libflame
revision_anchor
|
Functions | |
FLA_Error | FLA_Tevd_v_opt_var1 (dim_t n_iter_max, FLA_Obj d, FLA_Obj e, FLA_Obj G, FLA_Obj U, dim_t b_alg) |
FLA_Error | FLA_Tevd_v_ops_var1 (int m_A, int m_U, int n_G, int n_iter_max, float *buff_d, int inc_d, float *buff_e, int inc_e, scomplex *buff_G, int rs_G, int cs_G, float *buff_U, int rs_U, int cs_U, int b_alg) |
FLA_Error | FLA_Tevd_v_opd_var1 (int m_A, int m_U, int n_G, int n_iter_max, double *buff_d, int inc_d, double *buff_e, int inc_e, dcomplex *buff_G, int rs_G, int cs_G, double *buff_U, int rs_U, int cs_U, int b_alg) |
FLA_Error | FLA_Tevd_v_opc_var1 (int m_A, int m_U, int n_G, int n_iter_max, float *buff_d, int inc_d, float *buff_e, int inc_e, scomplex *buff_G, int rs_G, int cs_G, scomplex *buff_U, int rs_U, int cs_U, int b_alg) |
FLA_Error | FLA_Tevd_v_opz_var1 (int m_A, int m_U, int n_G, int n_iter_max, double *buff_d, int inc_d, double *buff_e, int inc_e, dcomplex *buff_G, int rs_G, int cs_G, dcomplex *buff_U, int rs_U, int cs_U, int b_alg) |
FLA_Error FLA_Tevd_v_opc_var1 | ( | int | m_A, |
int | m_U, | ||
int | n_G, | ||
int | n_iter_max, | ||
float * | buff_d, | ||
int | inc_d, | ||
float * | buff_e, | ||
int | inc_e, | ||
scomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
scomplex * | buff_U, | ||
int | rs_U, | ||
int | cs_U, | ||
int | b_alg | ||
) |
Referenced by FLA_Tevd_v_opt_var1().
{
FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED );
return FLA_SUCCESS;
}
FLA_Error FLA_Tevd_v_opd_var1 | ( | int | m_A, |
int | m_U, | ||
int | n_G, | ||
int | n_iter_max, | ||
double * | buff_d, | ||
int | inc_d, | ||
double * | buff_e, | ||
int | inc_e, | ||
dcomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
double * | buff_U, | ||
int | rs_U, | ||
int | cs_U, | ||
int | b_alg | ||
) |
References bl1_z1(), bl1_zsetm(), FLA_Abort(), FLA_Apply_G_rf_bld_var3(), FLA_Tevd_find_submatrix_opd(), and FLA_Tevd_iteracc_v_opd_var1().
Referenced by FLA_Tevd_v_opt_var1().
{ dcomplex one = bl1_z1(); dcomplex* G; double* d1; double* e1; int r_val; int done; int m_G_sweep_max; int ij_begin; int ijTL, ijBR; int m_A11; int n_iter_perf; int n_U_apply; int total_deflations; int n_deflations; int n_iter_prev; int n_iter_perf_sweep_max; // Initialize our completion flag. done = FALSE; // Initialize a counter that holds the maximum number of rows of G // that we would need to initialize for the next sweep. m_G_sweep_max = m_A - 1; // Initialize a counter for the total number of iterations performed. n_iter_prev = 0; // Iterate until the matrix has completely deflated. for ( total_deflations = 0; done != TRUE; ) { // Initialize G to contain only identity rotations. bl1_zsetm( m_G_sweep_max, n_G, &one, buff_G, rs_G, cs_G ); // Keep track of the maximum number of iterations performed in the // current sweep. This is used when applying the sweep's Givens // rotations. n_iter_perf_sweep_max = 0; // Perform a sweep: Move through the matrix and perform a tridiagonal // EVD on each non-zero submatrix that is encountered. During the // first time through, ijTL will be 0 and ijBR will be m_A - 1. for ( ij_begin = 0; ij_begin < m_A; ) { #ifdef PRINTF if ( ij_begin == 0 ) printf( "FLA_Tevd_v_opd_var1: beginning new sweep (ij_begin = %d)\n", ij_begin ); #endif // Search for the first submatrix along the diagonal that is // bounded by zeroes (or endpoints of the matrix). If no // submatrix is found (ie: if the entire subdiagonal is zero // then FLA_FAILURE is returned. This function also inspects // subdiagonal elements for proximity to zero. If a given // element is close enough to zero, then it is deemed // converged and manually set to zero. r_val = FLA_Tevd_find_submatrix_opd( m_A, ij_begin, buff_d, inc_d, buff_e, inc_e, &ijTL, &ijBR ); // Verify that a submatrix was found. If one was not found, // then we are done with the current sweep. Furthermore, if // a submatrix was not found AND we began our search at the // beginning of the matrix (ie: ij_begin == 0), then the // matrix has completely deflated and so we are done with // Francis step iteration. if ( r_val == FLA_FAILURE ) { if ( ij_begin == 0 ) { #ifdef PRINTF printf( "FLA_Tevd_v_opd_var1: subdiagonal is completely zero.\n" ); printf( "FLA_Tevd_v_opd_var1: Francis iteration is done!\n" ); #endif done = TRUE; } // Break out of the current sweep so we can apply the last // remaining Givens rotations. break; } // If we got this far, then: // (a) ijTL refers to the index of the first non-zero // subdiagonal along the diagonal, and // (b) ijBR refers to either: // - the first zero element that occurs after ijTL, or // - the the last diagonal element. // Note that ijTL and ijBR also correspond to the first and // last diagonal elements of the submatrix of interest. Thus, // we may compute the dimension of this submatrix as: m_A11 = ijBR - ijTL + 1; #ifdef PRINTF printf( "FLA_Tevd_v_opd_var1: ij_begin = %d\n", ij_begin ); printf( "FLA_Tevd_v_opd_var1: ijTL = %d\n", ijTL ); printf( "FLA_Tevd_v_opd_var1: ijBR = %d\n", ijBR ); printf( "FLA_Tevd_v_opd_var1: m_A11 = %d\n", m_A11 ); #endif // Adjust ij_begin, which gets us ready for the next submatrix // search in the current sweep. ij_begin = ijBR + 1; // Index to the submatrices upon which we will operate. d1 = buff_d + ijTL * inc_d; e1 = buff_e + ijTL * inc_e; G = buff_G + ijTL * rs_G; // Search for a batch of eigenvalues, recursing on deflated // subproblems whenever a split occurs. Iteration continues // as long as: // (a) there is still matrix left to operate on, and // (b) the number of iterations performed in this batch is // less than n_G. // If/when either of the two above conditions fails to hold, // the function returns. n_deflations = FLA_Tevd_iteracc_v_opd_var1( m_A11, n_G, ijTL, d1, inc_d, e1, inc_e, G, rs_G, cs_G, &n_iter_perf ); // Record the number of deflations that were observed. total_deflations += n_deflations; // Update the maximum number of iterations performed in the // current sweep. n_iter_perf_sweep_max = max( n_iter_perf_sweep_max, n_iter_perf ); #ifdef PRINTF printf( "FLA_Tevd_v_opd_var1: deflations observed = %d\n", n_deflations ); printf( "FLA_Tevd_v_opd_var1: total deflations observed = %d\n", total_deflations ); printf( "FLA_Tevd_v_opd_var1: num iterations performed = %d\n", n_iter_perf ); #endif // Store the most recent value of ijBR in m_G_sweep_max. // When the sweep is done, this value will contain the minimum // number of rows of G we can apply and safely include all // non-identity rotations that were computed during the // eigenvalue searches. m_G_sweep_max = ijBR; // Make sure we haven't exceeded our maximum iteration count. if ( n_iter_prev >= m_A * n_iter_max ) { #ifdef PRINTF printf( "FLA_Tevd_v_opd_var1: reached maximum total number of iterations: %d\n", n_iter_prev ); #endif FLA_Abort(); //return FLA_FAILURE; } } // The sweep is complete. Now we must apply the Givens rotations // that were accumulated during the sweep. // Recall that the number of columns of U to which we apply // rotations is one more than the number of rotations. n_U_apply = m_G_sweep_max + 1; #ifdef PRINTF printf( "FLA_Tevd_v_opd_var1: applying %d sets of Givens rotations\n", n_iter_perf_sweep_max ); #endif // Apply the Givens rotations. Note that we optimize the scope // of the operation in two ways: // 1. We only apply k sets of Givens rotations, where // k = n_iter_perf_sweep_max. We could simply always apply // n_G sets of rotations since G is initialized to contain // identity rotations in every element, but we do this to // save a little bit of time. // 2. We only apply to the first n_U_apply columns of A since // this is the most we need to touch given the ijBR index // bound of the last submatrix found in the previous sweep. // Similar to above, we could simply always perform the // application on all m_A columns of A, but instead we apply // only to the first n_U_apply columns to save time. //FLA_Apply_G_rf_bld_var1( n_iter_perf_sweep_max, //FLA_Apply_G_rf_bld_var2( n_iter_perf_sweep_max, FLA_Apply_G_rf_bld_var3( n_iter_perf_sweep_max, //FLA_Apply_G_rf_bld_var9( n_iter_perf_sweep_max, //FLA_Apply_G_rf_bld_var6( n_iter_perf_sweep_max, m_U, n_U_apply, buff_G, rs_G, cs_G, buff_U, rs_U, cs_U, b_alg ); // Increment the total number of iterations previously performed. n_iter_prev += n_iter_perf_sweep_max; #ifdef PRINTF printf( "FLA_Tevd_v_opd_var1: total number of iterations performed: %d\n", n_iter_prev ); #endif } return n_iter_prev; }
FLA_Error FLA_Tevd_v_ops_var1 | ( | int | m_A, |
int | m_U, | ||
int | n_G, | ||
int | n_iter_max, | ||
float * | buff_d, | ||
int | inc_d, | ||
float * | buff_e, | ||
int | inc_e, | ||
scomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
float * | buff_U, | ||
int | rs_U, | ||
int | cs_U, | ||
int | b_alg | ||
) |
Referenced by FLA_Tevd_v_opt_var1().
{
FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED );
return FLA_SUCCESS;
}
FLA_Error FLA_Tevd_v_opt_var1 | ( | dim_t | n_iter_max, |
FLA_Obj | d, | ||
FLA_Obj | e, | ||
FLA_Obj | G, | ||
FLA_Obj | U, | ||
dim_t | b_alg | ||
) |
References FLA_Obj_col_stride(), FLA_Obj_datatype(), FLA_Obj_length(), FLA_Obj_row_stride(), FLA_Obj_vector_dim(), FLA_Obj_vector_inc(), FLA_Obj_width(), FLA_Tevd_v_opc_var1(), FLA_Tevd_v_opd_var1(), FLA_Tevd_v_ops_var1(), and FLA_Tevd_v_opz_var1().
Referenced by FLA_Hevd_lv_unb_var1().
{ FLA_Error r_val = FLA_SUCCESS; FLA_Datatype datatype; int m_A, m_U, n_G; int inc_d; int inc_e; int rs_G, cs_G; int rs_U, cs_U; datatype = FLA_Obj_datatype( U ); m_A = FLA_Obj_vector_dim( d ); m_U = FLA_Obj_length( U ); n_G = FLA_Obj_width( G ); inc_d = FLA_Obj_vector_inc( d ); inc_e = FLA_Obj_vector_inc( e ); rs_G = FLA_Obj_row_stride( G ); cs_G = FLA_Obj_col_stride( G ); rs_U = FLA_Obj_row_stride( U ); cs_U = FLA_Obj_col_stride( U ); switch ( datatype ) { case FLA_FLOAT: { float* buff_d = FLA_FLOAT_PTR( d ); float* buff_e = FLA_FLOAT_PTR( e ); scomplex* buff_G = FLA_COMPLEX_PTR( G ); float* buff_U = FLA_FLOAT_PTR( U ); r_val = FLA_Tevd_v_ops_var1( m_A, m_U, n_G, n_iter_max, buff_d, inc_d, buff_e, inc_e, buff_G, rs_G, cs_G, buff_U, rs_U, cs_U, b_alg ); break; } case FLA_DOUBLE: { double* buff_d = FLA_DOUBLE_PTR( d ); double* buff_e = FLA_DOUBLE_PTR( e ); dcomplex* buff_G = FLA_DOUBLE_COMPLEX_PTR( G ); double* buff_U = FLA_DOUBLE_PTR( U ); r_val = FLA_Tevd_v_opd_var1( m_A, m_U, n_G, n_iter_max, buff_d, inc_d, buff_e, inc_e, buff_G, rs_G, cs_G, buff_U, rs_U, cs_U, b_alg ); break; } case FLA_COMPLEX: { float* buff_d = FLA_FLOAT_PTR( d ); float* buff_e = FLA_FLOAT_PTR( e ); scomplex* buff_G = FLA_COMPLEX_PTR( G ); scomplex* buff_U = FLA_COMPLEX_PTR( U ); r_val = FLA_Tevd_v_opc_var1( m_A, m_U, n_G, n_iter_max, buff_d, inc_d, buff_e, inc_e, buff_G, rs_G, cs_G, buff_U, rs_U, cs_U, b_alg ); break; } case FLA_DOUBLE_COMPLEX: { double* buff_d = FLA_DOUBLE_PTR( d ); double* buff_e = FLA_DOUBLE_PTR( e ); dcomplex* buff_G = FLA_DOUBLE_COMPLEX_PTR( G ); dcomplex* buff_U = FLA_DOUBLE_COMPLEX_PTR( U ); r_val = FLA_Tevd_v_opz_var1( m_A, m_U, n_G, n_iter_max, buff_d, inc_d, buff_e, inc_e, buff_G, rs_G, cs_G, buff_U, rs_U, cs_U, b_alg ); break; } } return r_val; }
FLA_Error FLA_Tevd_v_opz_var1 | ( | int | m_A, |
int | m_U, | ||
int | n_G, | ||
int | n_iter_max, | ||
double * | buff_d, | ||
int | inc_d, | ||
double * | buff_e, | ||
int | inc_e, | ||
dcomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
dcomplex * | buff_U, | ||
int | rs_U, | ||
int | cs_U, | ||
int | b_alg | ||
) |
References bl1_z1(), bl1_zsetm(), FLA_Abort(), FLA_Apply_G_rf_blz_var3(), FLA_Tevd_find_submatrix_opd(), and FLA_Tevd_iteracc_v_opd_var1().
Referenced by FLA_Tevd_v_opt_var1().
{ dcomplex one = bl1_z1(); dcomplex* G; double* d1; double* e1; int r_val; int done; int m_G_sweep_max; int ij_begin; int ijTL, ijBR; int m_A11; int n_iter_perf; int n_U_apply; int total_deflations; int n_deflations; int n_iter_prev; int n_iter_perf_sweep_max; // Initialize our completion flag. done = FALSE; // Initialize a counter that holds the maximum number of rows of G // that we would need to initialize for the next sweep. m_G_sweep_max = m_A - 1; // Initialize a counter for the total number of iterations performed. n_iter_prev = 0; // Iterate until the matrix has completely deflated. for ( total_deflations = 0; done != TRUE; ) { // Initialize G to contain only identity rotations. bl1_zsetm( m_G_sweep_max, n_G, &one, buff_G, rs_G, cs_G ); // Keep track of the maximum number of iterations performed in the // current sweep. This is used when applying the sweep's Givens // rotations. n_iter_perf_sweep_max = 0; // Perform a sweep: Move through the matrix and perform a tridiagonal // EVD on each non-zero submatrix that is encountered. During the // first time through, ijTL will be 0 and ijBR will be m_A - 1. for ( ij_begin = 0; ij_begin < m_A; ) { #ifdef PRINTF if ( ij_begin == 0 ) printf( "FLA_Tevd_v_opz_var1: beginning new sweep (ij_begin = %d)\n", ij_begin ); #endif // Search for the first submatrix along the diagonal that is // bounded by zeroes (or endpoints of the matrix). If no // submatrix is found (ie: if the entire subdiagonal is zero // then FLA_FAILURE is returned. This function also inspects // subdiagonal elements for proximity to zero. If a given // element is close enough to zero, then it is deemed // converged and manually set to zero. r_val = FLA_Tevd_find_submatrix_opd( m_A, ij_begin, buff_d, inc_d, buff_e, inc_e, &ijTL, &ijBR ); // Verify that a submatrix was found. If one was not found, // then we are done with the current sweep. Furthermore, if // a submatrix was not found AND we began our search at the // beginning of the matrix (ie: ij_begin == 0), then the // matrix has completely deflated and so we are done with // Francis step iteration. if ( r_val == FLA_FAILURE ) { if ( ij_begin == 0 ) { #ifdef PRINTF printf( "FLA_Tevd_v_opz_var1: subdiagonal is completely zero.\n" ); printf( "FLA_Tevd_v_opz_var1: Francis iteration is done!