SPAI — SParse Approximate Inverse
Preconditioner

Marcus Grote * Michael Hagemann |

March 16, 2006

Contents

1 Introduction

2 News

3 Installation

3.1
3.2

3.3

3.4

4 FAQ

4.1
4.2
4.3
4.4

4.5
4.6
4.7

For the impatient
Detailed installation instructions oL
3.2.1 Using configure L
3.2.2 Optional Features
3.2.3 Compilers and Options
Installation
3.3.1 Matlab interface
3.3.2 Imstalled files
Usage o
3.4.1 Test program "spai”
3.4.2 Running make in general L0000
343 Remarks.

Why is SPAI taking forever to compute the preconditioner?
When I reduce eps the preconditioner does not really improve, why?
What does SPAI stand for?
Why does the preconditioner tend to get worse as I increase the block size while
keeping eps fixed?
Does SPAI always work?
Configure hangs at mexfileextension-check. Why?
I still have questions, where do I get further information?

NI 0 O UtwwwNe N

*Department of Mathematics, University of Basel, Rheinsprung 21, 4051 Basel, Switzerland, Marcus.Grote
Qunibas.ch.
TDepartment of Computer Science, University of Basel.

5 Authors 12

References 12

1 Introduction

Given a sparse matrix A the SPAI Algorithm computes a sparse approximate inverse M by
minimizing ||AM — I|| in the Frobenius norm. The approximate inverse is computed explicitly
and can then be applied as a preconditioner to an iterative method. The sparsity pattern of
the approximate inverse is either fixed a priori or captured automatically:

Fixed sparsity The sparsity pattern of M is either banded or a subset of the sparsity pattern
of A.

Adaptive sparsity The algorithm proceeds until the 2-norm of each column of AM — I is less
than eps. By varying eps the user controls the quality and the cost of computing the
preconditioner. Usually the optimal eps lies between 0.5 and 0.7.

A very sparse preconditioner is very cheap to compute but may not lead to much improvement,
while if M becomes rather dense it becomes too expensive to compute. The optimal precondi-
tioner lies between these two extremes and is problem and computer architecture dependent.

The approximate inverse M can also be used as a robust (parallel) smoother for (algebraic)
multi-grid methods. For further details please refer to [7, 8, 9].

2 News

Please see the NEWS file for a detailed list of changes. Some notable improvements over version
3.1 include:

e Simplified installation procedure (autoconf based)

e Threshold based construction of preconditioner, with new MATLAB interface function
spaitau.

e Banded structure of preconditioner, with new MATLAB interface function spaidiags.

3 Installation

3.1 For the impatient

The following gives you the basic commands for a quick build of SPAI, and illustrates some
simple ways to get you started with using SPAI as a preconditioner:

Step 1: Unpack the SPAT package, and change to the respective directory:

gunzip spai-3.2.tar.gz
tar xvf spai-3.2.tar
cd spai-3.2

Step 2: Run the following sequence and keep your fingers crossed:

configure --with-matlab
make
make check

(Please note that a working FORTRAN compiler is required to detect the system call-
ing conventions. Furthermore, MATLAB needs to be in the current $PATH in order to
be detected and used. See Section 3.2.3 for further configuration options on various
platforms.)

Step 3: Test the command line interface:

cd src
./spai ../data/ml.mm
./spai ../data/ml.mm -sc 1 -ta 0.7

(Please note that the matrix file needs to be the first parameter.)
Step 4: Test the MATLAB interface (if available):

cd ../matlab

matlab

>> help spai

>> ¥ Load A as matrix ‘mil.dat’ and create RHS b=Ax1.
>> A = spconvert(load(’ml.dat’));

>> b = A * ones(size(A,1), 1);

>> Y, Solve Ax=b, without preconditioning
>> x = bicgstab(A, b, 1e-8, 200);

>> Y, Compute adaptive SPAI preconditioner (SPAI 3.1)
>> M = spai(d);
>> spy(M);

>> ¥, Solve Ax=b, with SPAI preconditioning
>> x = bicgstab(A, b, 1e-8, 200, @(y) Mx*y);

>> Y, Compute block SPAI preconditioner (block size=3)
>> M = spai(4, 0.6, 5, 5, 3, 100000, 0);

=

>> Y, Compute threshold based SPAI preconditioner
>> M = spaitau(4, 0.8, 0);

>> Y, Compute banded SPAI preconditioner
>> M = spaidiags(A, 5, 5, 0);

See Figure 1 for a comparison of the sparsity patterns for the above Matlab function calls,
and the convergence history of a preconditioned BICGSTAB iteration.

A m1.dat M: M = spailA)

0 BB - ﬂ‘“"
] .
ol s . - a0l e -’ . [
i r?. I-:-_ W [- .“ - .] -
40 |??l ;; B R = A0 .’. a [™
N om . -» ' .
- - = . 'Y
60 o B0 ’ - -
vy e T RE L S
- . .
80 voRos f} T 1 B0 v I : s - -
' H A HY | .
0 20 40 60 80 0 20 40 &0 80
nz = 945 nz =476

0 0)
0 e
20 - 20 TR *
"Mag 8 ITRE -
[] [] -
40 ‘ |] an t’i 3 .
= ol ol .
1] . g - - -
60 L] 60 -
s - - - Tty = 4 : § -
80 . g 80 B L
s [| 'oe 5 R
0 20 40 60 a0 0 20 40 60 &80
nz = 880 nz =479
M: M = spaidiags(®.5,5) BICGSTAB

I res ||

0 20 40 60 B0 0 20 40 60 B0 100
nz = 659 iteration

Figure 1: Comparison of sparsity patterns for different SPAI Matlab functions, and convergence
history of preconditioned BICGSTAB iteration.

3.2 Detailed installation instructions
3.2.1 Using configure

The ‘configure’ shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a Makefile in each directory
of the package. It may also create one or more .h files containing system-dependent definitions.
Finally, it creates a shell script config.status that you can run in the future to recreate
the current configuration, a file config.cache that saves the results of its tests to speed up
reconfiguring, and a file config.log containing compiler output (useful mainly for debugging
configure).
The simplest way to compile this package is:

1. cd to the directory containing the package’s source code and type ./configure to con-
figure the package for your system. If you're using csh on an old version of System V,
you might need to type sh ./configure instead to prevent csh from trying to execute
configure itself.

Running configure takes a while. While running, it prints some messages telling which
features it is checking for.

2. Type make to compile the package.
3. Optionally, type make check to run any self-tests that come with the package.
4. Type make install to install the programs and any data files and documentation.

5. You can remove the program binaries and object files from the source code directory by
typing make clean. To also remove the files that configure created (so you can compile
the package for a different kind of computer), type make distclean.

3.2.2 Optional Features

configure accepts the following command line options:

—--help Print a summary of the options of configure, and exit.

--with-blas={no|"-1libraryl -1llibrary2"} Override the default option for BLAS libraries.
By default, various known and vendor specific BLAS libraries are searched for and tested.
This search can be overridden by specifying the BLAS linker options.

Example: To build with a free ATLAS BLAS installed in a non-standard place, try the
following:

./configure --with-blas="-L/opt/atlas -1f77blas -lcblas -latlas"

If no suitable system BLAS library is found, a local library is built. This will typically
decrease the performance of spai.

--with-lapack={no|"-1libraryl -1llibrary2"|/path/to/lapack-libary.a} Override the
default option for LAPACK libraries. By default, various known and vendor specific LA-
PACK libraries are searched for and tested. This search can be overridden by specifying
the LAPACK linker options.

If no suitable system LAPACK library is found, a local library is built. This will typically
decrease the performance of spai.

—--with-matlab Checks for a MATLAB installation and compiles the MATLAB interface. MAT-
LAB must be in the current $PATH.

--with-MPI={lam|mpich|generic} Compiles a parallel version using an already installed ver-
sion of the MPI library.

The value lam configures the package using specific details of the LAM implementation
of MPI. See the LAM homepage http://wuw.lam-mpi.org/ for details on how to obtain,
install and run LAM.

