
XSLT-process minor mode
for version 2.2

December 2009

by Ovidiu Predescu and Tony Addyman

Copyright c© 2000, 2001, 2002, 2003 Ovidiu Predescu.
Copyright c© 2002, 2003 Tony Addyman.
All rights reserved.

Distributed under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version.

The XSLT-process minor mode manual may be reproduced and distributed in whole or in
part, in any medium, physical or electronic, so long as this copyright notice remains intact
and unchanged on all copies.

http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org/
http://www.fsf.org/

Chapter 1: What is it? 1

1 What is it?

XSLT-process is a minor mode for XEmacs or GNU Emacs which transforms it into a
powerful XML editor with XSLT processing and debugging capabilities.

You can invoke an XSLT processor of choice on the current XML file you’re editing, and
see the results in another buffer. In case of errors, the error messages generated by the
XSLT processor, are shown in a compilation buffer, which allows you to quickly go to the
location of the error.

You can also run the XSLT processor in debugging mode, and view step by step what the
XSLT processor is doing. You can view the current stack frame in the XSLT program, the
current XML context node being processed, the output from the execution of the stylesheet
as it is being produced, what are the local and global variables, set breakpoints in both the
XML source file and the XSLT program.

The principal author of the XSLT-process package is Ovidiu Predescu; major contribu-
tions have been made by Tony Addyman. The package is distributed under the terms of
GNU General Public License.

The project is graciously hosted by SourceForge, and could be found at
http://xslt-process.sourceforge.net/index.php. The current version is 2.2.

http://webweavertech.com/ovidiu/weblog/
http://www.cs.salford.ac.uk/web/home.nsf/key/addyman/
http://www.gnu.org/copyleft/gpl.html
http://xslt-process.sourceforge.net/index.php

Chapter 2: Installation and setup 2

2 Installation and setup

The XSLT-process mode is part of XEmacs, but it works with both XEmacs and GNU
Emacs. The installation differs slighly between the two editors as we will see shortly.

The mode has been tested on Linux and Windows 2000, with XEmacs and GNU Emacs,
and under MacOS X with GNU Emacs. The development platform however is Linux, so
expect this to be the most stable one.

2.1 Package installation under XEmacs

XSLT-process is also released as an XEmacs package, so if you’re an XEmacs user,
chances are that the package is already installed with your XEmacs installation. If it’s not
installed, try obtaining the latest XEmacs package from your XEmacs local mirror or from
the main XEmacs ftp site. It may happen that the XEmacs package is a little older than
the currently released version of XSLT-process, in which case you want to follow the steps
described below.

You can retrieve the XEmacs package either manually from the ftp site, or by using
the “Options” ⇒ “Manage packages” menu. Follow the instructions described under the
“Options” ⇒ “Manage packages” ⇒ “Help” menu entry if you’re not familiar with this
procedure.

2.2 Generic installation

This section describes how to install XSLT-process on your Emacs editor, assuming
either it is not already installed, or you want to install a new version.

The XSLT-process package depends on two other packages:

• elib 1.0

• speedbar

2.2.1 Installing Elib

If you’re running XEmacs, you don’t need to install Elib, as XEmacs by default comes
with it.

Elib provides some useful functionality to Emacs, among other things a compatibility
layer between GNU Emacs and XEmacs.

To install, download it from ftp://ftp.lysator.liu.se/pub/emacs/elib-1.0.tar.gz, and un-
pack it into your ~/emacs directory. If you don’t have a ~/emacs directory, create one
now.

Go to the elib-1.0 directory and run

make

http://webweavertech.com/ovidiu/emacs.html
ftp://ftp.lysator.liu.se/pub/emacs/elib-1.0.tar.gz
http://cedet.sourceforge.net/speedbar.shtml
ftp://ftp.lysator.liu.se/pub/emacs/elib-1.0.tar.gz

Chapter 2: Installation and setup 3

2.2.2 Installing Speedbar

XSLT-process depends on Speedbar, for displaying breakpoints, stack frames and global
and local variables. You need to obtain and install this package first, in case you don’t have
it already installed.

To verify if you have this package installed, type M-x speedbar-version; this will give
either an error, if the package is not installed, or the version number of the speedbar package
if it’s already installed. You should have at least version 0.13a for XSLT-process to work.

In case you don’t have the speedbar package, you can obtain it from its Web site. Unpack
the package in your ~/emacs directory. Then go to the speedbar directory and run

$ make

If you’re using XEmacs, you need to run:

$ make EMACS=xemacs

This step byte-compiles all the Lisp files in the speedbar package using your Emacs editor.
Please follow Speedbar’s installation document for more up-to-date information on how to
compile it.

2.2.3 Installing XSLT-process

To install the XSLT-process mode, first obtain the latest stable version from the Source-
Forge Web site, at http://sourceforge.net/projects/xslt-process/. Unpack the distribution
in your ~/emacs directory; this will create the xslt-process-2.2 directory in your ~/emacs
directory.

You now need to tell Emacs to look for the new package in this newly created directory.
You do this by adding the following lines in the Emacs configuration file ~/.emacs (if you
don’t have such a file, create one now):

(require ’cl)

(mapc (lambda (x)
(pushnew (expand-file-name x) load-path))

(list "~/emacs"
"~/emacs/xslt-process-2.2/lisp"
"~/emacs/elib-1.0"
"~/emacs/speedbar-0.14beta4"))

You can remove the reference to elib-1.0 or speedbar-0.14beta4 in the lines above,
if you didn’t have to install either elib or speedbar as described in the previous sections.

2.3 Setting up the XSLT-process mode

XSLT-process is an Emacs minor mode, which means is extending the functionality of
whatever mode you use for editing XML or XSLT files, instead of creating a similar one.

XSLT-process does not try to help in the editing of XML or XSLT files, it just enables
Emacs to process such files. Thus XSLT-process should work with any XML/XSLT editing
mode your Emacs is configured for.

http://cedet.sourceforge.net/speedbar.shtml
http://sourceforge.net/projects/xslt-process/

Chapter 2: Installation and setup 4

XSLT-process was tested with both Lennart Staflin’s PSGML major mode and James
Clark’s sgml-mode.el major mode (distributed with GNU Emacs) for editing XML files. It
also works with Tony Graham’s xslide XSLT editing mode.

To automatically enable the XSLT-process minor mode for the above major modes, add
the following lines in your ~/.emacs file:

(autoload ’xslt-process-mode "xslt-process" "Emacs XSLT processing" t)
(autoload ’xslt-process-install-docbook "xslt-process"
"Register the DocBook package with XSLT-process" t)

(add-hook ’sgml-mode-hook ’xslt-process-mode)
(add-hook ’xml-mode-hook ’xslt-process-mode)
(add-hook ’xsl-mode-hook ’xslt-process-mode)

(defadvice xml-mode (after run-xml-mode-hooks act)
"Invoke ‘xml-mode-hook’ hooks in the XML mode."
(run-hooks ’xml-mode-hook))

You can also manually switch to this minor mode by typing M-x xslt-process-mode.
You can check the modeline to see whether Emacs is in the XSLT-process mode. Look

for the “XSLT” indicator in the modeline.

2.4 Convenience Settings

Many of the benefits of Emacs in general, and the XSLT-process mode in particular,
require the use of a three-button mouse. Under Linux the emulation of the middle button
can be provided by the operating system. If you are using Windows you can configure
Emacs to provide the same emulation by adding the following lines in your ~/.emacs file:

; emulate three button mouse
(setq w32-num-mouse-buttons 2)

http://sourceforge.net/projects/psgml
http://sourceforge.net/projects/xslide

Chapter 3: Running the XSLT processor 5

3 Running the XSLT processor

3.1 Setting up the XSLT processor

The XSLT-process mode comes by default with two different Java XSLT processors,
Saxon and Xalan. These particular versions of the XSLT processors (Saxon-6.5.2 and Xalan-
2.4.1) have been tested and work with the XSLT-process mode. Different versions of the
processors may not work with the XSLT-process mode.

You can choose either of the above processors to do the XSLT processing by selecting
one from the “XSLT” ⇒ “XSLT Processor” menu. The default XSLT processor is Saxon.

3.2 Viewing the results of the XSLT processing

The main functionality of the XSLT-process mode is to allow you to edit an XML
document, apply an XSLT stylesheet to the document, and view the results in a buffer, a
Web browser, or a PDF viewer.

To run the XSLT processor and view the results in another Emacs buffer, you can enter
C-c C-x v, while editing the XML document.

If your stylesheet generates HTML as the result, you can view the results directly in a
Web browser by typing C-c C-x n. If your stylesheet generates XML FO as output, XSLT-
process can translate it to PDF automatically using the Apache FOP processor. In this
case just type C-c C-x p and XSLT-process will take care of applying the XSLT stylesheet
on your input XML document, and applying the FOP processor (currently version 0.20.4)
on the resulting XSLFO document.

If you choose to view the results in a buffer, they will be shown in the *xslt results*
buffer. If any message are generated during the XSLT processing, they are shown separately
in the *xslt messages* buffer.

You can customize the Web browser and PDF viewer to be used as described in Chapter 5
[Customizing the XSLT-process mode], page 17. If you don’t like the default key bindings
described above, you can also customize them as described in the same chapter.

If the FOP processor is used, any error messages, logging information, etc. is sent to the
Messages buffer. The level of logging provided by the FOP processor can be customized
(see Chapter 5 [Customizing the XSLT-process mode], page 17).

http://xml.apache.org/fop

Chapter 3: Running the XSLT processor 6

Note: The use of the FOP processor causes two temporary files to be created in your tem-
porary directory. These are xslt-process-output.fo and xslt-process-output.pdf. If
xslt-process-output.pdf is already being displayed when a new version of the file is gen-
erated the outcome depends on the PDF viewer being used: either a second window may
be opened, so both versions of the file are displayed, or only the original file is displayed.
If a second window is not opened the xslt-process-output.pdf file must be closed and
re-opened manually to view the new version.

Note: This use of your temporary directory will fail if the path to the temporary directory
contains spaces. This is the default setting for some versions of Windows.

3.3 Dealing with errors

The XSLT-process mode intercepts the error messages generated by the XML parser or
XSLT processor and displays them in compilation buffer, which quickly allows you to go to
the cause of the error.

When you encounter an error, just click using the middle-button (assuming an X-
Windows system or suitable three-button emulation) on the error message. Emacs will
move the cursor point at the place that caused the error. If you only have a two-button
mouse you should can emulate the third button using the operating system (Linux) or
Emacs (Windows) (see Section 2.4 [Convenience Settings], page 4).

Chapter 3: Running the XSLT processor 7

3.4 Associating an XSLT stylesheet with an XML document

There are two ways to specify a stylesheet to be used to process an XML file. The
first method uses the so-called ‘associated stylesheet’, a XML specific feature, which is
specified inside the XML file. The second method is external to the XML, and is specific
to the XSLT-process mode.

3.4.1 Using the associated stylesheet

The XSLT file that’s used to process the file should be specified inside the XML file
using the XML processing instruction ‘xml-stylesheet’, like this:

<?xml version="1.0"?>
<?xml-stylesheet href="URL/to/XSLT/file" type="text/xsl"?>

...

You can use any URI understood by your Java system, e.g. file, HTTP or FTP, to refer
to a stylesheet. The XSLT engine will download the stylesheet from the remote location
and make use of it locally. The XSLT processing code of XSLT-process is written such that
the stylesheet is cached, so further invocations won’t parse the stylesheet again, unless the
stylesheet is modified.

Chapter 3: Running the XSLT processor 8

You can use URLs which are relative to the location of your XML file. For example
if you have an XSLT file ‘page-html.xsl’ in the same directory as the XML file you can
simply have inside the XML file the following processing instruction:

<?xml version="1.0"?>
<?xml-stylesheet href="page-html.xsl" type="text/xsl"?>

...

3.4.2 The stylesheet registry

Using the associated stylesheet in the XML document requires the XML document to
have a xml-processing pseudo-instruction. This is not always convenient, so XSLT-process
provides a way to associate XSLT stylesheets with XML documents.

The stylesheet registry functionality can be found in the menu under “XSLT” ⇒
“Stylesheets Registry”.

Associating an XSLT stylesheet with and XML document requires the following steps:

• Registering the XSLT stylesheet into the stylesheet registry. Only stylesheets registered
with the registry can be associated with an XML document.

To register a stylesheet in the registry, type C-c C-x b. This will prompt you for the
buffer name visiting the XSLT stylesheet. Select the buffer visiting the XSLT stylesheet
you want; you can type TAB TAB for a list of buffers.

• Once you have registered stylesheets with the registry, you can associate XML docu-
ments with stylesheets registered with the registry. Select the buffer visiting the XML
document you want and type C-c C-x a. You will be prompted in a buffer to choose
which currently registered XSLT stylesheet you want to be associated with the current
XML document.

If you already have an association between the XML document and an XSLT stylesheet,
it will be selected. If there is no association already established, the default is setup
to use the associated stylesheet specified with the xml-stylesheet pseudo-instruction.
There is no check being done to ensure you have such an instruction.

Chapter 3: Running the XSLT processor 9

To remove or add new XSLT stylesheets, you can type C-c C-x m. This will present
you a buffer that allows you to remove existing stylesheets, or to manually add new ones.
Adding new ones may be easier though by visiting the file in a buffer, and typing C-c C-x

b.
Managing the associations between XML documents and XSLT stylesheets is done in a

similar way. Just type C-c C-x h, and you’ll get a buffer that shows you all the currently
registered associations.

If you want to persist the registry across multiple invocations of Emacs, you need to save
it. You can do this from “XSLT” ⇒ “Stylesheets Registry” ⇒ “Save registry”.

3.5 Changing the XSLT processor

If you want to experiment what are the results of applying your stylesheets using dif-
ferent XSLT processors, you can change the processor using the menu “XSLT” ⇒ “XSLT
Processor”, or by using the customization interface (see Chapter 5 [Customizing the XSLT-
process mode], page 17). If you are in the middle of a debugging session, the change will
not take effect until the current session is ended using “Quit XSLT processor”.

In certain cases, there are XSLT stylesheets that works only when processed through
a particular XSLT processor. This may happen because the stylesheet is using XSLT
extensions specific to a particular processor. In this case you can specify the XSLT processor
to be used in the XML source document (see Chapter 6 [Known problems and limitations],
page 18).

Just add a Local Variables section at the end of your XML file and specify within it what
should be the XSLT processor to be invoked using the ‘processor’ variable. For example,
by adding the following section at the end of your file, you specify Saxon to be used as the
XSLT processor, no matter what is the global XSLT processor setting:

<!--
Local Variables:
processor: Saxon
End:
-->

A Local Variables section can be used in the same way at the end of your XSL file
provided that this file is the current buffer when the XSLT process is executed. This only
works if the XSL file is associated with your XML file using the “Stylesheets Registry”,
otherwise the current buffer will be treated as the XML file.

Chapter 3: Running the XSLT processor 10

In this release, the acceptable values for ‘processor’ are ‘Saxon’ and ‘Xalan’, as they
are the only supported processors. By replacing the value of ‘processor’, you can run any
of the supported processors on your file.

Chapter 4: The XSLT debugger 11

4 The XSLT debugger

For relatively simple XSLT stylesheets, understanding how a particular stylesheet works
can be done by repeteadly running the XSLT processor, and looking at the results. More
complex stylesheets however, are difficult to debug this way, especially when you have lots
of XSL variables and key indices.

XSLT-process gives you the ability to run the processor in debugging mode, which allows
you to set breakpoints, run step by step, view local and global XSLT variables, and view
the output as it is being generated. This release supports debugging using both Saxon and
Xalan.

Note: Saxon and Xalan operate quite differently internally. This is reflected in the
information displayed by the debugger during the execution of the stylesheet, sequencing,
details of the handling of breakpoints, etc.

4.1 Entering the debug mode

While you’re editing an XML or XSLT file, the buffer visiting the file is read-write,
allowing you to perform the normal editing operations, and use the functionality specific to
the XML/XSLT/SGML mode you’re using.

The XSLT debugging mode however does not allow you to modify files, and it binds
some of the keys to debugger specific functionality. The XSLT debugging functionality is a
per buffer feature, you can enable and disable it for each buffer independently.

To toggle the XSLT debugging functionality, type C-c C-x d while you’re in a XSLT-
process mode buffer. You can also toggle the debug mode through the menu at “XSLT”
⇒ “Toggle debug mode”. Once you enter the debug mode, you will notice the modeline
indicator changes from “XSLT” to “XSLTd”.

In the menu, you will observe that until the debug functionality is not enabled, all the
debugger related operations in the menu are disabled. Once you enable the debug mode,
you will be able to setup breakpoints and run the XSLT debugger.

Chapter 4: The XSLT debugger 12

No debug menu: the debugging functionality
is not enabled.

XSLT debug menu: debugging functional-
ity enabled.

4.2 Breakpoints

Once you’re in the XSLT debugging mode, you can set or delete, enable or disable
breakpoints. During the execution of the XSLT stylesheet, the XSLT processor will stop
when it reaches a breakpoint that is enabled.

The keybindings for breakpoints are:
• b: Set a new breakpoint at the line containing point. Doesn’t do anything if a break-

point is already setup at this location.
The corresponding menu item is disabled if the point is on a line where a breakpoint
is already set.

• d: Delete the breakpoint at the line containing point. Nothing happens if no breakpoint
is setup on the line at point.
The corresponding menu item is disabled if the point is on a line where there is no
breakpoint.

• e: Enable or disable the breakpoint at the line containing point. If there is no break-
point setup at point, nothing happens. If the breakpoint is enabled, this action will
disable it. Similarly, if the breakpoint is disabled, this action will enable it.
The corresponding menu item is disabled if the point is on a line where there is no
breakpoint.

The enabled and disabled breakpoints are shown with distinctive colors, so you can easily
identify them.

You can setup breakpoints both in the source XML document, and in the XSLT
stylesheet program. Note however that the semantic of a breakpoint in the source
document is very different from a breakpoint in the XSLT stylesheet. The XSLT processor
will stop at a breakpoint in the source document only when an element on that line
is selected, e.g. when the element becomes the current context node (see the XSLT

http://www.w3c.org/TR/XSLT

Chapter 4: The XSLT debugger 13

specification). Compare this with the XSLT stylesheet, which is essentially a program,
and where the stop at a breakpoint means that the execution of the program reached the
instruction at that line.

The two different XSLT processors don’t inform the debugger that an element has
been selected in exactly the same circumstances. Saxon only monitors xsl:for-each
and xsl:apply-templates; Xalan also monitors xsl:if, xsl:choose, xsl:copy-of,
xsl:value-of, xsl:variable and xsl:with-param.

4.3 Controlling the debugger

After you setup the breakpoints where you would like the XSLT processor to stop,
you can start the XSLT processing. You can do this from the menu at “XSLT” ⇒ “Run
debugger”, or by typing r.

Important: When starting the debugger, the buffer containing the XML source document
should be current. If a buffer containing an XSLT document is active instead, the XSLT-
process mode assumes this as the source document, and will not be able to find the associated
stylesheet.

The XSLT processor starts. As soon as the XSLT processor generates some output the
xslt-output window will be opened to display that output. The processor continues
running in the background until the execution reaches an enabled breakpoint.

At this point, Emacs will highlight the line where the XSLT processor has stopped and
indicate whether the stylesheet is entering “=>” or leaving “<=” the element. If necessary
the stylesheet will be opened in a window. The location at which the execution has stopped
is also displayed in the mini-buffer. This shows the filename, line number and visit count.
The visit count indicates the number of times this breakpoint has been visited in succession,
i.e. without a visit to another breakpoint. The debugger will wait for an action to be taken.
The possible actions are:
• Step (keybinding s): If the XSLT processor stopped when it was about to enter an

XML element, it will enter it and stop the execution on the first child element, right
before entering it.
If the XSLT processor stopped when it was exiting from an XML element, this action
will make the processor exit from the current element, and stop on the immediatelly
following element.
This is equivalent with the step into action of debuggers for traditional programming
languages.

• Next (keybinding n): If the XSLT processor was about to enter an XML element,
this action will instruct the processor to skip the element (this includes on of its sub-
elements). The processor will stop when it is about to visit the next sibling XML
element. If there is no such element, the processor will stop when entering the next
XML element which is to be visited.
This is equivalent with the step over action of debuggers for traditional languages.

• Finish (keybinding f): Instructs the XSLT processor to finish the currently executing
XSL template, and stop when exiting from it. If an enabled breakpoint is reached
before the end of the template, the XSLT processor will stop there.
This is equivalent with the finish action of traditional debuggers.

Chapter 4: The XSLT debugger 14

• Continue (keybinding c): Instructs the XSLT processor to continue the processing until
the next enabled breakpoint is encountered or until the XSLT processing finishes.

• Stop (keybinding a): In the case of a long processing, instruct the XSLT processor to
abort it and stop immediately. This is useful for stylesheets that take a long time to
complete, and you forgot to setup the appropriate breakpoints.

4.4 The speedbar

The speedbar is a separate Emacs window that allows you to:
• View the breakpoints that you’ve set. The enabled and disabled breakpoints are shown

with distinctive colors, so you can easily identify them.
Clicking on a breakpoint entry in the speedbar will move the point to the file and line
where the breakpoint is set. If the file is not currently opened within Emacs, it will be
opened and shown in a buffer.

• View the stack of source elements that have been selected during the processing.
Whenever you click with the middle button on such a entry, the point is positioned in
the file and line where the source element starts.

Chapter 4: The XSLT debugger 15

• View the stack of XSLT elements that are currently being executed. Each element that
has been entered, but not yet exited is being shown in the speedbar.

Note: This is true if the XSLT elements are instructions. However, if the elements are
literal result elements, nested elements will often appear in this stack in sequence when
debugging using Xalan.

Clicking with the middle button on such a node will position the point in the file at
line where the element starts.

• View the local and global variables declared with xsl:variable or xsl:param.

Each entry for a variable has a little icon showing the type of the variable, its name
and value. If images are not supported by your Emacs (GNU Emacs 20.x and lower),
a text indication of the type is shown instead.

Note: Xalan uses lazy evaluation so a variable might not have its value computed until
it is actually required, i.e. later in the processing. So it is possible to step through
an xsl:variable element without the value of the corresponding variable changing
within the speedbar display. The value will subsequently appear when the variable is
set prior to being used. In the limit variables that are never used might never be set.

Below are all the possible XSLT types and how they are displayed by speedbar:

• boolean - The text representation of an XSLT boolean is {b}.

• number - The text representation of an XSLT number is {n}.

• string - The text representation of an XSLT string is {s}.

• nodeset or document fragment - The text representation of this type is {t}.

• object - The text representation of Java object is {o}.

• any - This is an unknown XSLT type; its text representation is {a}.

Note: If the text representation exceeds 100 characters it is truncated, and “...” added
to the end to indicate that fact. If the text representation contains line breaks these are
replaced by paragraph markers “” to ensure the value can be displayed on a single line as
required by the speedbar.

Here is a picture of the speedbar in the XSLT-process mode:

Chapter 4: The XSLT debugger 16

Chapter 5: Customizing the XSLT-process mode 17

5 Customizing the XSLT-process mode

You can customize the XSLT-process mode in a number of ways. There are several
groups of customizations you can do:
• Select the XSLT processor to be used by the XSLT-process mode.
• Set global parameters for the transformation.
• Customize the environment for the Java process that’s running the XSLT processor.
• Customize the faces (the fonts) used when displaying the breakpoints, the current line

etc.
• Customize the key bindings used for invoking the processor and for the debugger.
• Customize the Web browser and PDF viewer to be used to directly view the results of

the processing.
• Customize the level of logging reported by the FOP processor.

You can find all the above customization options under the main menu, in “XSLT” ⇒
“Customize”. Alternatively, you can run M-x customize-group RET xslt-process to get
to the main customization page for XSLT-process.

Chapter 6: Known problems and limitations 18

6 Known problems and limitations

The code which facilitates the immediate serialization and incremental display of the
output during debugging has to set the encoding of that output stream. The coding is set
to UTF-8 regardless of any setting in the stylesheet. This only occurs when debugging. If it
is a problem for users, it may be possible to add a customization option in a future release.

The following is a list of differences between GNU Emacs and XEmacs. As the XSLT-
process mode was originally developed under XEmacs, we would appreciate your support
in making the GNU Emacs version behave closer to the XEmacs one.
• Under GNU Emacs, the keybinding of a command does not appear in the menu item

in debug mode as they appear under XEmacs.

Chapter 7: Future enhancements 19

7 Future enhancements

This is a list of features planned for future releases. The list doesn’t specify any particular
order in the priority, and the features may or may not be implemented.
• Add the ability to evaluate XPath expressions. The context node could be either the

top node of the XML document or it can be specified by putting the point on it.
This would be a very useful tool for novice XSLT users to learn XPath (and Emacs ;-).
This is a non-trivial enhancement, but one of the developers would like to have it for
teaching purposes. Until this enhancement is available consider using XPath Explorer
(see http://sourceforge.net/projects/xpe)

• Add the ability to go both forward and backwards in time during debugging. This
would be a nice feature to have for the cases where reaching the point of interest in the
stylesheet takes a lot of time, and the pressing the wrong key makes you miss it.

Chapter 8: Changes 20

8 Changes

These are the changes since the 2.1 release:

• Updated the versions of Saxon, Xalan and FOP supported to be 6.5.2, 2.4.1, and 0.20.4
respectively.

• Debugging using Xalan is now supported.
• During debugging sessions the output produced by executing the stylesheet is serialized

immediately, then displayed and incrementally updated in an Emacs window.
• Added parameter passing to the XSLT processor. These are parameters that are spec-

ified to all the stylesheets, in addition to any other parameters. They are specified
through the customization menu.

• Logging output, error messages, etc. generated by the FOP processor are displayed in
the ‘*Messages*’ buffer. The level of logging can be customized.

• Minor improvements to the display of information during debugging.

These are the changes since the 2.0 release:

• Added the ability to run Apache’s FOP processor on the XML document created as a
result of the XSLT processing. Suggestion from Jeff Rancier.

• Added the ability to pass JVM arguments and properties. Thanks to Phillip Lord for
the idea and initial patch.

These are the changes since the 1.2.2 release:

• The functionality has been greatly improved, support for debugging and error reporting
has been added.

• The code has been completely overhauled. A new dedicated Java command line tool
replaces the more generic BSH process. This command line tool is the low level interface
used by the XSLT-process to perform its functionality, and interacts directly with the
XSLT processors.

• The project has been moved to Sourceforge, including CVS source tree and previous
releases of the code, and is open to public participation. Please register on the public
mailing list to participate in discussions related to XSLT-process.

