libflame  revision_anchor
Functions
zhetd2.c File Reference

(r)

Functions

int zhetd2_fla (char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *d__, doublereal *e, doublecomplex *tau, integer *info)

Function Documentation

int zhetd2_fla ( char *  uplo,
integer n,
doublecomplex a,
integer lda,
doublereal d__,
doublereal e,
doublecomplex tau,
integer info 
)

References doublecomplex::i, and doublecomplex::r.

Referenced by zhetrd_fla().

{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;
    doublecomplex z__1, z__2, z__3, z__4;
    /* Local variables */
    integer i__;
    doublecomplex taui;
    extern /* Subroutine */
    int zher2_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    doublecomplex alpha;
    extern logical lsame_(char *, char *);
    extern /* Double Complex */
    VOID zdotc_f2c_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    extern /* Subroutine */
    int zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *);
    logical upper;
    extern /* Subroutine */
    int zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), xerbla_( char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *);
    /* -- LAPACK computational routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --d__;
    --e;
    --tau;
    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L"))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*lda < max(1,*n))
    {
        *info = -4;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZHETD2", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n <= 0)
    {
        return 0;
    }
    if (upper)
    {
        /* Reduce the upper triangle of A */
        i__1 = *n + *n * a_dim1;
        i__2 = *n + *n * a_dim1;
        d__1 = a[i__2].r;
        a[i__1].r = d__1;
        a[i__1].i = 0.; // , expr subst
        for (i__ = *n - 1;
                i__ >= 1;
                --i__)
        {
            /* Generate elementary reflector H(i) = I - tau * v * v**H */
            /* to annihilate A(1:i-1,i+1) */
            i__1 = i__ + (i__ + 1) * a_dim1;
            alpha.r = a[i__1].r;
            alpha.i = a[i__1].i; // , expr subst
            zlarfg_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &taui);
            i__1 = i__;
            e[i__1] = alpha.r;
            if (taui.r != 0. || taui.i != 0.)
            {
                /* Apply H(i) from both sides to A(1:i,1:i) */
                i__1 = i__ + (i__ + 1) * a_dim1;
                a[i__1].r = 1.;
                a[i__1].i = 0.; // , expr subst
                /* Compute x := tau * A * v storing x in TAU(1:i) */
                zhemv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * a_dim1 + 1], &c__1, &c_b2, &tau[1], &c__1);
                /* Compute w := x - 1/2 * tau * (x**H * v) * v */
                z__3.r = -.5;
                z__3.i = -0.; // , expr subst
                z__2.r = z__3.r * taui.r - z__3.i * taui.i;
                z__2.i = z__3.r * taui.i + z__3.i * taui.r; // , expr subst
                zdotc_f2c_(&z__4, &i__, &tau[1], &c__1, &a[(i__ + 1) * a_dim1 + 1] , &c__1);
                z__1.r = z__2.r * z__4.r - z__2.i * z__4.i;
                z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; // , expr subst
                alpha.r = z__1.r;
                alpha.i = z__1.i; // , expr subst
                zaxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[ 1], &c__1);
                /* Apply the transformation as a rank-2 update: */
                /* A := A - v * w**H - w * v**H */
                z__1.r = -1.;
                z__1.i = -0.; // , expr subst
                zher2_(uplo, &i__, &z__1, &a[(i__ + 1) * a_dim1 + 1], &c__1, & tau[1], &c__1, &a[a_offset], lda);
            }
            else
            {
                i__1 = i__ + i__ * a_dim1;
                i__2 = i__ + i__ * a_dim1;
                d__1 = a[i__2].r;
                a[i__1].r = d__1;
                a[i__1].i = 0.; // , expr subst
            }
            i__1 = i__ + (i__ + 1) * a_dim1;
            i__2 = i__;
            a[i__1].r = e[i__2];
            a[i__1].i = 0.; // , expr subst
            i__1 = i__ + 1;
            i__2 = i__ + 1 + (i__ + 1) * a_dim1;
            d__[i__1] = a[i__2].r;
            i__1 = i__;
            tau[i__1].r = taui.r;
            tau[i__1].i = taui.i; // , expr subst
            /* L10: */
        }
        i__1 = a_dim1 + 1;
        d__[1] = a[i__1].r;
    }
    else
    {
        /* Reduce the lower triangle of A */
        i__1 = a_dim1 + 1;
        i__2 = a_dim1 + 1;
        d__1 = a[i__2].r;
        a[i__1].r = d__1;
        a[i__1].i = 0.; // , expr subst
        i__1 = *n - 1;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            /* Generate elementary reflector H(i) = I - tau * v * v**H */
            /* to annihilate A(i+2:n,i) */
            i__2 = i__ + 1 + i__ * a_dim1;
            alpha.r = a[i__2].r;
            alpha.i = a[i__2].i; // , expr subst
            i__2 = *n - i__;
            /* Computing MIN */
            i__3 = i__ + 2;
            zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, & taui);
            i__2 = i__;
            e[i__2] = alpha.r;
            if (taui.r != 0. || taui.i != 0.)
            {
                /* Apply H(i) from both sides to A(i+1:n,i+1:n) */
                i__2 = i__ + 1 + i__ * a_dim1;
                a[i__2].r = 1.;
                a[i__2].i = 0.; // , expr subst
                /* Compute x := tau * A * v storing y in TAU(i:n-1) */
                i__2 = *n - i__;
                zhemv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b2, &tau[ i__], &c__1);
                /* Compute w := x - 1/2 * tau * (x**H * v) * v */
                z__3.r = -.5;
                z__3.i = -0.; // , expr subst
                z__2.r = z__3.r * taui.r - z__3.i * taui.i;
                z__2.i = z__3.r * taui.i + z__3.i * taui.r; // , expr subst
                i__2 = *n - i__;
                zdotc_f2c_(&z__4, &i__2, &tau[i__], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
                z__1.r = z__2.r * z__4.r - z__2.i * z__4.i;
                z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; // , expr subst
                alpha.r = z__1.r;
                alpha.i = z__1.i; // , expr subst
                i__2 = *n - i__;
                zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ i__], &c__1);
                /* Apply the transformation as a rank-2 update: */
                /* A := A - v * w**H - w * v**H */
                i__2 = *n - i__;
                z__1.r = -1.;
                z__1.i = -0.; // , expr subst
                zher2_(uplo, &i__2, &z__1, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda);
            }
            else
            {
                i__2 = i__ + 1 + (i__ + 1) * a_dim1;
                i__3 = i__ + 1 + (i__ + 1) * a_dim1;
                d__1 = a[i__3].r;
                a[i__2].r = d__1;
                a[i__2].i = 0.; // , expr subst
            }
            i__2 = i__ + 1 + i__ * a_dim1;
            i__3 = i__;
            a[i__2].r = e[i__3];
            a[i__2].i = 0.; // , expr subst
            i__2 = i__;
            i__3 = i__ + i__ * a_dim1;
            d__[i__2] = a[i__3].r;
            i__2 = i__;
            tau[i__2].r = taui.r;
            tau[i__2].i = taui.i; // , expr subst
            /* L20: */
        }
        i__1 = *n;
        i__2 = *n + *n * a_dim1;
        d__[i__1] = a[i__2].r;
    }
    return 0;
    /* End of ZHETD2 */
}