CppAD: A C++ Algorithmic Differentiation Package  20130918
template<class Base >
void CppAD::forward_cond_op ( size_t  p,
size_t  q,
size_t  i_z,
const addr_t *  arg,
size_t  num_par,
const Base *  parameter,
size_t  nc_taylor,
Base *  taylor 
) [inline]

Compute forward mode Taylor coefficients for op = CExpOp.

The C++ source code coresponding to this operation is

	z = CondExpRel(y_0, y_1, y_2, y_3)

where Rel is one of the following: Lt, Le, Eq, Ge, Gt.

Template Parameters:
Basebase type for the operator; i.e., this operation was recorded using AD< Base > and computations by this routine are done using type Base.
Parameters:
i_zis the AD variable index corresponding to the variable z.
arg
arg[0] is static cast to size_t from the enum type
	enum CompareOp {
		CompareLt, 
		CompareLe, 
		CompareEq, 
		CompareGe, 
		CompareGt, 
		CompareNe
	}
for this operation. Note that arg[0] cannot be equal to CompareNe.

arg[1] & 1
If this is zero, y_0 is a parameter. Otherwise it is a variable.

arg[1] & 2
If this is zero, y_1 is a parameter. Otherwise it is a variable.

arg[1] & 4
If this is zero, y_2 is a parameter. Otherwise it is a variable.

arg[1] & 8
If this is zero, y_3 is a parameter. Otherwise it is a variable.

arg[2 + j ] for j = 0, 1, 2, 3
is the index corresponding to y_j.
num_paris the total number of values in the vector parameter.
parameterFor j = 0, 1, 2, 3, if y_j is a parameter, parameter [ arg[2 + j] ] is its value.
nc_taylornumber of columns in the matrix containing the Taylor coefficients.
Checked Assertions
  • NumArg(CExpOp) == 6
  • NumRes(CExpOp) == 1
  • arg[0] < static_cast<size_t> ( CompareNe )
  • arg[1] != 0; i.e., not all of y_0, y_1, y_2, y_3 are parameters.
  • For j = 0, 1, 2, 3 if y_j is a parameter, arg[2+j] < num_par.
  • For j = 0, 1, 2, 3 if y_j is a variable, arg[2+j] < iz.
Parameters:
pis the lowest order of the Taylor coefficient of z that we are computing.
qis the highest order of the Taylor coefficient of z that we are computing.
taylorInput: For j = 0, 1, 2, 3 and k = 0 , ... , q, if y_j is a variable then taylor [ arg[2+j] * nc_taylor + k ] is the k-th order Taylor coefficient corresponding to y_j.
Input: taylor [ i_z * nc_taylor + k ] for k = 0 , ... , p-1, is the k-th order Taylor coefficient corresponding to z.
Output: taylor [ i_z * nc_taylor + k ] for k = p , ... , q, is the k-th order Taylor coefficient corresponding to z.

Definition at line 293 of file cond_op.hpp.

Referenced by forward1sweep().

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines