension

Definition at line 878 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SIGN_EXT;
        }
boolean isBVSLE ( ) throws Z3Exception [inline]

Indicates whether the term is a signed bit-vector less-than-or-equal

Definition at line 757 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SLEQ;
        }
boolean isBVSLT ( ) throws Z3Exception [inline]

Indicates whether the term is a signed bit-vector less-than

Definition at line 790 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SLT;
        }
boolean isBVSMod ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector signed modulus

Definition at line 701 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSMOD;
        }
boolean IsBVSMod0 ( ) throws Z3Exception [inline, package]

Indicates whether the term is a bit-vector signed modulus by zero

Definition at line 741 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSMOD0;
        }
boolean isBVSRem ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector signed remainder (binary)

Definition at line 685 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSREM;
        }
boolean IsBVSRem0 ( ) throws Z3Exception [inline, package]

Indicates whether the term is a bit-vector signed remainder by zero

Definition at line 725 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSREM0;
        }
boolean isBVSub ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector subtraction (binary)

Definition at line 653 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BSUB;
        }
boolean isBVToInt ( ) throws Z3Exception [inline]

Indicates whether the term is a coercion from bit-vector to integer This function is not supported by the decision procedures. Only the most rudimentary simplification rules are applied to this function.

Definition at line 1008 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BV2INT;
        }
boolean isBVUDiv ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector unsigned division (binary)

Definition at line 677 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUDIV;
        }
boolean IsBVUDiv0 ( ) throws Z3Exception [inline, package]

Indicates whether the term is a bit-vector unsigned division by zero

Definition at line 717 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUDIV0;
        }
boolean isBVUGE ( ) throws Z3Exception [inline]

Indicates whether the term is an unsigned bit-vector greater-than-or-equal

Definition at line 766 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_UGEQ;
        }
boolean isBVUGT ( ) throws Z3Exception [inline]

Indicates whether the term is an unsigned bit-vector greater-than

Definition at line 798 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_UGT;
        }
boolean isBVULE ( ) throws Z3Exception [inline]

Indicates whether the term is an unsigned bit-vector less-than-or-equal

Definition at line 749 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ULEQ;
        }
boolean isBVULT ( ) throws Z3Exception [inline]

Indicates whether the term is an unsigned bit-vector less-than

Definition at line 782 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ULT;
        }
boolean isBVUMinus ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector unary minus

Definition at line 637 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BNEG;
        }
boolean isBVURem ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector unsigned remainder (binary)

Definition at line 693 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUREM;
        }
boolean IsBVURem0 ( ) throws Z3Exception [inline, package]

Indicates whether the term is a bit-vector unsigned remainder by zero

Definition at line 733 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BUREM0;
        }
boolean isBVXNOR ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-wise XNOR

Definition at line 862 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BXNOR;
        }
boolean isBVXOR ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-wise XOR

Definition at line 838 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_BXOR;
        }
boolean isBVXOR3 ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector ternary XOR The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)

Definition at line 1028 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_XOR3;
        }
boolean isBVZeroExtension ( ) throws Z3Exception [inline]

Indicates whether the term is a bit-vector zero extension

Definition at line 886 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ZERO_EXT;
        }
boolean isConst ( ) throws Z3Exception [inline]

Indicates whether the term represents a constant.

Definition at line 215 of file Expr.java.

        {
                return isApp() && getNumArgs() == 0 && getFuncDecl().getDomainSize() == 0;
        }
boolean isConstantArray ( ) throws Z3Exception [inline]

Indicates whether the term is a constant array. For example, select(const(v),i) = v holds for every v and i. The function is unary.

Definition at line 527 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_CONST_ARRAY;
        }
boolean isDefaultArray ( ) throws Z3Exception [inline]

Indicates whether the term is a default array. For example default(const(v)) = v. The function is unary.

Definition at line 536 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ARRAY_DEFAULT;
        }
boolean isDistinct ( ) throws Z3Exception [inline]

Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct).

Definition at line 282 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_DISTINCT;
        }
boolean isDiv ( ) throws Z3Exception [inline]

Indicates whether the term is division (binary)

Definition at line 440 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_DIV;
        }
boolean isEmptyRelation ( ) throws Z3Exception [inline]

Indicates whether the term is an empty relation

Definition at line 1574 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_EMPTY;
        }
boolean isEq ( ) throws Z3Exception [inline]

Indicates whether the term is an equality predicate.

Definition at line 273 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_EQ;
        }
boolean isFalse ( ) throws Z3Exception [inline]

Indicates whether the term is the constant false.

Definition at line 265 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_FALSE;
        }
boolean isFiniteDomain ( ) throws Z3Exception [inline]

Indicates whether the term is of an array sort.

Definition at line 1696 of file Expr.java.

        {
                return (Native.isApp(getContext().nCtx(), getNativeObject()) && Native
                                .getSortKind(getContext().nCtx(),
                                                Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_FINITE_DOMAIN_SORT
                                .toInt());
        }
boolean isFiniteDomainLT ( ) throws Z3Exception [inline]

Indicates whether the term is a less than predicate over a finite domain.

Definition at line 1707 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_FD_LT;
        }
boolean isGE ( ) throws Z3Exception [inline]

Indicates whether the term is a greater-than-or-equal

Definition at line 384 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_GE;
        }
boolean isGT ( ) throws Z3Exception [inline]

Indicates whether the term is a greater-than

Definition at line 400 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_GT;
        }
boolean isIDiv ( ) throws Z3Exception [inline]

Indicates whether the term is integer division (binary)

Definition at line 448 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IDIV;
        }
boolean isIff ( ) throws Z3Exception [inline]

Indicates whether the term is an if-and-only-if (Boolean equivalence, binary)

Definition at line 315 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IFF;
        }
boolean isImplies ( ) throws Z3Exception [inline]

Indicates whether the term is an implication

Definition at line 339 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IMPLIES;
        }
boolean isInt ( ) throws Z3Exception [inline]

Indicates whether the term is of integer sort.

Definition at line 347 of file Expr.java.

Referenced by Expr.isIntNum().

        {
                return (Native.isNumeralAst(getContext().nCtx(), getNativeObject()) && Native
                                .getSortKind(getContext().nCtx(),
                                                Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_INT_SORT
                                .toInt());
        }
boolean isIntNum ( ) throws Z3Exception [inline]

Indicates whether the term is an integer numeral.

Definition at line 223 of file Expr.java.

        {
                return isNumeral() && isInt();
        }
boolean isIntToBV ( ) throws Z3Exception [inline]

Indicates whether the term is a coercion from integer to bit-vector This function is not supported by the decision procedures. Only the most rudimentary simplification rules are applied to this function.

Definition at line 997 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_INT2BV;
        }
boolean isIntToReal ( ) throws Z3Exception [inline]

Indicates whether the term is a coercion of integer to real (unary)

Definition at line 472 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_TO_REAL;
        }
boolean isIsEmptyRelation ( ) throws Z3Exception [inline]

Indicates whether the term is a test for the emptiness of a relation

Definition at line 1582 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_IS_EMPTY;
        }
boolean isITE ( ) throws Z3Exception [inline]

Indicates whether the term is a ternary if-then-else term

Definition at line 290 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_ITE;
        }
boolean isLabel ( ) throws Z3Exception [inline]

Indicates whether the term is a label (used by the Boogie Verification condition generator). The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula.

Definition at line 1038 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LABEL;
        }
boolean isLabelLit ( ) throws Z3Exception [inline]

Indicates whether the term is a label literal (used by the Boogie Verification condition generator). A label literal has a set of string parameters. It takes no arguments.