\n" ); #endif done = TRUE; } // Break out of the current sweep so we can apply the last // remaining Givens rotations. break; } // If we got this far, then: // (a) ijTL refers to the index of the first non-zero // subdiagonal along the diagonal, and // (b) ijBR refers to either: // - the first zero element that occurs after ijTL, or // - the the last diagonal element. // Note that ijTL and ijBR also correspond to the first and // last diagonal elements of the submatrix of interest. Thus, // we may compute the dimension of this submatrix as: m_A11 = ijBR - ijTL + 1; #ifdef PRINTF printf( "FLA_Tevd_v_opz_var1: ij_begin = %d\n", ij_begin ); printf( "FLA_Tevd_v_opz_var1: ijTL = %d\n", ijTL ); printf( "FLA_Tevd_v_opz_var1: ijBR = %d\n", ijBR ); printf( "FLA_Tevd_v_opz_var1: m_A11 = %d\n", m_A11 ); #endif // Adjust ij_begin, which gets us ready for the next submatrix // search in the current sweep. ij_begin = ijBR + 1; // Index to the submatrices upon which we will operate. d1 = buff_d + ijTL * inc_d; e1 = buff_e + ijTL * inc_e; G = buff_G + ijTL * rs_G; // Search for a batch of eigenvalues, recursing on deflated // subproblems whenever a split occurs. Iteration continues // as long as: // (a) there is still matrix left to operate on, and // (b) the number of iterations performed in this batch is // less than n_G. // If/when either of the two above conditions fails to hold, // the function returns. n_deflations = FLA_Tevd_iteracc_v_opd_var1( m_A11, n_G, ijTL, d1, inc_d, e1, inc_e, G, rs_G, cs_G, &n_iter_perf ); // Record the number of deflations that were observed. total_deflations += n_deflations; // Update the maximum number of iterations performed in the // current sweep. n_iter_perf_sweep_max = max( n_iter_perf_sweep_max, n_iter_perf ); #ifdef PRINTF printf( "FLA_Tevd_v_opz_var1: deflations observed = %d\n", n_deflations ); printf( "FLA_Tevd_v_opz_var1: total deflations observed = %d\n", total_deflations ); printf( "FLA_Tevd_v_opz_var1: num iterations performed = %d\n", n_iter_perf ); #endif // Store the most recent value of ijBR in m_G_sweep_max. // When the sweep is done, this value will contain the minimum // number of rows of G we can apply and safely include all // non-identity rotations that were computed during the // eigenvalue searches. m_G_sweep_max = ijBR; // Make sure we haven't exceeded our maximum iteration count. if ( n_iter_prev >= m_A * n_iter_max ) { #ifdef PRINTF printf( "FLA_Tevd_v_opz_var1: reached maximum total number of iterations: %d\n", n_iter_prev ); #endif FLA_Abort(); //return FLA_FAILURE; } } // The sweep is complete. Now we must apply the Givens rotations // that were accumulated during the sweep. // Recall that the number of columns of U to which we apply // rotations is one more than the number of rotations. n_U_apply = m_G_sweep_max + 1; #ifdef PRINTF printf( "FLA_Tevd_v_opz_var1: applying %d sets of Givens rotations\n", n_iter_perf_sweep_max ); #endif // Apply the Givens rotations. Note that we optimize the scope // of the operation in two ways: // 1. We only apply k sets of Givens rotations, where // k = n_iter_perf_sweep_max. We could simply always apply // n_G sets of rotations since G is initialized to contain // identity rotations in every element, but we do this to // save a little bit of time. // 2. We only apply to the first n_U_apply columns of A since // this is the most we need to touch given the ijBR index // bound of the last submatrix found in the previous sweep. // Similar to above, we could simply always perform the // application on all m_A columns of A, but instead we apply // only to the first n_U_apply columns to save time. //FLA_Apply_G_rf_blz_var5( n_iter_perf_sweep_max, FLA_Apply_G_rf_blz_var3( n_iter_perf_sweep_max, //FLA_Apply_G_rf_blz_var9( n_iter_perf_sweep_max, //FLA_Apply_G_rf_blz_var6( n_iter_perf_sweep_max, m_U, n_U_apply, buff_G, rs_G, cs_G, buff_U, rs_U, cs_U, b_alg ); // Increment the total number of iterations previously performed. n_iter_prev += n_iter_perf_sweep_max; #ifdef PRINTF printf( "FLA_Tevd_v_opz_var1: total number of iterations performed: %d\n", n_iter_prev ); #endif } return n_iter_prev; }