Ipopt
trunk
|
Class implementating Example 8. More...
#include <MittelmannBndryCntrlNeum.hpp>
Public Member Functions | |
MittelmannBndryCntrlNeum4 () | |
virtual | ~MittelmannBndryCntrlNeum4 () |
virtual bool | InitializeProblem (Index N) |
Initialize internal parameters, where N is a parameter determining the problme size. | |
Protected Member Functions | |
virtual Number | y_d_cont (Number x1, Number x2) const |
Target profile function for y. | |
virtual Number | d_cont (Number x1, Number x2, Number y) const |
Forcing function for the elliptic equation. | |
virtual Number | d_cont_dy (Number x1, Number x2, Number y) const |
First partial derivative of forcing function w.r.t. | |
virtual Number | d_cont_dydy (Number x1, Number x2, Number y) const |
Second partial derivative of forcing function w.r.t y,y. | |
virtual bool | d_cont_dydy_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. | |
virtual Number | b_cont (Number x1, Number x2, Number y, Number u) const |
Function in Neuman boundary condition. | |
virtual Number | b_cont_dy (Number x1, Number x2, Number y, Number u) const |
First partial derivative of b_cont w.r.t. | |
virtual Number | b_cont_du (Number x1, Number x2, Number y, Number u) const |
First partial derivative of b_cont w.r.t. | |
virtual Number | b_cont_dydy (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of b_cont w.r.t. | |
virtual bool | b_cont_dydy_alwayszero () const |
returns true if second partial derivative of b_cont w.r.t. | |
Private Member Functions | |
hide implicitly defined contructors copy operators | |
MittelmannBndryCntrlNeum4 (const MittelmannBndryCntrlNeum4 &) | |
MittelmannBndryCntrlNeum4 & | operator= (const MittelmannBndryCntrlNeum4 &) |
Class implementating Example 8.
Definition at line 504 of file MittelmannBndryCntrlNeum.hpp.
MittelmannBndryCntrlNeum4::MittelmannBndryCntrlNeum4 | ( | ) | [inline] |
Definition at line 507 of file MittelmannBndryCntrlNeum.hpp.
virtual MittelmannBndryCntrlNeum4::~MittelmannBndryCntrlNeum4 | ( | ) | [inline, virtual] |
Definition at line 510 of file MittelmannBndryCntrlNeum.hpp.
MittelmannBndryCntrlNeum4::MittelmannBndryCntrlNeum4 | ( | const MittelmannBndryCntrlNeum4 & | ) | [private] |
virtual bool MittelmannBndryCntrlNeum4::InitializeProblem | ( | Index | N | ) | [inline, virtual] |
Initialize internal parameters, where N is a parameter determining the problme size.
This returns false, if N has an invalid value.
Implements RegisteredTNLP.
Definition at line 513 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::y_d_cont | ( | Number | x1, |
Number | x2 | ||
) | const [inline, protected, virtual] |
Target profile function for y.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 531 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::d_cont | ( | Number | x1, |
Number | x2, | ||
Number | y | ||
) | const [inline, protected, virtual] |
Forcing function for the elliptic equation.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 536 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::d_cont_dy | ( | Number | x1, |
Number | x2, | ||
Number | y | ||
) | const [inline, protected, virtual] |
First partial derivative of forcing function w.r.t.
y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 541 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::d_cont_dydy | ( | Number | x1, |
Number | x2, | ||
Number | y | ||
) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t y,y.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 546 of file MittelmannBndryCntrlNeum.hpp.
virtual bool MittelmannBndryCntrlNeum4::d_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 552 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::b_cont | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Function in Neuman boundary condition.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 557 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::b_cont_dy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of b_cont w.r.t.
y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 562 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::b_cont_du | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of b_cont w.r.t.
u
Implements MittelmannBndryCntrlNeumBase.
Definition at line 567 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum4::b_cont_dydy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of b_cont w.r.t.
y,y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 572 of file MittelmannBndryCntrlNeum.hpp.
virtual bool MittelmannBndryCntrlNeum4::b_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of b_cont w.r.t.
y,y is always zero.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 578 of file MittelmannBndryCntrlNeum.hpp.
MittelmannBndryCntrlNeum4& MittelmannBndryCntrlNeum4::operator= | ( | const MittelmannBndryCntrlNeum4 & | ) | [private] |