Definition at line 1048 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LABEL_LIT;
        }
boolean isLE ( ) throws Z3Exception [inline]

Indicates whether the term is a less-than-or-equal

Definition at line 376 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LE;
        }
boolean isLT ( ) throws Z3Exception [inline]

Indicates whether the term is a less-than

Definition at line 392 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LT;
        }
boolean isModulus ( ) throws Z3Exception [inline]

Indicates whether the term is modulus (binary)

Definition at line 464 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_MOD;
        }
boolean isMul ( ) throws Z3Exception [inline]

Indicates whether the term is multiplication (binary)

Definition at line 432 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_MUL;
        }
boolean isNot ( ) throws Z3Exception [inline]

Indicates whether the term is a negation

Definition at line 331 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_NOT;
        }
boolean isNumeral ( ) throws Z3Exception [inline]

Indicates whether the term is a numeral

Definition at line 188 of file Expr.java.

Referenced by Expr.isIntNum(), and Expr.isRatNum().

        {
                return Native.isNumeralAst(getContext().nCtx(), getNativeObject());
        }
boolean isOEQ ( ) throws Z3Exception [inline]

Indicates whether the term is a binary equivalence modulo namings. This binary predicate is used in proof terms. It captures equisatisfiability and equivalence modulo renamings.

Definition at line 1058 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_OEQ;
        }
boolean isOr ( ) throws Z3Exception [inline]

Indicates whether the term is an n-ary disjunction

Definition at line 306 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_OR;
        }
boolean isProofAndElimination ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by elimination of AND Given a proof for (and l_1 ... l_n), produces a proof for l_i T1: (and l_1 ... l_n) [and-elim T1]: l_i

Definition at line 1194 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_AND_ELIM;
        }
boolean isProofApplyDef ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for application of a definition [apply-def T1]: F ~ n F is 'equivalent' to n, given that T1 is a proof that n is a name for F.

Definition at line 1424 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_APPLY_DEF;
        }
boolean isProofAsserted ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for a fact asserted by the user.

Definition at line 1074 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_ASSERTED;
        }
boolean isProofCNFStar ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for (~ P Q) where Q is in conjunctive normal form. A proof for (~ P Q) where Q is in conjunctive normal form. This proof object is only used if the parameter PROOF_MODE is 1. This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.

Definition at line 1501 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_CNF_STAR;
        }
boolean isProofCommutativity ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by commutativity [comm]: (= (f a b) (f b a))

f is a commutative operator.

This proof object has no antecedents. Remark: if f is bool, then = is iff.

Definition at line 1370 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_COMMUTATIVITY;
        }
boolean isProofDefAxiom ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for Tseitin-like axioms Proof object used to justify Tseitin's like axioms:

(or (not (and p q)) p) (or (not (and p q)) q) (or (not (and p q r)) p) (or (not (and p q r)) q) (or (not (and p q r)) r) ... (or (and p q) (not p) (not q)) (or (not (or p q)) p q) (or (or p q) (not p)) (or (or p q) (not q)) (or (not (iff p q)) (not p) q) (or (not (iff p q)) p (not q)) (or (iff p q) (not p) (not q)) (or (iff p q) p q) (or (not (ite a b c)) (not a) b) (or (not (ite a b c)) a c) (or (ite a b c) (not a) (not b)) (or (ite a b c) a (not c)) (or (not (not a)) (not a)) (or (not a) a)

This proof object has no antecedents. Note: all axioms are propositional tautologies. Note also that 'and' and 'or' can take multiple arguments. You can recover the propositional tautologies by unfolding the Boolean connectives in the axioms a small bounded number of steps (=3).

Definition at line 1393 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DEF_AXIOM;
        }
boolean isProofDefIntro ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for introduction of a name Introduces a name for a formula/term. Suppose e is an expression with free variables x, and def-intro introduces the name n(x). The possible cases are:

When e is of Boolean type: [def-intro]: (and (or n (not e)) (or (not n) e))

or: [def-intro]: (or (not n) e) when e only occurs positively.

When e is of the form (ite cond th el): [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))

Otherwise: [def-intro]: (= n e)

Definition at line 1414 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DEF_INTRO;
        }
boolean isProofDER ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for destructive equality resolution A proof for destructive equality resolution: (iff (forall (x) (or (not (= x t)) P[x])) P[t]) if x does not occur in t.

This proof object has no antecedents.

Several variables can be eliminated simultaneously.

Definition at line 1297 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DER;
        }
boolean isProofDistributivity ( ) throws Z3Exception [inline]

Indicates whether the term is a distributivity proof object. Given that f (= or) distributes over g (= and), produces a proof for (= (f a (g c d)) (g (f a c) (f a d))) If f and g are associative, this proof also justifies the following equality: (= (f (g a b) (g c d)) (g (f a c) (f a d) (f b c) (f b d))) where each f and g can have arbitrary number of arguments.

This proof object has no antecedents. Remark. This rule is used by the CNF conversion pass and instantiated by f = or, and g = and.

Definition at line 1184 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY;
        }
boolean isProofElimUnusedVars ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for elimination of unused variables. A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n]) (forall (x_1 ... x_n) p[x_1 ... x_n]))

It is used to justify the elimination of unused variables. This proof object has no antecedents.

Definition at line 1283 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_ELIM_UNUSED_VARS;
        }
boolean isProofGoal ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user.

Definition at line 1083 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_GOAL;
        }
boolean isProofHypothesis ( ) throws Z3Exception [inline]

Indicates whether the term is a hypthesis marker. Mark a hypothesis in a natural deduction style proof.

Definition at line 1315 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS;
        }
boolean isProofIFFFalse ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by iff-false T1: (not p) [iff-false T1]: (iff p false)

Definition at line 1356 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_IFF_FALSE;
        }
boolean isProofIFFOEQ ( ) throws Z3Exception [inline]

Indicates whether the term is a proof iff-oeq T1: (iff p q) [iff~ T1]: (~ p q)

Definition at line 1433 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_IFF_OEQ;
        }
boolean isProofIFFTrue ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by iff-true T1: p [iff-true T1]: (iff p true)

Definition at line 1347 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_IFF_TRUE;
        }
boolean isProofLemma ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by lemma T1: false [lemma T1]: (or (not l_1) ... (not l_n))

This proof object has one antecedent: a hypothetical proof for false. It converts the proof in a proof for (or (not l_1) ... (not l_n)), when T1 contains the hypotheses: l_1, ..., l_n.

Definition at line 1328 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_LEMMA;
        }
boolean isProofModusPonens ( ) throws Z3Exception [inline]

Indicates whether the term is proof via modus ponens Given a proof for p and a proof for (implies p q), produces a proof for q. T1: p T2: (implies p q) [mp T1 T2]: q The second antecedents may also be a proof for (iff p q).

Definition at line 1094 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS;
        }
boolean isProofModusPonensOEQ ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by modus ponens for equi-satisfiability. Modus ponens style rule for equi-satisfiability. T1: p T2: (~ p q) [mp~ T1 T2]: q

Definition at line 1525 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ;
        }
boolean isProofMonotonicity ( ) throws Z3Exception [inline]

Indicates whether the term is a monotonicity proof object. T1: (R t_1 s_1) ... Tn: (R t_n s_n) [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n)) Remark: if t_i == s_i, then the antecedent Ti is suppressed. That is, reflexivity proofs are supressed to save space.

Definition at line 1158 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_MONOTONICITY;
        }
boolean isProofNNFNeg ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for a negative NNF step Proof for a (negative) NNF step. Examples:

T1: (not s_1) ~ r_1 ... Tn: (not s_n) ~ r_n [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n) and T1: (not s_1) ~ r_1 ... Tn: (not s_n) ~ r_n [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n) and T1: (not s_1) ~ r_1 T2: (not s_2) ~ r_2 T3: s_1 ~ r_1' T4: s_2 ~ r_2' [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2)) (and (or r_1 r_2) (or r_1' r_2')))

Definition at line 1474 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_NEG;
        }
boolean isProofNNFPos ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for a positive NNF step Proof for a (positive) NNF step. Example:

T1: (not s_1) ~ r_1 T2: (not s_2) ~ r_2 T3: s_1 ~ r_1' T4: s_2 ~ r_2' [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2) (and (or r_1 r_2') (or r_1' r_2)))

The negation normal form steps NNF_POS and NNF_NEG are used in the following cases: (a) When creating the NNF of a positive force quantifier. The quantifier is retained (unless the bound variables are eliminated). Example T1: q ~ q_new [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))

(b) When recursively creating NNF over Boolean formulas, where the top-level connective is changed during NNF conversion. The relevant Boolean connectives for NNF_POS are 'implies', 'iff', 'xor', 'ite'. NNF_NEG furthermore handles the case where negation is pushed over Boolean connectives 'and' and 'or'.

Definition at line 1458 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_POS;
        }
boolean isProofNNFStar ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for (~ P Q) here Q is in negation normal form. A proof for (~ P Q) where Q is in negation normal form.

This proof object is only used if the parameter PROOF_MODE is 1.

This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.

Definition at line 1489 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_STAR;
        }
boolean isProofOrElimination ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by eliminiation of not-or Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i). T1: (not (or l_1 ... l_n)) [not-or-elim T1]: (not l_i)

Definition at line 1204 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM;
        }
boolean isProofPullQuant ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for pulling quantifiers out. A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.

Definition at line 1247 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PULL_QUANT;
        }
boolean isProofPullQuantStar ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for pulling quantifiers out. A proof for (iff P Q) where Q is in prenex normal form. This proof object is only used if the parameter PROOF_MODE is 1. This proof object has no antecedents

Definition at line 1258 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR;
        }
boolean isProofPushQuant ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for pushing quantifiers in. A proof for: (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m])) (and (forall (x_1 ... x_m) p_1[x_1 ... x_m]) ... (forall (x_1 ... x_m) p_n[x_1 ... x_m]))) This proof object has no antecedents

Definition at line 1270 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT;
        }
boolean isProofQuantInst ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for quantifier instantiation A proof of (or (not (forall (x) (P x))) (P a))

Definition at line 1306 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_QUANT_INST;
        }
boolean isProofQuantIntro ( ) throws Z3Exception [inline]

Indicates whether the term is a quant-intro proof Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)). T1: (~ p q) [quant-intro T1]: (~ (forall (x) p) (forall (x) q))

Definition at line 1168 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO;
        }
boolean isProofReflexivity ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for (R t t), where R is a reflexive relation. This proof object has no antecedents. The only reflexive relations that are used are equivalence modulo namings, equality and equivalence. That is, R is either '~', '=' or 'iff'.

Definition at line 1106 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY;
        }
boolean isProofRewrite ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by rewriting A proof for a local rewriting step (= t s). The head function symbol of t is interpreted.

This proof object has no antecedents. The conclusion of a rewrite rule is either an equality (= t s), an equivalence (iff t s), or equi-satisfiability (~ t s). Remark: if f is bool, then = is iff.

Examples: (= (+ x 0) x) (= (+ x 1 2) (+ 3 x)) (iff (or x false) x)

Definition at line 1221 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_REWRITE;
        }
boolean isProofRewriteStar ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by rewriting A proof for rewriting an expression t into an expression s. This proof object is used if the parameter PROOF_MODE is 1. This proof object can have n antecedents. The antecedents are proofs for equalities used as substitution rules. The object is also used in a few cases if the parameter PROOF_MODE is 2. The cases are: - When applying contextual simplification (CONTEXT_SIMPLIFIER=true) - When converting bit-vectors to Booleans (BIT2BOOL=true) - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)

Definition at line 1237 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR;
        }
boolean isProofSkolemize ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for a Skolemization step Proof for:

[sk]: (~ (not (forall x (p x y))) (not (p (sk y) y))) [sk]: (~ (exists x (p x y)) (p (sk y) y))

This proof object has no antecedents.

Definition at line 1515 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE;
        }
boolean isProofSymmetry ( ) throws Z3Exception [inline]

Indicates whether the term is proof by symmetricity of a relation Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t). T1: (R t s) [symmetry T1]: (R s t) T1 is the antecedent of this proof object.