The value mpich configures the package using specific details of the MPICH implemen-
tation of MPI. See the MPICH homepage http://www-unix.mcs.anl.gov/mpi/mpich/
for details on how to obtain, install and run MPICH.

The value generic tries to guess the needed libraries and binaries needed.

3.2.3 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. You can give configure initial values for variables by setting them in
the environment. Using a Bourne-compatible shell, you can do that on the command line like
this:

CC=c89 CFLAGS=-02 LIBS=-lposix ./configure
Or on systems that have the env program, you can do it like this:
env CC=c89 CFLAGS=-02 LIBS=-lposix ./configure
We have successfully installed and tested SPAI on the following systems:

e i686-pc-linux-gnu with GNU gcc

All features are typically discovered automatically. A working FORTRAN compiler needs
to be installed. Tested for 1libspai.a library, CLI, Matlab-interface, and MPI (LAM).

e sparc-sun-solaris2.8 with SUN cc and SUN high performance library
We used the following options to avoid linking problems due to the OPENMP stubs.

CC=cc F77=£f90 CFLAGS="-xopenmp=stubs" ./configure

The sunperf libraries are detected automatically. If you want to compile the MATLAB
interface, you cannot link to the sunperf libraries. A possible solution is to compile the

local BLAS and LAPACK libraries with:

CC=cc F77=£f90 CFLAGS="-xopenmp=stubs" ./configure \
--with-matlab --with-blas=no --with-lapack=no

¢ x86_64-unknown-linux-gnu
We use the AMD ACML library:

http://www.lam-mpi.org/
http://www-unix.mcs.anl.gov/mpi/mpich/

./configure --with-blas=/opt/acml/gnu64/lib/libacml.a

With MATLAB, the following options were necessary, in order to make the library dy-
namically linkable:

CFLAGS=-fpic ./configure --with-matlab \
--with-blas=/opt/acml/gnu64/1lib/libacml.a

e powerpc-apple-darwin8.2.0 (with gec)
All features are typically discovered automatically. Tested for library, and CLI.

3.3 Installation

Automatic installation is available through the automake package (make install), but we
recommend a local installation. If the library needs to be accessible to multiple users, the
libspai.a file can be copied to an appropriate location (/usr/local/lib).

3.3.1 Matlab interface

If you want to use the MATLAB interface outside of the spai-3.2/matlab directory, the sim-
plest way is to include the directory in the $MATLABPATH environment variable.
Inside MATLAB, this is possible with the addpath and path functions:

e Prepend to MATLABPATH:
>> addpath /dirl /dir2
e Append to MATLABPATH:

>> p = path()
>> path (p, ’/dirl’)

You can include these commands in the /matlab/startup.m file, which is automatically
loaded every time MATLAB is started. You can also change the path permanently by setting
the environment variable $MATLABPATH in your shell startup script.

3.3.2 Installed files

If you use the make install command for the installation, the following files are installed in
the $PREFIX directory (the default is /usr/local/):

$ (PREFIX)/bin

$ (PREFIX) /bin/spai

$ (PREFIX) /bin/convert

$(PREFIX)/1ib

$ (PREFIX)/1ib/libspai.a

$ (PREFIX) /matlab

$ (PREFIX) /matlab/spai

$ (PREFIX) /matlab/spai/spai_full.mexglx

$ (PREFIX) /matlab/spai/spai.m

$ (PREFIX) /matlab/spai/spaitau.m

$ (PREFIX) /matlab/spai/spaidiags.m

$ (PREFIX)/share

$ (PREFIX)/share/doc

$ (PREFIX)/share/doc/spai

$ (PREFIX)/share/doc/spai/spaidoc.ps
$ (PREFIX)/share/doc/spai/spaidoc.pdf

You can change the $PREFIX directory with the ——prefix= option of the configure script.

3.4 Usage
3.4.1 Test program "spai”

The test program is called ”spai” and make install will install it in your $prefix/bin direc-
tory. You can set your PATH environment variable accordingly.
The program will

1. Read a sparse matrix A
2. Optionally read a rhs vector b (or construct one)
3. Construct a SPAI preconditioner M
4. use BICGSTAB to solve Ax = b, using M as a preconditioner.
The serial program is executed with:
spai <A> [b] [options]
while the parallel version is executed with:
mpirun -np <n> ./spai <A> [b] [options]

(Items in <> are required; items in [] are optional.)

<A> must be a file in Matrix Market coordinate format. See the file data/m1.mm for an ex-
ample. (Matrix Market is a repository of sparse matrices on the web. The only Matrix Market
format currently supported is "real general”. This format is very similar to the MATLAB sparse
matrix format. See the MatrixtMarket Homepage http://math.nist.gov/MatrixMarket/ for
details.

[b] is an optional dense vector giving the right-hand-side for the BICGSTAB solver. It must
be a file in Matrix Market array format. See the file data/m1_rhs.mm for an example. If the
RHS is not given then BICGSTAB will will use A1 as a RHS, where 1 is a vector of all ones.
The solution of the system Axz = b will be written to the file solution.mm.

There are a number of optional parameters. They all have default values and are of the form
-xx s, where xx is a two-letter abbreviation of the parameter’s name, and s determines its
value. Usually only a few need to be modified in practice.

http://math.nist.gov/MatrixMarket/

-sc sparsity control; default is 0

0 = adaptive {-ep, -mn, -ns, -bs }
1 = specified tau { -ta },
2 = fixed diagonals { -ud, -1d }

These options for sparsity control are mutually exclusive.
The main diagonal is always included.
-ep eps parameter for SPAI; default is 0.6
eps must be between 0 and 1. It controls the quality of the approximation of M to the

inverse of A. Higher values of eps lead to more work, more fill-in, and usually better
preconditioners.

-bs block size; default is 1

A block size of 1 treats A as a matrix of scalar elements. A block size of s > 1 treats both
A and M as s x s block matrices. A block size of 0 treats A as a matrix with variable
sized blocks, which are determined by searching for dense square diagonal blocks in A.
This can be very effective for finite-element matrices.

SPAI will convert A to block form, use a block version of the preconditioner algorithm,
and then convert the result back to scalar form.

In many cases a block-size parameter s # 1 can lead to significant improvements in
performance.
-ns maximum number of improvement steps per row in SPAT; default is 5

SPAI constructs an approximation to every column of A~! in a series of improvement

steps. The quality of the approximation is determined by eps. If a residual less than eps

is not achieved after ns steps, SPAI simply uses the best approximation obtained so far.
-mf message file for warning messages; default is 0 (/dev/null)

Suppose you are using the option "-mf foo". Whenever SPAI fails to achieve an ap-
proximation of epsilon for a column of M it writes a message to the file "fooi” where i is
the MPI rank of the processor generating the message (or i=0 in the serial case).

-mn maximum number of new nonzero candidates per step; default is 5

-sp symmetric pattern; default is 0

If A has a symmetric nonzero pattern use -sp 1 to improve performance by eliminating
some communication in the parallel version.

-mb size of various working buffers in SPAI; default is 100000

Increase this if you run into problems with crashes. 100000 is a very generous size for
most problems.

-cs cache size {0,1,2,3,4,5} in SPAI; default is 5 (the biggest cache size)

SPAT uses a hash table to cache messages and avoid redundant communication. We
recommend always using —cs 5. This parameter is irrelevant in the serial version.

-mi maximum number of iterations in BICGSTAB; default is 500

-to tolerance in BICGSTAB default; is 1.0e-8

-lp left preconditioning; default is 0 — right preconditioning
SPAT stores matrices in a compressed-column format and by default computes a right
preconditioner. If the -Ip 1 option is given SPAI will use a compressed-row format and
compute a left preconditioner.

-bi read matrix as a binary file; default is 0

There is a program called ” convert” in the driver directory that converts an ASCIT matrix
file (in Matrix Market format) to a binary file. This can greatly speed up the input of
large matrices.

Try:

convert ../data/ml.mm ml.binary
spai ml.binary -bi 1

-vb verbose; default is 1

Print parameters, timings and matrix statistics.
-db debugging level; default is 0

-Id # of lower (below main) diagonals; default is 0

The main diagonal is always included.
-ud # of upper (above main) diagonals; default is 0

-ta (tau) Threshold for non-zero entries in M; default is 0

Only those entries M;; are included for which
|Aij| > (1 — tau) * maz;|Az|, ie.

tau = 0: main diagonal only,
tau = 1: full pattern of A.

The main diagonal is always included.

3.4.2 Running make in general

Running checks You can run make check to perform some automatic checks to see if the
libraries and the optional MATLAB interface have been compiled correctly. Numerical codes
obviously usually do not execute identically on different machines. Therefore small changes
in the computations and consequently in the output do occur. If there really is a difference
between the expected output and the output produce by your compilation you will see the
difference produce by diff. You will most probably see something like this:

63c63
< 10 4.020936e-10

10

> 10 4.020935e-10

65c65

< 12 2.528134e-12

> 12 2.528133e-12

check difference in output!!!

Anything much worse than this points to an error. Note that the test may still be considered
as "passed” by make.
The same might apply for the MATLAB interface, even for differing versions of MATLAB:

3,5c3,5

< Copyright 1984-2000 The MathWorks, Inc.
< Version 6.0.0.88 Release 12

< Sep 21 2000

> Copyright 1984-2001 The MathWorks, Inc.
> Version 6.1.0.450 Release 12.1

> May 18 2001

check difference in output!!!

3.4.3 Remarks

The BICGSTAB routine is only intended for testing. It is not efficient in a parallel environment
because it uses a sparse matrix-vector multiply that does not scale well. There is a PETSc
interface to SPAI, please consult the PETSc documentation.

BICGSTAB may sometimes produces slightly different results when run on different numbers
of processors. This is not a bug. The arithmetic operations are done in different order,
and can therefore lead to different convergence histories. SPAI always produces the same
preconditioning matrix on any number of processors when the "-bs 1" option is used. This
is because the scalar-valued matrix is distributed before blocking is done and the distribution
might break up blocks.

To find good SPAI parameters for your application we suggest that you start with a fairly
large value for eps, like 0.7, and then decrease eps until you find the best setting. Start the -ns
parameter as something large, like 20, and use the -mf parameter to see how many columns
don’t achieve eps (if any). It may be most practical to use a value for -ns that results in some
columns not achieving eps. We also encourage you to try the different -bs options available.

You can write the matrices (either A or M) with a routine called "write mm matrix”. Look
for some commented-out code in test_spai.c (in driver) to see how this is done.

Finally, if you are modifying the code there is a debugging trick that is very helpful. If
you use an option ”-db 1”7 the program will create n files: dbg0, dbgl, ..., where n is the
number of processors. If you insert code like the following into your program you can print
out information from different processors in these files.

if (debug) {
fprintf (fptr_dbg,...);
fflush(fptr_dbg);

}

11

See the file spai.c in 1ib for an example.

4 FAQ

4.1 Why is SPAI taking forever to compute the preconditioner?

You are probably using too low a value for eps. You should start with a relatively large value,
say eps=0.7 or 0.8, and progressively reduce eps until the total execution time starts to increase
again. This is usually the value of eps for which the time spent to compute the preconditioner
is approximately equal to that spent in the iterative solver. Usually the optimal value for eps
lies between 0.5 and 0.7.

4.2 When | reduce eps the preconditioner does not really improve, why?

If you reduce eps and the preconditioner does not improve, rerun SPAI with the —-mf my _file
option and check whether any messages have been written to my_file. If any columns in the
preconditioner did not satisfy the eps criterion, my_file will say so, and you need to increase
the number of improvement steps with the -ns option (try 5, 10, 20), before decreasing eps any
further. However, if my_file is empty simply proceed in further reducing eps.

4.3 What does SPAI stand for?

SPAI stands for SParse Approximate Inverse. The name was invented some time in the Spring
of 1994 during a typical lunch outside on the beautiful lawn of the Main Quad at Stan-
ford University: an improvised ”déjeuner sur I’herbe” amongst Rodin sculptures below sunny
Californian skies. Present were M. Grote, T. Huckle (TU-Munich), and A.-J. van der Veen
(TU-Delft).

4.4 Why does the preconditioner tend to get worse as | increase the block size
while keeping eps fixed?

For the same value of eps an increase in the block size often results in a slight deterioration in
the quality of the preconditioner; this is usually compensated by a large reduction in computing
time. The reason is that the eps criterion is more stringent in the scalar (bs = 1) than in the
block case. Nevertheless, the overall reduction of ||AM — I|| is usually identical.

4.5 Does SPAI always work?

In principle, yes. Unlike many other preconditioners, SPAI cannot break down if the matrix A
is non-singular. Moreover, if one keeps reducing eps, SPAI will eventually compute the exact
inverse. Of course this may take a VERY long time...

4.6 Configure hangs at mexfileextension-check. Why?

You probably have the DISPLAY variable not set correctly. Configure then hangs trying to start
MATLAB. Try starting MATLAB manually. When successful, try configure again.

12

4.7 | still have questions, where do | get further information?

Please direct your questions to the SPAI mailing list under

https://www.maillist.unibas.ch/mailman/listinfo/spai.

5 Authors

The main authors of the SPAI code are Stephen Barnard and Marcus Grote. The configuration
system was programmed by Oliver Broker and Michael Hagemann.

We would also like to thank the following people for using SPAI and helping to improve
the package: Victor Eijkhout (PETSc interface), Oliver Ernst, Hans Grote, Jan Hesthaven,
Thomas Huckle, Olaf Schenk, Barry Smith, Bora Ucar.

References

1]

2]

A Block Version of the SPAI Preconditioner, S.T. Barnard and M. J. Grote, in Proc. 9th
SIAM Conf. on Parall. Process. for Sci. Comp., held March 1999.

A Portable MPI Implementation of the SPAI Preconditioner in ISIS++, S.T. Barnard and
R.L. Clay, in Proc. Eighth SIAM Conf. on Parallel Process. for Sci. Comp., held March
1997.

An MPI Implementation of the SPAI Preconditioner on the T3E, S. Barnard, L.M.
Bernardo and H.D. Simon, technical report LBNL-40794, 1997.

Parallel Preconditioning with Sparse Approximate Inverses, M.J. Grote and T. Huckle,
SIAM J. of Scient. Comput. 18(3), 1997.

Effective Parallel Preconditioning with Sparse Approximate Inverses, M. Grote and T.
Huckle, in Proc. Seventh SIAM Conf. on Parallel Process. for Sci. Comp., held February
1995.

Parallel Preconditioning and Approximate Inverses on the Connection Machine, M. Grote
and H.D. Simon, in Proc. Sixth SIAM Conf. on Parallel Process. for Sci. Comp., held
March 1993.

Sparse approximate inverse smoothers for geometric and algebraic multigrid, O. Broker
and M.J. Grote, Applied Numerical Mathematics 41(1), 2002.

Parallel Multigrid Methods using Sparse Approximate Inverses, O. Broker, PhD Thesis,
Dept. of Computer Science, ETH Zurich, 2003.

Robust Parallel Smoothing for Multigrid Via Sparse Approximate Inverses, O. Broker,
M. Grote, C. Mayer, and A. Reusken, STAM J. of Scient. Comput. 23(4), 2001.

O. Broker and M.J. Grote, Parallel Algebraic Multigrid via Sparse Approximate Inverses,
in Proc. of 16th IMACS World Congress 2000, held August 2000.

13

https://www.maillist.unibas.ch/mailman/listinfo/spai

	Introduction
	News
	Installation
	For the impatient
	Detailed installation instructions
	Using configure
	Optional Features
	Compilers and Options

	Installation
	Matlab interface
	Installed files

	Usage
	Test program "spai"
	Running make in general
	Remarks

	FAQ
	Why is SPAI taking forever to compute the preconditioner?
	When I reduce eps the preconditioner does not really improve, why?
	What does SPAI stand for?
	Why does the preconditioner tend to get worse as I increase the block size while keeping eps fixed?
	Does SPAI always work?
	Configure hangs at mexfileextension-check. Why?
	I still have questions, where do I get further information?

	Authors
	References

