Ipopt  trunk
Public Member Functions | Protected Member Functions | Private Attributes
MittelmannDistCntrlNeumB1 Class Reference

Class implementating Example 4. More...

#include <MittelmannDistCntrlNeumB.hpp>

+ Inheritance diagram for MittelmannDistCntrlNeumB1:

List of all members.

Public Member Functions

 MittelmannDistCntrlNeumB1 ()
virtual ~MittelmannDistCntrlNeumB1 ()
virtual bool InitializeProblem (Index N)
 Initialize internal parameters, where N is a parameter determining the problme size.

Protected Member Functions

virtual Number y_d_cont (Number x1, Number x2) const
 Target profile function for y.
virtual Number fint_cont (Number x1, Number x2, Number y, Number u) const
 Integrant in objective function.
virtual Number fint_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of fint_cont w.r.t.
virtual Number fint_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dydy_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dudu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dudu_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dydu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dydu_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number d_cont (Number x1, Number x2, Number y, Number u) const
 Forcing function for the elliptic equation.
virtual Number d_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t y,y.
virtual bool d_cont_dydy_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number d_cont_dudu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t.
virtual bool d_cont_dudu_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number d_cont_dydu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t.
virtual bool d_cont_dydu_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.

Private Member Functions

hide implicitly defined contructors copy operators
 MittelmannDistCntrlNeumB1 (const MittelmannDistCntrlNeumB1 &)
MittelmannDistCntrlNeumB1operator= (const MittelmannDistCntrlNeumB1 &)

Private Attributes

const Number pi_
 Value of pi (made available for convenience)
const Number alpha_
 Value for parameter alpha in objective functin.

Detailed Description

Class implementating Example 4.

Definition at line 264 of file MittelmannDistCntrlNeumB.hpp.


Constructor & Destructor Documentation

Definition at line 267 of file MittelmannDistCntrlNeumB.hpp.

Definition at line 273 of file MittelmannDistCntrlNeumB.hpp.


Member Function Documentation

virtual bool MittelmannDistCntrlNeumB1::InitializeProblem ( Index  N) [inline, virtual]

Initialize internal parameters, where N is a parameter determining the problme size.

This returns false, if N has an invalid value.

Implements RegisteredTNLP.

Definition at line 276 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::y_d_cont ( Number  x1,
Number  x2 
) const [inline, protected, virtual]

Target profile function for y.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 297 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::fint_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Integrant in objective function.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 302 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::fint_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of fint_cont w.r.t.

y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 308 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::fint_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of fint_cont w.r.t.

u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 314 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::fint_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

y,y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 319 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB1::fint_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 325 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::fint_cont_dudu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

u,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 330 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB1::fint_cont_dudu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

u,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 336 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::fint_cont_dydu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

y,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 341 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB1::fint_cont_dydu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

y,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 347 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::d_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Forcing function for the elliptic equation.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 352 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::d_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 357 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::d_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 362 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::d_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t y,y.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 367 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB1::d_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 373 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::d_cont_dudu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t.

u,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 378 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB1::d_cont_dudu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 384 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB1::d_cont_dydu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t.

y,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 389 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB1::d_cont_dydu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 395 of file MittelmannDistCntrlNeumB.hpp.

MittelmannDistCntrlNeumB1& MittelmannDistCntrlNeumB1::operator= ( const MittelmannDistCntrlNeumB1 ) [private]

Member Data Documentation

Value of pi (made available for convenience)

Definition at line 406 of file MittelmannDistCntrlNeumB.hpp.

Value for parameter alpha in objective functin.

Definition at line 408 of file MittelmannDistCntrlNeumB.hpp.


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines