libflame
revision_anchor
|
Functions | |
FLA_Error | FLA_Apply_G_rf_asm_var2 (FLA_Obj G, FLA_Obj A) |
FLA_Error | FLA_Apply_G_rf_ass_var2 (int k_G, int m_A, int n_A, scomplex *buff_G, int rs_G, int cs_G, float *buff_A, int rs_A, int cs_A) |
FLA_Error | FLA_Apply_G_rf_asd_var2 (int k_G, int m_A, int n_A, dcomplex *buff_G, int rs_G, int cs_G, double *buff_A, int rs_A, int cs_A) |
FLA_Error | FLA_Apply_G_rf_asc_var2 (int k_G, int m_A, int n_A, scomplex *buff_G, int rs_G, int cs_G, scomplex *buff_A, int rs_A, int cs_A) |
FLA_Error | FLA_Apply_G_rf_asz_var2 (int k_G, int m_A, int n_A, dcomplex *buff_G, int rs_G, int cs_G, dcomplex *buff_A, int rs_A, int cs_A) |
FLA_Error FLA_Apply_G_rf_asc_var2 | ( | int | k_G, |
int | m_A, | ||
int | n_A, | ||
scomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
scomplex * | buff_A, | ||
int | rs_A, | ||
int | cs_A | ||
) |
References bl1_s0(), bl1_s1(), FLA_Apply_G_rf_asc_var1(), scomplex::imag, and scomplex::real.
Referenced by FLA_Apply_G_rf_asm_var2(), and FLA_Apply_G_rf_blc_var2().
{ float one = bl1_s1(); float zero = bl1_s0(); float gamma; float sigma; scomplex* a1; scomplex* a2; scomplex* g11; int j, g, k; int nG, nG_app; int k_minus_1; k_minus_1 = k_G - 1; nG = n_A - 1; // Use the simple variant for nG < 2(k - 1). if ( nG < k_minus_1 || k_G == 1 ) { FLA_Apply_G_rf_asc_var1( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); return FLA_SUCCESS; } // Start-up phase. for ( j = 0; j < k_minus_1; ++j ) { nG_app = j + 1; for ( k = 0, g = nG_app - 1; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asc( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Pipeline stage for ( j = k_minus_1; j < nG; ++j ) { nG_app = k_G; for ( k = 0, g = j; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asc( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Shutdown stage for ( j = nG - k_minus_1; j < nG; ++j ) { nG_app = nG - j; for ( k = k_G - nG_app, g = nG - 1; k < k_G; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asc( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } return FLA_SUCCESS; }
FLA_Error FLA_Apply_G_rf_asd_var2 | ( | int | k_G, |
int | m_A, | ||
int | n_A, | ||
dcomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
double * | buff_A, | ||
int | rs_A, | ||
int | cs_A | ||
) |
References bl1_d0(), bl1_d1(), FLA_Apply_G_rf_asd_var1(), dcomplex::imag, and dcomplex::real.
Referenced by FLA_Apply_G_rf_asm_var2(), and FLA_Apply_G_rf_bld_var2().
{ double one = bl1_d1(); double zero = bl1_d0(); double gamma; double sigma; double* a1; double* a2; dcomplex* g11; int j, g, k; int nG, nG_app; int k_minus_1; k_minus_1 = k_G - 1; nG = n_A - 1; // Use the simple variant for nG < 2(k - 1). if ( nG < k_minus_1 || k_G == 1 ) { FLA_Apply_G_rf_asd_var1( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); return FLA_SUCCESS; } // Start-up phase. for ( j = 0; j < k_minus_1; ++j ) { nG_app = j + 1; for ( k = 0, g = nG_app - 1; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asd( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Pipeline stage for ( j = k_minus_1; j < nG; ++j ) { nG_app = k_G; for ( k = 0, g = j; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asd( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Shutdown stage for ( j = nG - k_minus_1; j < nG; ++j ) { nG_app = nG - j; for ( k = k_G - nG_app, g = nG - 1; k < k_G; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asd( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } return FLA_SUCCESS; }
FLA_Error FLA_Apply_G_rf_asm_var2 | ( | FLA_Obj | G, |
FLA_Obj | A | ||
) |
References FLA_Apply_G_rf_asc_var2(), FLA_Apply_G_rf_asd_var2(), FLA_Apply_G_rf_ass_var2(), FLA_Apply_G_rf_asz_var2(), FLA_Obj_col_stride(), FLA_Obj_datatype(), FLA_Obj_length(), FLA_Obj_row_stride(), and FLA_Obj_width().
{ FLA_Datatype datatype; int k_G, m_A, n_A; int rs_G, cs_G; int rs_A, cs_A; datatype = FLA_Obj_datatype( A ); k_G = FLA_Obj_width( G ); m_A = FLA_Obj_length( A ); n_A = FLA_Obj_width( A ); rs_G = FLA_Obj_row_stride( G ); cs_G = FLA_Obj_col_stride( G ); rs_A = FLA_Obj_row_stride( A ); cs_A = FLA_Obj_col_stride( A ); switch ( datatype ) { case FLA_FLOAT: { scomplex* buff_G = ( scomplex* ) FLA_COMPLEX_PTR( G ); float* buff_A = ( float* ) FLA_FLOAT_PTR( A ); FLA_Apply_G_rf_ass_var2( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); break; } case FLA_DOUBLE: { dcomplex* buff_G = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( G ); double* buff_A = ( double* ) FLA_DOUBLE_PTR( A ); FLA_Apply_G_rf_asd_var2( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); break; } case FLA_COMPLEX: { scomplex* buff_G = ( scomplex* ) FLA_COMPLEX_PTR( G ); scomplex* buff_A = ( scomplex* ) FLA_COMPLEX_PTR( A ); FLA_Apply_G_rf_asc_var2( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); break; } case FLA_DOUBLE_COMPLEX: { dcomplex* buff_G = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( G ); dcomplex* buff_A = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( A ); FLA_Apply_G_rf_asz_var2( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); break; } } return FLA_SUCCESS; }
FLA_Error FLA_Apply_G_rf_ass_var2 | ( | int | k_G, |
int | m_A, | ||
int | n_A, | ||
scomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
float * | buff_A, | ||
int | rs_A, | ||
int | cs_A | ||
) |
References bl1_s0(), bl1_s1(), FLA_Apply_G_rf_ass_var1(), scomplex::imag, and scomplex::real.
Referenced by FLA_Apply_G_rf_asm_var2(), and FLA_Apply_G_rf_bls_var2().
{ float one = bl1_s1(); float zero = bl1_s0(); float gamma; float sigma; float* a1; float* a2; scomplex* g11; int j, g, k; int nG, nG_app; int k_minus_1; k_minus_1 = k_G - 1; nG = n_A - 1; // Use the simple variant for nG < 2(k - 1). if ( nG < k_minus_1 || k_G == 1 ) { FLA_Apply_G_rf_ass_var1( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); return FLA_SUCCESS; } // Start-up phase. for ( j = 0; j < k_minus_1; ++j ) { nG_app = j + 1; for ( k = 0, g = nG_app - 1; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_ass( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Pipeline stage for ( j = k_minus_1; j < nG; ++j ) { nG_app = k_G; for ( k = 0, g = j; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_ass( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Shutdown stage for ( j = nG - k_minus_1; j < nG; ++j ) { nG_app = nG - j; for ( k = k_G - nG_app, g = nG - 1; k < k_G; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_ass( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } return FLA_SUCCESS; }
FLA_Error FLA_Apply_G_rf_asz_var2 | ( | int | k_G, |
int | m_A, | ||
int | n_A, | ||
dcomplex * | buff_G, | ||
int | rs_G, | ||
int | cs_G, | ||
dcomplex * | buff_A, | ||
int | rs_A, | ||
int | cs_A | ||
) |
References bl1_d0(), bl1_d1(), FLA_Apply_G_rf_asz_var1(), dcomplex::imag, and dcomplex::real.
Referenced by FLA_Apply_G_rf_asm_var2(), and FLA_Apply_G_rf_blz_var2().
{ double one = bl1_d1(); double zero = bl1_d0(); double gamma; double sigma; dcomplex* a1; dcomplex* a2; dcomplex* g11; int j, g, k; int nG, nG_app; int k_minus_1; k_minus_1 = k_G - 1; nG = n_A - 1; // Use the simple variant for nG < 2(k - 1). if ( nG < k_minus_1 || k_G == 1 ) { FLA_Apply_G_rf_asz_var1( k_G, m_A, n_A, buff_G, rs_G, cs_G, buff_A, rs_A, cs_A ); return FLA_SUCCESS; } // Start-up phase. for ( j = 0; j < k_minus_1; ++j ) { nG_app = j + 1; for ( k = 0, g = nG_app - 1; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asz( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Pipeline stage for ( j = k_minus_1; j < nG; ++j ) { nG_app = k_G; for ( k = 0, g = j; k < nG_app; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asz( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } // Shutdown stage for ( j = nG - k_minus_1; j < nG; ++j ) { nG_app = nG - j; for ( k = k_G - nG_app, g = nG - 1; k < k_G; ++k, --g ) { g11 = buff_G + (g )*rs_G + (k )*cs_G; a1 = buff_A + (g )*cs_A; a2 = buff_A + (g + 1)*cs_A; gamma = g11->real; sigma = g11->imag; // Skip the current iteration if the rotation is identity. if ( gamma == one && sigma == zero ) continue; MAC_Apply_G_mx2_asz( m_A, &gamma, &sigma, a1, 1, a2, 1 ); } } return FLA_SUCCESS; }