Ipopt  trunk
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes
MittelmannDistCntrlNeumB3 Class Reference

Class implementating Example 6. More...

#include <MittelmannDistCntrlNeumB.hpp>

+ Inheritance diagram for MittelmannDistCntrlNeumB3:

List of all members.

Public Member Functions

 MittelmannDistCntrlNeumB3 ()
virtual ~MittelmannDistCntrlNeumB3 ()
virtual bool InitializeProblem (Index N)
 Initialize internal parameters, where N is a parameter determining the problme size.

Protected Member Functions

virtual Number y_d_cont (Number x1, Number x2) const
 Profile function for initial y.
virtual Number fint_cont (Number x1, Number x2, Number y, Number u) const
 Integrant in objective function.
virtual Number fint_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of fint_cont w.r.t.
virtual Number fint_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dydy_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dudu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dudu_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dydu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dydu_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number d_cont (Number x1, Number x2, Number y, Number u) const
 Forcing function for the elliptic equation.
virtual Number d_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t y,y.
virtual bool d_cont_dydy_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number d_cont_dudu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t.
virtual bool d_cont_dudu_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number d_cont_dydu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t.
virtual bool d_cont_dydu_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.

Private Member Functions

Number a (Number x1, Number x2) const
hide implicitly defined contructors copy operators
 MittelmannDistCntrlNeumB3 (const MittelmannDistCntrlNeumB3 &)
MittelmannDistCntrlNeumB3operator= (const MittelmannDistCntrlNeumB3 &)

Private Attributes

const Number pi_
 Value of pi (made available for convenience)
const Number M_
const Number K_
const Number b_

Detailed Description

Class implementating Example 6.

Definition at line 557 of file MittelmannDistCntrlNeumB.hpp.


Constructor & Destructor Documentation

Definition at line 560 of file MittelmannDistCntrlNeumB.hpp.

Definition at line 568 of file MittelmannDistCntrlNeumB.hpp.


Member Function Documentation

virtual bool MittelmannDistCntrlNeumB3::InitializeProblem ( Index  N) [inline, virtual]

Initialize internal parameters, where N is a parameter determining the problme size.

This returns false, if N has an invalid value.

Implements RegisteredTNLP.

Definition at line 571 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::y_d_cont ( Number  x1,
Number  x2 
) const [inline, protected, virtual]

Profile function for initial y.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 592 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::fint_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Integrant in objective function.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 597 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::fint_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of fint_cont w.r.t.

y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 602 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::fint_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of fint_cont w.r.t.

u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 608 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::fint_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

y,y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 613 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB3::fint_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 619 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::fint_cont_dudu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

u,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 624 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB3::fint_cont_dudu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

u,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 630 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::fint_cont_dydu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

y,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 635 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB3::fint_cont_dydu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

y,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 641 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::d_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Forcing function for the elliptic equation.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 646 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::d_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 651 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::d_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 656 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::d_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t y,y.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 661 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB3::d_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 667 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::d_cont_dudu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t.

u,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 672 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB3::d_cont_dudu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 678 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB3::d_cont_dydu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t.

y,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 683 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB3::d_cont_dydu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 689 of file MittelmannDistCntrlNeumB.hpp.

MittelmannDistCntrlNeumB3& MittelmannDistCntrlNeumB3::operator= ( const MittelmannDistCntrlNeumB3 ) [private]
Number MittelmannDistCntrlNeumB3::a ( Number  x1,
Number  x2 
) const [inline, private]

Definition at line 708 of file MittelmannDistCntrlNeumB.hpp.


Member Data Documentation

Value of pi (made available for convenience)

Definition at line 700 of file MittelmannDistCntrlNeumB.hpp.

Definition at line 703 of file MittelmannDistCntrlNeumB.hpp.

Definition at line 704 of file MittelmannDistCntrlNeumB.hpp.

Definition at line 705 of file MittelmannDistCntrlNeumB.hpp.


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines