Actual source code: ex28.c

petsc-3.5.4 2015-05-23
Report Typos and Errors
  2: static char help[] = "Test procedural KSPSetFromOptions() or at runtime; Test PCREDUNDANT.\n\n";

  4: /*T
  5:    Concepts: KSP^basic parallel example;
  6:    Processors: n
  7: T*/
  8: #include <petscksp.h>

 12: int main(int argc,char **args)
 13: {
 14:   Vec            x, b, u;     /* approx solution, RHS, exact solution */
 15:   Mat            A;           /* linear system matrix */
 16:   KSP            ksp;         /* linear solver context */
 17:   PC             pc;          /* preconditioner context */
 18:   PetscReal      norm;        /* norm of solution error */
 20:   PetscInt       i,n = 10,col[3],its,rstart,rend,nlocal;
 21:   PetscScalar    neg_one = -1.0,one = 1.0,value[3];
 22:   PetscBool      TEST_PROCEDURAL=PETSC_FALSE;

 24:   PetscInitialize(&argc,&args,(char*)0,help);
 25:   PetscOptionsGetInt(NULL,"-n",&n,NULL);
 26:   PetscOptionsGetBool(NULL,"-procedural",&TEST_PROCEDURAL,NULL);

 28:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 29:          Compute the matrix and right-hand-side vector that define
 30:          the linear system, Ax = b.
 31:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 33:   /*
 34:      Create vectors.  Note that we form 1 vector from scratch and
 35:      then duplicate as needed. For this simple case let PETSc decide how
 36:      many elements of the vector are stored on each processor. The second
 37:      argument to VecSetSizes() below causes PETSc to decide.
 38:   */
 39:   VecCreate(PETSC_COMM_WORLD,&x);
 40:   VecSetSizes(x,PETSC_DECIDE,n);
 41:   VecSetFromOptions(x);
 42:   VecDuplicate(x,&b);
 43:   VecDuplicate(x,&u);

 45:   /* Identify the starting and ending mesh points on each
 46:      processor for the interior part of the mesh. We let PETSc decide
 47:      above. */

 49:   VecGetOwnershipRange(x,&rstart,&rend);
 50:   VecGetLocalSize(x,&nlocal);

 52:   /* Create a tridiagonal matrix. See ../tutorials/ex23.c */
 53:   MatCreate(PETSC_COMM_WORLD,&A);
 54:   MatSetSizes(A,nlocal,nlocal,n,n);
 55:   MatSetFromOptions(A);
 56:   MatSetUp(A);
 57:   /* Assemble matrix */
 58:   if (!rstart) {
 59:     rstart = 1;
 60:     i      = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;
 61:     MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);
 62:   }
 63:   if (rend == n) {
 64:     rend = n-1;
 65:     i    = n-1; col[0] = n-2; col[1] = n-1; value[0] = -1.0; value[1] = 2.0;
 66:     MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);
 67:   }

 69:   /* Set entries corresponding to the mesh interior */
 70:   value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
 71:   for (i=rstart; i<rend; i++) {
 72:     col[0] = i-1; col[1] = i; col[2] = i+1;
 73:     MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);
 74:   }
 75:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 76:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

 78:   /* Set exact solution; then compute right-hand-side vector. */
 79:   VecSet(u,one);
 80:   MatMult(A,u,b);

 82:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 83:                 Create the linear solver and set various options
 84:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 85:   KSPCreate(PETSC_COMM_WORLD,&ksp);
 86:   KSPSetOperators(ksp,A,A);

 88:   /*
 89:      Set linear solver defaults for this problem (optional).
 90:      - By extracting the KSP and PC contexts from the KSP context,
 91:        we can then directly call any KSP and PC routines to set
 92:        various options.
 93:      - The following statements are optional; all of these
 94:        parameters could alternatively be specified at runtime via
 95:        KSPSetFromOptions();
 96:   */
 97:   if (TEST_PROCEDURAL) {
 98:     /* Example of runtime options: '-pc_redundant_number 3 -redundant_ksp_type gmres -redundant_pc_type bjacobi' */
 99:     PetscMPIInt size,rank,subsize;
100:     Mat         A_redundant;
101:     KSP         innerksp;
102:     PC          innerpc;
103:     MPI_Comm    subcomm;

105:     KSPGetPC(ksp,&pc);
106:     PCSetType(pc,PCREDUNDANT);
107:     MPI_Comm_size(PETSC_COMM_WORLD,&size);
108:     MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
109:     if (size < 3) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "Num of processes %d must greater than 2",size);
110:     PCRedundantSetNumber(pc,size-2);
111:     KSPSetFromOptions(ksp);

113:     /* Get subcommunicator and redundant matrix */
114:     KSPSetUp(ksp);
115:     PCRedundantGetKSP(pc,&innerksp);
116:     KSPGetPC(innerksp,&innerpc);
117:     PCGetOperators(innerpc,NULL,&A_redundant);
118:     PetscObjectGetComm((PetscObject)A_redundant,&subcomm);
119:     MPI_Comm_size(subcomm,&subsize);
120:     if (subsize==1 && !rank) {
121:       printf("A_redundant:\n");
122:       MatView(A_redundant,PETSC_VIEWER_STDOUT_SELF);
123:     }
124:   } else {
125:     KSPSetFromOptions(ksp);
126:   }
127: 
128:   /*  Solve linear system */
129:   KSPSolve(ksp,b,x);

131:   /* Check the error */
132:   VecAXPY(x,neg_one,u);
133:   VecNorm(x,NORM_2,&norm);
134:   KSPGetIterationNumber(ksp,&its);
135:   if (norm > 1.e-14) {
136:     PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g, Iterations %D\n",(double)norm,its);
137:   }

139:   /* Free work space. */
140:   VecDestroy(&x); VecDestroy(&u);
141:   VecDestroy(&b); MatDestroy(&A);
142:   KSPDestroy(&ksp);
143:   PetscFinalize();
144:   return 0;
145: }