Ipopt
trunk
|
Class implementating Example 5. More...
#include <MittelmannDistCntrlNeumB.hpp>
Public Member Functions | |
MittelmannDistCntrlNeumB2 () | |
virtual | ~MittelmannDistCntrlNeumB2 () |
virtual bool | InitializeProblem (Index N) |
Initialize internal parameters, where N is a parameter determining the problme size. | |
Protected Member Functions | |
virtual Number | y_d_cont (Number x1, Number x2) const |
Target profile function for y. | |
virtual Number | fint_cont (Number x1, Number x2, Number y, Number u) const |
Integrant in objective function. | |
virtual Number | fint_cont_dy (Number x1, Number x2, Number y, Number u) const |
First partial derivative of fint_cont w.r.t. | |
virtual Number | fint_cont_du (Number x1, Number x2, Number y, Number u) const |
First partial derivative of fint_cont w.r.t. | |
virtual Number | fint_cont_dydy (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of fint_cont w.r.t. | |
virtual bool | fint_cont_dydy_alwayszero () const |
returns true if second partial derivative of fint_cont w.r.t. | |
virtual Number | fint_cont_dudu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of fint_cont w.r.t. | |
virtual bool | fint_cont_dudu_alwayszero () const |
returns true if second partial derivative of fint_cont w.r.t. | |
virtual Number | fint_cont_dydu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of fint_cont w.r.t. | |
virtual bool | fint_cont_dydu_alwayszero () const |
returns true if second partial derivative of fint_cont w.r.t. | |
virtual Number | d_cont (Number x1, Number x2, Number y, Number u) const |
Forcing function for the elliptic equation. | |
virtual Number | d_cont_dy (Number x1, Number x2, Number y, Number u) const |
First partial derivative of forcing function w.r.t. | |
virtual Number | d_cont_du (Number x1, Number x2, Number y, Number u) const |
First partial derivative of forcing function w.r.t. | |
virtual Number | d_cont_dydy (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of forcing function w.r.t y,y. | |
virtual bool | d_cont_dydy_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. | |
virtual Number | d_cont_dudu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of forcing function w.r.t. | |
virtual bool | d_cont_dudu_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. | |
virtual Number | d_cont_dydu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of forcing function w.r.t. | |
virtual bool | d_cont_dydu_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. | |
Private Member Functions | |
hide implicitly defined contructors copy operators | |
MittelmannDistCntrlNeumB2 (const MittelmannDistCntrlNeumB2 &) | |
MittelmannDistCntrlNeumB2 & | operator= (const MittelmannDistCntrlNeumB2 &) |
Private Attributes | |
const Number | pi_ |
Value of pi (made available for convenience) |
Class implementating Example 5.
Definition at line 412 of file MittelmannDistCntrlNeumB.hpp.
MittelmannDistCntrlNeumB2::MittelmannDistCntrlNeumB2 | ( | ) | [inline] |
Definition at line 415 of file MittelmannDistCntrlNeumB.hpp.
virtual MittelmannDistCntrlNeumB2::~MittelmannDistCntrlNeumB2 | ( | ) | [inline, virtual] |
Definition at line 420 of file MittelmannDistCntrlNeumB.hpp.
MittelmannDistCntrlNeumB2::MittelmannDistCntrlNeumB2 | ( | const MittelmannDistCntrlNeumB2 & | ) | [private] |
virtual bool MittelmannDistCntrlNeumB2::InitializeProblem | ( | Index | N | ) | [inline, virtual] |
Initialize internal parameters, where N is a parameter determining the problme size.
This returns false, if N has an invalid value.
Implements RegisteredTNLP.
Definition at line 423 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::y_d_cont | ( | Number | x1, |
Number | x2 | ||
) | const [inline, protected, virtual] |
Target profile function for y.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 444 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::fint_cont | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Integrant in objective function.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 449 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::fint_cont_dy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of fint_cont w.r.t.
y
Implements MittelmannDistCntrlNeumBBase.
Definition at line 455 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::fint_cont_du | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of fint_cont w.r.t.
u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 461 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::fint_cont_dydy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of fint_cont w.r.t.
y,y
Implements MittelmannDistCntrlNeumBBase.
Definition at line 466 of file MittelmannDistCntrlNeumB.hpp.
virtual bool MittelmannDistCntrlNeumB2::fint_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of fint_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 472 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::fint_cont_dudu | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of fint_cont w.r.t.
u,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 477 of file MittelmannDistCntrlNeumB.hpp.
virtual bool MittelmannDistCntrlNeumB2::fint_cont_dudu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of fint_cont w.r.t.
u,u is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 483 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::fint_cont_dydu | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of fint_cont w.r.t.
y,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 488 of file MittelmannDistCntrlNeumB.hpp.
virtual bool MittelmannDistCntrlNeumB2::fint_cont_dydu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of fint_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 494 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::d_cont | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Forcing function for the elliptic equation.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 499 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::d_cont_dy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of forcing function w.r.t.
y
Implements MittelmannDistCntrlNeumBBase.
Definition at line 504 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::d_cont_du | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of forcing function w.r.t.
u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 509 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::d_cont_dydy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t y,y.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 514 of file MittelmannDistCntrlNeumB.hpp.
virtual bool MittelmannDistCntrlNeumB2::d_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 520 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::d_cont_dudu | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t.
u,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 525 of file MittelmannDistCntrlNeumB.hpp.
virtual bool MittelmannDistCntrlNeumB2::d_cont_dudu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 531 of file MittelmannDistCntrlNeumB.hpp.
virtual Number MittelmannDistCntrlNeumB2::d_cont_dydu | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t.
y,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 536 of file MittelmannDistCntrlNeumB.hpp.
virtual bool MittelmannDistCntrlNeumB2::d_cont_dydu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 542 of file MittelmannDistCntrlNeumB.hpp.
MittelmannDistCntrlNeumB2& MittelmannDistCntrlNeumB2::operator= | ( | const MittelmannDistCntrlNeumB2 & | ) | [private] |
const Number MittelmannDistCntrlNeumB2::pi_ [private] |
Value of pi (made available for convenience)
Definition at line 553 of file MittelmannDistCntrlNeumB.hpp.