Definition at line 1117 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_SYMMETRY;
        }
boolean isProofTheoryLemma ( ) throws Z3Exception [inline]

Indicates whether the term is a proof for theory lemma Generic proof for theory lemmas.

The theory lemma function comes with one or more parameters. The first parameter indicates the name of the theory. For the theory of arithmetic, additional parameters provide hints for checking the theory lemma. The hints for arithmetic are: - farkas - followed by rational coefficients. Multiply the coefficients to the inequalities in the lemma, add the (negated) inequalities and obtain a contradiction. - triangle-eq - Indicates a lemma related to the equivalence: (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1))) - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.

Definition at line 1544 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TH_LEMMA;
        }
boolean isProofTransitivity ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by transitivity of a relation Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof for (R t u). T1: (R t s) T2: (R s u) [trans T1 T2]: (R t u)

Definition at line 1128 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY;
        }
boolean isProofTransitivityStar ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by condensed transitivity of a relation Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1. It combines several symmetry and transitivity proofs. Example: T1: (R a b) T2: (R c b) T3: (R c d) [trans* T1 T2 T3]: (R a d) R must be a symmetric and transitive relation.

Assuming that this proof object is a proof for (R s t), then a proof checker must check if it is possible to prove (R s t) using the antecedents, symmetry and transitivity. That is, if there is a path from s to t, if we view every antecedent (R a b) as an edge between a and b.

Definition at line 1146 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY_STAR;
        }
boolean isProofTrue ( ) throws Z3Exception [inline]

Indicates whether the term is a Proof for the expression 'true'.

Definition at line 1066 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_TRUE;
        }
boolean isProofUnitResolution ( ) throws Z3Exception [inline]

Indicates whether the term is a proof by unit resolution T1: (or l_1 ... l_n l_1' ... l_m') T2: (not l_1) ... T(n+1): (not l_n) [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')

Definition at line 1338 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_UNIT_RESOLUTION;
        }
boolean isRatNum ( ) throws Z3Exception [inline]

Indicates whether the term is a real numeral.

Definition at line 231 of file Expr.java.

        {
                return isNumeral() && isReal();
        }
boolean isReal ( ) throws Z3Exception [inline]

Indicates whether the term is of sort real.

Definition at line 358 of file Expr.java.

Referenced by Expr.isRatNum().

        {
                return Native.getSortKind(getContext().nCtx(),
                                Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_REAL_SORT
                                .toInt();
        }
boolean isRealIsInt ( ) throws Z3Exception [inline]

Indicates whether the term is a check that tests whether a real is integral (unary)

Definition at line 489 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_IS_INT;
        }
boolean isRealToInt ( ) throws Z3Exception [inline]

Indicates whether the term is a coercion of real to integer (unary)

Definition at line 480 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_TO_INT;
        }
boolean isRelation ( ) throws Z3Exception [inline]

Indicates whether the term is of an array sort.

Definition at line 1552 of file Expr.java.

        {
                return (Native.isApp(getContext().nCtx(), getNativeObject()) && Native
                                .getSortKind(getContext().nCtx(),
                                                Native.getSort(getContext().nCtx(), getNativeObject())) == Z3_sort_kind.Z3_RELATION_SORT
                                .toInt());
        }
boolean isRelationalJoin ( ) throws Z3Exception [inline]

Indicates whether the term is a relational join

Definition at line 1590 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_JOIN;
        }
boolean isRelationClone ( ) throws Z3Exception [inline]

Indicates whether the term is a relational clone (copy) Create a fresh copy (clone) of a relation. The function is logically the identity, but in the context of a register machine allows for terms of kind

See also:
IsRelationUnion

to perform destructive updates to the first argument.

Definition at line 1688 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_CLONE;
        }
boolean isRelationComplement ( ) throws Z3Exception [inline]

Indicates whether the term is the complement of a relation

Definition at line 1665 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_COMPLEMENT;
        }
boolean isRelationFilter ( ) throws Z3Exception [inline]

Indicates whether the term is a relation filter Filter (restrict) a relation with respect to a predicate. The first argument is a relation. The second argument is a predicate with free de-Brujin indices corresponding to the columns of the relation. So the first column in the relation has index 0.

Definition at line 1630 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_FILTER;
        }
boolean isRelationNegationFilter ( ) throws Z3Exception [inline]

Indicates whether the term is an intersection of a relation with the negation of another. Intersect the first relation with respect to negation of the second relation (the function takes two arguments). Logically, the specification can be described by a function

target = filter_by_negation(pos, neg, columns)

where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that target are elements in x in pos, such that there is no y in neg that agrees with x on the columns c1, d1, .., cN, dN.

Definition at line 1647 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_NEGATION_FILTER;
        }
boolean isRelationProject ( ) throws Z3Exception [inline]

Indicates whether the term is a projection of columns (provided as numbers in the parameters). The function takes one argument.

Definition at line 1618 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_PROJECT;
        }
boolean isRelationRename ( ) throws Z3Exception [inline]

Indicates whether the term is the renaming of a column in a relation The function takes one argument. The parameters contain the renaming as a cycle.

Definition at line 1657 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_RENAME;
        }
boolean isRelationSelect ( ) throws Z3Exception [inline]

Indicates whether the term is a relational select Check if a record is an element of the relation. The function takes n+1 arguments, where the first argument is a relation, and the remaining n arguments correspond to a record.

Definition at line 1676 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_SELECT;
        }
boolean isRelationStore ( ) throws Z3Exception [inline]

Indicates whether the term is an relation store Insert a record into a relation. The function takes n+1 arguments, where the first argument is the relation and the remaining n elements correspond to the n columns of the relation.

Definition at line 1566 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_STORE;
        }
boolean isRelationUnion ( ) throws Z3Exception [inline]

Indicates whether the term is the union or convex hull of two relations. The function takes two arguments.

Definition at line 1599 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_UNION;
        }
boolean isRelationWiden ( ) throws Z3Exception [inline]

Indicates whether the term is the widening of two relations The function takes two arguments.

Definition at line 1608 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_RA_WIDEN;
        }
boolean isRemainder ( ) throws Z3Exception [inline]

Indicates whether the term is remainder (binary)

Definition at line 456 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_REM;
        }
boolean isSelect ( ) throws Z3Exception [inline]

Indicates whether the term is an array select.

Definition at line 517 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SELECT;
        }
boolean isSetComplement ( ) throws Z3Exception [inline]

Indicates whether the term is set complement

Definition at line 587 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_COMPLEMENT;
        }
boolean isSetDifference ( ) throws Z3Exception [inline]

Indicates whether the term is set difference

Definition at line 579 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_DIFFERENCE;
        }
boolean isSetIntersect ( ) throws Z3Exception [inline]

Indicates whether the term is set intersection

Definition at line 571 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_INTERSECT;
        }
boolean isSetSubset ( ) throws Z3Exception [inline]

Indicates whether the term is set subset

Definition at line 595 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_SUBSET;
        }
boolean isSetUnion ( ) throws Z3Exception [inline]

Indicates whether the term is set union

Definition at line 563 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SET_UNION;
        }
boolean isStore ( ) throws Z3Exception [inline]

Indicates whether the term is an array store. It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j). Array store takes at least 3 arguments.

Definition at line 509 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_STORE;
        }
boolean isSub ( ) throws Z3Exception [inline]

Indicates whether the term is subtraction (binary)

Definition at line 416 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_SUB;
        }
boolean isTrue ( ) throws Z3Exception [inline]

Indicates whether the term is the constant true.

Definition at line 257 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_TRUE;
        }
boolean isUMinus ( ) throws Z3Exception [inline]

Indicates whether the term is a unary minus

Definition at line 424 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_UMINUS;
        }
boolean isWellSorted ( ) throws Z3Exception [inline]

Indicates whether the term is well-sorted.

Returns:
True if the term is well-sorted, false otherwise.

Definition at line 198 of file Expr.java.

        {
                return Native.isWellSorted(getContext().nCtx(), getNativeObject());
        }
boolean isXor ( ) throws Z3Exception [inline]

Indicates whether the term is an exclusive or

Definition at line 323 of file Expr.java.

        {
                return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_XOR;
        }
Expr simplify ( ) throws Z3Exception [inline]

Returns a simplified version of the expression

Definition at line 35 of file Expr.java.

        {
            return simplify(null);
        }
Expr simplify ( Params  p) throws Z3Exception [inline]

Returns a simplified version of the expression A set of parameters

Parameters:
pa Params object

to configure the simplifier

See also:
Context.SimplifyHelp

Definition at line 46 of file Expr.java.

        {

                if (p == null)
                        return Expr.create(getContext(),
                                        Native.simplify(getContext().nCtx(), getNativeObject()));
                else
                        return Expr.create(
                                        getContext(),
                                        Native.simplifyEx(getContext().nCtx(), getNativeObject(),
                                                        p.getNativeObject()));
        }
Expr substitute ( Expr[]  from,
Expr[]  to 
) throws Z3Exception [inline]

Substitute every occurrence of from[i] in the expression with to[i], for i smaller than num_exprs. The result is the new expression. The arrays from and to must have size num_exprs. For every i smaller than num_exprs, we must have that sort of from[i] must be equal to sort of to[i].

Definition at line 123 of file Expr.java.

Referenced by Expr.substitute().

        {
                getContext().checkContextMatch(from);
                getContext().checkContextMatch(to);
                if (from.length != to.length)
                        throw new Z3Exception("Argument sizes do not match");
                return Expr.create(getContext(), Native.substitute(getContext().nCtx(),
                                getNativeObject(), (int) from.length, Expr.arrayToNative(from),
                                Expr.arrayToNative(to)));
        }
Expr substitute ( Expr  from,
Expr  to 
) throws Z3Exception [inline]

Substitute every occurrence of from in the expression with to.

See also:
Substitute(Expr[],Expr[])

Definition at line 138 of file Expr.java.

        {

                return substitute(new Expr[] { from }, new Expr[] { to });
        }
Expr substituteVars ( Expr[]  to) throws Z3Exception [inline]

Substitute the free variables in the expression with the expressions in to For every i smaller than num_exprs, the variable with de-Bruijn index i is replaced with term to[i].

Definition at line 150 of file Expr.java.

        {

                getContext().checkContextMatch(to);
                return Expr.create(getContext(), Native.substituteVars(getContext().nCtx(),
                                getNativeObject(), (int) to.length, Expr.arrayToNative(to)));
        }
String toString ( ) [inline]

Returns a string representation of the expression.

Reimplemented from AST.

Reimplemented in RatNum, IntNum, and BitVecNum.

Definition at line 180 of file Expr.java.

        {
                return super.toString();
        }
Expr translate ( Context  ctx) throws Z3Exception [inline]

Translates (copies) the term to the Context ctx .

Parameters:
ctxA context
Returns:
A copy of the term which is associated with ctx

Reimplemented from AST.

Definition at line 165 of file Expr.java.

        {

                if (getContext() == ctx)
                        return this;
                else
                        return Expr.create(
                                        ctx,
                                        Native.translate(getContext().nCtx(), getNativeObject(),
                                                        ctx.nCtx()));
        }
void update ( Expr[]  args) throws Z3Exception [inline]

Update the arguments of the expression using the arguments args The number of new arguments should coincide with the current number of arguments.

Definition at line 105 of file Expr.java.

        {
                getContext().checkContextMatch(args);
                if (isApp() && args.length != getNumArgs())
                        throw new Z3Exception("Number of arguments does not match");
                setNativeObject(Native.updateTerm(getContext().nCtx(), getNativeObject(),
                                (int) args.length, Expr.arrayToNative(args)));
        }
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Defines