These are the changes since the 1.2 release:

• Fixed problem in accessing stylesheets referred by file: URIs on Windows. Reported
by Nicolas Kessler.

This is the list of changes since the 1.1 release.

• Added support for the TrAX interface, part of the JAXP API, thanks to Allan Erskine.
Currently Saxon 6.2 and Xalan2 have been tested. The TrAX interface caches the XSLT
stylesheets in the processor driver in a compiled form, so the speed of the processing
is increased.

mailto:jeff.rancier@softechnics.com
mailto:p.lord@russet.org.uk
mailto:kessler@balcab.ch
mailto:a.erskine@cs.ucl.ac.uk

Chapter 8: Changes 21

• The mode is now running with GNU Emacs on Windows NT/2000, thanks to Allan
Erskine for figuring out the issues.

• Changed again the keyboard binding to C-c C-x C-v, as C-M-x doesn’t work on Win-
dows systems.

• The documentation has been reorganized a little bit to be more logical.

This is the list of changes since the 1.0 release.
• The ‘xslt-process-additional-classpath’ customization variable has been intro-

duced. Setup this variable with any additional Java classpath components you want to
be passed to the BeanShell when is first invoked. If you already started a BeanShell,
you need to kill the corresponding buffer (named ‘*bsh*’) and restart it by invoking
XSLT-process on a buffer. (Suggestion from T. V. Raman.)

• Allow for passing the user agent to the Cocoon processor so that multiple browser types
can be simulated. This works with a patch I submitted against Cocoon 1.8-dev; it was
incorporated and should be available in the 1.8.1 release. If you need the patch before
this release, feel free to contact me, I’ll gladly send it to you.

• The way the error messages are displayed has changed, now error messages messages
encountered during the JVM startup process also go in the ‘*xslt-output*’ buffer.

• The default keybinding has been changed to C-M-x instead of C-c x, to conform to the
(X)Emacs keybinding standards.

mailto:a.erskine@cs.ucl.ac.uk
mailto:a.erskine@cs.ucl.ac.uk
mailto:tvraman@almaden.ibm.com

i

Table of Contents

1 What is it? . 1

2 Installation and setup . 2
2.1 Package installation under XEmacs . 2
2.2 Generic installation . 2

2.2.1 Installing Elib . 2
2.2.2 Installing Speedbar . 3
2.2.3 Installing XSLT-process . 3

2.3 Setting up the XSLT-process mode . 3
2.4 Convenience Settings . 4

3 Running the XSLT processor 5
3.1 Setting up the XSLT processor . 5
3.2 Viewing the results of the XSLT processing. 5
3.3 Dealing with errors . 6
3.4 Associating an XSLT stylesheet with an XML document . . . 7

3.4.1 Using the associated stylesheet. 7
3.4.2 The stylesheet registry . 8

3.5 Changing the XSLT processor . 9

4 The XSLT debugger . 11
4.1 Entering the debug mode . 11
4.2 Breakpoints . 12
4.3 Controlling the debugger . 13
4.4 The speedbar . 14

5 Customizing the XSLT-process mode 17

6 Known problems and limitations 18

7 Future enhancements . 19

8 Changes. 20

	What is it?
	Installation and setup
	Package installation under XEmacs
	Generic installation
	Installing Elib
	Installing Speedbar
	Installing XSLT-process

	Setting up the XSLT-process mode
	Convenience Settings

	Running the XSLT processor
	Setting up the XSLT processor
	Viewing the results of the XSLT processing
	Dealing with errors
	Associating an XSLT stylesheet with an XML document
	Using the associated stylesheet
	The stylesheet registry

	Changing the XSLT processor

	The XSLT debugger
	Entering the debug mode
	Breakpoints
	Controlling the debugger
	The speedbar

	Customizing the XSLT-process mode
	Known problems and limitations
	Future enhancements
	Changes

